BLIND DECONVOLUTION OF TIMELY-CORRELATED SOURCES BY HOMOMORPHIC
FILTERING IN FOURIER SPACE

Wiodzimierz Kasprzak and Adam Okazaki

Warsaw University of Technology, Inst. of Control and Computation Eng.
ul. Nowowiejska 15 -19, PL - 00-665 Warszawa, Poland
E-mail: W .Kasprzak@ia.pw.edu.pl , A.Okazaki@elka.pw.edu.pl

ABSTRACT

An approach to multi-channel blind deconvolution is
developed, which uses an adaptive filter that performs blind
source separation in the Fourier space. The approach keeps
(during the learning process) the same permutation and
provides appropriate scaling of components for all frequency
bins in the frequency space. Experiments verify a proper
blind deconvolution of convolution mixtures of sources.

1. INTRODUCTION

Source signals, like in speech, seismology or medicines get
mixed and distorted if they are transmitted over disperse
environment. The simplest case of a mixing model is an
instantaneous (linear) mixing of source signals [1, 2, 3], but
this is a practically no feasible model. In general, the nature
of the transmission environment is dynamic and nonlinear.
The goal of blind source deconvolution is to reconstruct
from many distorted signals the estimates of original sources
[2]. Some ambiguity is inherent, i.e. the permutation order,
the scaling and delay factors cannot be reliably predicted. 1-
D signals are the main application field of blind signal
processing techniques. But there appear some possible
applications in image processing as well [2, 4]: (1) the
extraction of sparse binary images (e.g. documents), (2)
contrast strengthening of “smoothed” images in selected
regions, (3) encryption of transmitted images.

In this paper we solve the source deconvolution
problem by repetitive use of blind source separation method
in the frequency space. The sensor signals are converted first
into the Fourier domain. In such a case the convolutive
mixture given in time space corresponds to a set of
instantaneous mixtures, one mixture for each frequency bin.
Although, the simplified problem of blind source separation
(BSS) can be quite robustly solved for each subband [5, 6], it
is still far from a real solution to the deconvolution problem.
As the BSS process is conducted independently for each bin,
the ordering and scaling of obtained outputs and weights are
arbitrary [7].

At least some solutions for the permutation problem
have recently been proposed by Murata et al (computing the
output correlations) [8] and Kurita and Saruwatari (to use

“directivity patterns” of weights matrices) [9]. In this paper
we propose another approach to both problems — the
permutation and scaling indeterminancy - by making an
integration of the (up to now) independent learning processes
for all frequency bins into one learning process. This allows
us to avoid non-compatible output permutations and
different component scales for different frequencies.

2. THE BSS/MBD PROBLEMS

The blind source separation task. Assume that there exist m
zero-mean source signals, si(7), ... ,sp(f), that are scalar-
valued and mutually (spatially) statistically independent (or
as independent as possible) at each time instant or index
value f. number m of sources [1, 2]. Denote by x(f)=
[x,(0),....x, (D] the n-dimensional 7-th mixture data vector, at
discrete index value (time) 7. The blind source separation
(BSS) mixing model is equal to:

x(t) =As(t)+n(t) = Zn: s;(Ha, +n(t) @)

Gradient based optimization. A well-known iterative
optimization method is the stochastic gradient (or gradient
descent) search [10]. In this method the basic task is to
define a criterion J(W(k)), which obtains its minimum for
some W, if this W, is the expected optimum solution.
Applying the natural gradient descent approach [1, 2] with
the cost function, based on Kullback-Leibler divergence, we
may derive the learning rule for BSS:

AW =L~ (£ (y1) -y)W) - @

The MBD problem. The multi-channel blind
deconvolution problem (MBD) can be considered as a
natural extension of the instantaneous blind separation
problem (BSS). The m-dimensional vector of sensor signals
(in discrete time), x(k) = [x;(k), ... Xn(k)]", is assumed to
originate from s(k) as:

x(k)= D> H,s(k—p)=Hz=s(k)=H@)[s(k)]> O
pm—o

where H = {H,, } is a set of (mX n) matrices of mixing

coefficients at lag p, which represents the time-domain

impulse response of the mixing filter. The BSS feed-forward

network can now be generalized to a deconvolution filter
with the impulse response W= { W, }:

y(k) = Wx(k) = inX(k -p)=W@Ix(k)] &

p=—o0

Difficulties of solutions to MBD in time space

A solution in time space to the MBD problem could first be
tried. In such an attempt, while using the natural gradient
search, Cichocki and Amari have obtained the following
weight update (learning) rule for MBD [2]:

q=0

I’"I

=n2(80q1—<f(y(k»yf(k—q)))wp,,,

forp =0,1,...,
denotes, that:

o0 I= L. forq=p
K 0, forq#p

L, where 7 is the learning rate. The term (J,I)

In particular the learning rule for Wy, is :
T
AW, =7 -(f(y(0)-y" ())- W, ©)
The selection of appropriate function f(y) depends on the
sign of the kurtosis, which is a 4-th order statistical moment.

The update rule (5) converges to the equilibrium point,
described by the two following equations:

E{f(y,; (k) y,(k)y}=1,Vi. 7
and E{(f(y,(k))-y,(k—p)}=0,Vi.

for p =1, 2, ..., L-1. In other words, the deconvolution
system, if succeeded, then it produces statistically
independent signals of timely non-correlated structure. In
practice, for most natural signals or images, both goals can
only approximately be achieved, as the natural signals are
pair-wise not fully independent and they also have not a
correlation-free time structure. To deal with natural signals,
we need to know their temporal structure. Probably for most
signal categories this can only approximately be known.

3. THE BSS-FT METHOD

Homomorphic filter. A linear filter is useful for noise
reduction or signal feature extraction if the signal is distorted
by additive noise. The homomorphic system is a
generalization of a linear system. It is more useful to use
such a system than a linear filter if the signals are combined
in a non-additive fashion, like the convolution operation. The
approach of homomorphic systems consists of following
steps:
1. Transform a non-additive combination into an additive
one by applying a transformation T, (e.g. X(®,) =

T.(x(k)) = log [FT [x(k)]]), called the characteristic
transformation.

2. Perform a linear transformation Ty (e.g. some linear
filter transform, for example the BSS transform) of the
transformed signal X (e. g Y(m K) W(w) X(m, ¥)).

3. Make an inversion by T, (e. g T, ') = FT'l[eXp[SA{']]).

Hence, the sequence of transformations is:

y(k) =T [T [T.[x(k)]]- ®)

Fourier space. The homomorphic filter uses the well-
known principle that a convoluted mixture in the time
domain corresponds to an instantaneous mixture of complex-
valued signals in the frequency domain. We shall use a 2L-
point Fast Fourier Transform to convert each time domain
signal x(¢) into a series of Fourier coefficients { X; (@, ¥) }

in the frequency space
2L-1

X, (@.5)= Y x,(k)e” - wik - Kh) ©
k=0
with @027 22T (N-D-27,
2L 7 2L 2L

where w is a window function with 2L nonzero elements and
A is a shift interval between consecutive window positions.
The number of coefficients is equal to 2L and all the
frequencies @ are multiplies of the basic frequency 2m/ 2L.

The learning (adaptive filtering) process. Let L = 2° be
the basic length of samples in one block and at the same time
the number of time-delayed filter weights in each channel. In
order to avoid end effects of the Fourier Transform, we shall
use a 2L-point FFT, with half of the samples padded to zero.
The impulse response of some ij-th channel is:

= FFT([wy;5..-sW;;.,0,...,0]) - (10)

The sensor vector data are grouped to blocks, indexed
by K, where each block xB(x) contains L (vector) samples, up
to time index k:

xB(K) = (x(k-L+1), ..., x(k)),

x5(c-1) = (x(k-2L+1), ... ,x(k-L)) . (11)

The block of output signals, which are computed in the
K-th iteration of the learning process, contains the samples
indexed by time instants up to k:

X(x) = FFT([x(k — 1), x(k)]) - (12)

Now the output signals in the frequency space are calculated:

Y ()= W(k).* X (k) (13)

where the operation “.*” means that we perform a set of
matrix multiplications, one multiplication for each single
frequency bin @ Now we could apply the nonlinear function
(e.g. fly) = y3) to current \A{(K) in the frequency space, but this
leads to independent learning (permutation and scaling) of
weights for each frequency bin. The proper way is to
transform the frequency output to the time domain. Hence, the
output signals are calculated in the following as:

[y(x =1),y(x)] = FFT™ (Y (x)) - 14

Finally, the block of transformed output signals in the
time domain is transformed again into the Fourier space:

F(X(x)) = FFTLf (y(x = 1)), f (y(K))]

The BSS learning (update) rule in Fourier space. Now, for
each frequency bin @ one can apply the BSS update rule in
order iteratively to learn the matrix W(a)) and to estimate the
output signals (in frequency space) Y(@, %). One of such
learning (weight update) rules is based on the principle of
natural gradient (equation 2) and it takes the form:

W(w,k+1) =W (w,k)+
1M (@) - £ F(@.5)- P (.50 W (@.5) . for all o, (16)

5)

where the superscript H denotes the Hermitian conjugate. In
order to keep the balance between signal component energies
in particular frequency bandwidths the learning process
converges to different values A(), (for all w), that are put
into relation to each other:

EXX(@,.%) X (@,.K))}

E{(X(0,,x)- X (@,,%))}
(p=0,1,2,...,L1).

an

ANw,) =

From above coefficients we form an appropriate set of
diagonal matrices:

Aw,) 0 0
INw,)=| 0 o |
0 0 Alw,)
(p=0,1,2,...,L-1).

18)

4. EXPERIMENTAL RESULTS

The approach described in section 3 was implemented in
Matlab and it was tested on some examples of image sources
(Fig. 1). For implementation details, please consider the
source code, given in the appendix. Obviously 1-D signals
can also be applied as well, but the image data gives better
and more impressive illustration of the results. From Fig. 2 it
can be seen that difficult, convoluted mixtures were
computed. The three sensor signals in both tests were nearly
the same, i.e. the cross-correlation factor of pairs of mixed
signals was in the range of 95 — 98%.

The results of the blind source deconvolution
process, applied to these mixtures in two separate tests, are
shown on Fig. 3. The three synthetic sources correspond to
step- and sinusoidal signals and they are only to some small
amount cross-correlated. Hence, for them a high quality
deconvolution effect was achieved. In opposite, the natural
sources are strongly cross-correlated, which is against the
theory requirements of source independency. The
deconvolution results in this case are only of average quality,

but they show appropriately the limitations of the blind
processing theory (related to unsupervised learning).

5. CONCLUSION

In this paper we propose and test a new approach to the blind
deconvolution problem via multiple BSS in Fourierr space.
We avoid the permutation and scaling indeterminancy
problems, which are common difficulties of other
deconvolution approaches in frequency space. This is due to
an integration of the (up to now) independent learning
processes for all frequency bins into one learning process.

ACKNOWLEDGMENTS

This work was supported by the Research Center for Control
and Information-Decision Technology (CATID) at Warsaw
University of Technology, Poland.

REFERENCES

[1] S. Amari, S.C. Douglas, A. Cichocki, H.Y. Yang: Novel
on-line adaptive learning algorithms for blind deconvolution
using the natural gradient approach. 1IEEE Signal Proc.
Workshop on Signal Processing Advances in Wireless
Communications, April 1997, Paris, 107-112.

[2] A. Cichocki, S. Amari: Adaptive Blind Signal and Image
Processing, John Wiley, Chichester, UK, 2002.

[3] W. Kasprzak, A. Cichocki, S. Amari: Blind Source
Separation with Convolutive Noise Cancellation, Neural
Computing & Applications, Springer, 6(1997), 127-141.

[4] W. Kasprzak, A. Cichocki: Hidden Image Separation
From Incomplete Image Mixtures by Independent
Component Analysis, 13th Int. Conf. on Pattern Recognition,
ICPR'96, Proceedings. IEEE Computer Society Press, Los
Alamitos CA, 1996, vol. II, 394-398.

[5] L. Tong, G. Xu, B. Hassibi, T. Kailath: Blind channel
identification based on second-order statistics: a frequency-
domain approach. IEEE Transactions on Information
Theory, vol 41 (1995), No. 1, 329-334.

[6] P. Smaragdis: Blind separation of convolved mixtures in
frequency domain. Neurocomputing, vol. 22(12998), 21-34.
[7] Araki et al.: Fundamental limitation of frequency domain
blind source separation for convolved mixture of speech.
Proceedings ICASSP2001, vol. 5, May 2001, 2737-2740.
[8] N. Murata, S. Ikeda, A. Ziehe: An approach to blind
source separation based on temporal structure of speech
signal. Neurocomputing, vol. 41(2001), No. 4, 1-24.

[9] H. Saruwatari, S. Kurita, K. Takeda: Blind source
separation ~ combining frequency-domain ICA and
beamforming. Proceedings ICASSP2001, May 2001, 2733-
2736.

[10] R.O. Duda, P.E. Hart: Pattern classification and scene
analysis, John Wiley & Sons, New York, 1973.

[11] I. Sabata: Multichannel Deconvolution and separation
of statistically independent signals for unknown dynamic
systems. Ph.D. Thesis, Warsaw University of Technology,
Department of Electrical Engineering, Warsaw, 1998.

Test 1: three synthetic image sources
Test 2: three natural image sources

Original sources (assumed to be unknown).

Fig. 1

Examples of sensor signals.

Fig. 2

Examples of éutput signals.

Fig. 3

APPENDIX

Source code of the multichannel BSS-FFT learning process

function y = MBDBatchFFTLearningRule(x, Wfin, p, 1r0)
% MBD via separation in FFT space

9o %o %o %o Yo o Yo Yo o To Yo Yo To Yo Yo Yo Yo Yo Yo Jo Yo Yo Jo Yo Yo Yo Yo

% Parameters:

% x — the mixed signals

% Wrfin — the (empty) set of weight matrices in freq.
% p — the power index of the function f(y) = y*p

% Ir0 — the initial learning rate

Yo% Yo %o % Yo %o Y Yo %o %o Yo Io Yo Yo Yo Yo Jo Yo Yo Yo Yo Yo Jo %o Yo Yo
%
% 1: The initialization phase

[n, ntr] = size(x); % Number of samples (ntr) and sensors (n)

[n, nL] = size(Wfin); % The size of inputted weight matrix
L =nL/n; % The block length

Irinit = Ir0;
REPEAT =1;

Yo% %o Yo Yo Yo Yo Yo Yo Jo Yo To Yo Yo Yo Yo Yo Yo Yo Yo Yo %o %o %o
% 11: The learning cycle

while (REPEAT==1)
REPEAT = 0;

% Initialize the weights
Wi = Wfin; % Assume, that Wfin is nearly a zero matrix
Imat = zeros(n, nL); % The nearly identity matrix

for (i=1: 1: n)
kk =0;
for (j=1: 1: n)
if (i==j)
initvalue = 0.1;
else
initvalue = 0.01;
end

Wi1(,kk + 1) = Wi(i,kk + 1) + initvalue; % Basic F
Imat(i, kk +1) = 1.0;
for (k=2: 1: L)
Wi, k+kk) = W1(i,k+kk) + initvalue/k;
Imat(i, k+kk) = 0.1/k;
end
kk=kk +L;
end
end

% The data sample cycle
Ir = Irinit;
for (sample=1:1:ntr-L)
XkO = x(:,sample:sample + L - 1);

% Step (c1) Xf(1) = FFT([x(1)])
Xf = ManyChanFFT(XkO0, n, 1); % A subfunction

% Step (c2) Yf(l) = Wf(1) .* Xf(1)
Yf = zeros(n, L);
for (i=1: 1: n)
for (j=1: 1: n)
ji=@G-1D) *L+ 1:j * L; % Consecutive index vector
Y1(i,:) = YI(i,:) + WI(, jj) .* X1(,:);
end
end

% Step (c3) Ynew(l) = FFT-1(Yf(1))

Yk = ManyChanIlnvFFT(Yf, n, 1); % Inverse FFT
% Step (3a) Y(1) = real(Ynew(l))

YkO = real(Yk);

% Step (c4) Uf(1) = W H(1) .* Y(1)
Uf = zeros(n, L);
for (i=1:1:n)
ii = (i-1) * L + 1: i*L; %Consecutive index vector
for (j=1:1:n)
Jji=G-D) *L+ 1: j*L;
Uf(i,:) = Uf(i,:) + conj(WI1(j,ii)) .* Y{(j,:);
end
end

% Step (c5) Ff(l) = FFT(f(Y(1)))
Ff = ManyChanFFT(sign(YkO) .* (abs(YkO0).Ap), n, 1);

% Step (c6) Cf(l) = (Ff(1) .* UfAH{1))/ L
Cf = zeros(n, n*L);
for (i=1:1:n)
for (j=1:1:n)
Jji=G-D*L + 1: j*L;
Cf(i, jj) = Ff(i,:) .* conj(Uf(j,:));
end
end
Cf=Cf/L;

% Step (c7) W(1+1) = WE(1) + eta(l) * (Wf(1) - Cf(1))
WI = Wf + Ir * (Imat .* Wf - Cf); % The update rule

% Step (c8) Modify the learning rate
Ir = Irinit /(1.1 + 4*L/ntr);

% Step (c9) Test the weight convergence
if (abs(W1(1,1)) > 100)
fprintf('*Warning: weights too large\n');
REPEAT =1;
Irinit = Irinit * 0.5;
break;
end

end % End of sample cycle
end % End of REPEAT cycle

9% %o %o %o Yo o Yo Yo Jo %o To %o Yo Yo Yo Yo Yo
% 111: Compute the separated signals

y = zeros(n, ntr); % This will be the final output signal
for (sample=1:1:ntr-L)
XkO = x(:,sample:sample + L - 1);
Xf = ManyChanFFT(XkO, n, 1); % A subfunction
Yf = zeros(n, L);
for (i=1: 1: n)
for (j=1: 1: n)
ji=@G-D) *L+ 1:j * L; % Consecutive index vector
Y1(i,:) = YI(i,:) + WI(, jj) .* Xf(j,:);
end
end
Yk = ManyChanInvFFT(Yf, n, 1); % inverse FFT
y(:,sample:sample+L-1) = y(:,sample:sample+L-1) +
real(Yk);
end

return; % end of function
Y0 %0 %o %o Yo o o o To To To Yo %o %o Yo Yo Yo Yo Yo

