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Abstract

We propose two methods for the disambiguation of re-
sults in time-delay based detection and localization of
sound sources, when a triangle of microphones is ap-
plied for signal acquisition. A standard approach is to
create histograms of time differences of arrival (TDOA)
for each microphone pair in a triangular array and to
create an averaged histogram. But each individual his-
togram is designed to detect unique orientation of source
only within the local range of [−π/2, π/2]. Hence, tak-
ing the average for different pairs is not appropriate and
such method suffers from ambiguity of results in the full
range of orientations: [0, 2π]. Our first proposition is a
delay vector transformation method, that combines cor-
responding delay measurements into vectors and trans-
forms them into a 2-D space in which a full-range orien-
tation histogram can finally be established and analyzed.
In our second method, individual orientation histograms
obtained for pairs of microphones are analyzed first and
for each detected source two competitive hypotheses are
created. Due to a final clustering of the hypothesis set a
unique orientation of each source can be estimated.

1. Introduction

Sound source localization and computational auditory
scene analysis (CASA) have potential applications such as
tele-conference and distributed meeting systems, hands-
free automatic voice recognition systems and mobile ser-
vice robots [1], [2].

A standard approach for dominating-sound-source of
multi-sound-source localization is to use an array of mi-
crophones [3]. Early methods concentrated on measur-
ing the time differences of arrival (TDOA) to two sensors
directly in the time domain, using the generalized cross-
correlation or related methods [4], [5]. However, the res-

olution capability of this method is limited, which makes
it impractical for use in some applications, like in multi-
speaker localization.

Current most basic approach to find the direction of a
speech source is to estimate the phase difference between
two sensors in the frequency domain [6]. Several novel al-
gorithms have been developed recently, such as TIFROM
(TIme-Frequency Ratio Of Mixtures) [7], DEMIX [8] and
uniform clustering [9], that try to overcome some weak
points of basic algorithms. These improvements focus
on making more efficient clustering in the attenuation-
rate and delay-time spaces. In case of music and speech
sources the specific signal characteristics can be explored,
e.g. the harmonic signal structure leads to a clustering
feature [10], [11].

Other recent research line is to provide proper micro-
phone arrangements, e.g. an array of microphones [12]
or multi-array sets [13], in order to implement a true 3-D
localization ability. For example, in [13] the multi-array
consisted of 8 omni-directional sensors organized in two
squares, that were located on mutually orthogonal planes
(e.g. two walls in a room). Two types of experiments have
been conducted - with 4 microphone pairs (2 diagonal
pairs in every square) or 12 microphone pairs (by taking
the all possible pairs within a square for two squares). Av-
erage performance of detecting a single dominating source
have been reported to be only slightly better for 12 pairs
if compared to the 4-pair case. In fact, using a triangle of
microphones (3 difference measurements for 3 pairs) we
can already obtain robust results similar to a single square
of 4 microphones.

With regard to a triangle of microphones the histogram
mapping (HM) method was proposed in [14]. The HM
method estimates histograms of phase differences of sen-
sor signals for each microphone pair in a triangular ar-
ray and averages them to make a combined histogram
search. But each individual histogram is designed to de-
tect unique orientation of source only within the local
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range of [−π/2, π/2]. Hence, taking the average for dif-
ferent pairs is not appropriate and such method suffers
from ambiguity of results in the full range of orientations:
[0, 2π]. Additionally, as the estimation accuracy at one
microphone pair differs from that at the other two pairs,
some weighted averaging of the individual estimates ob-
tained for these different pairs is needed.

Obviously, one can force the sources always to be ”in
front” of the microphones. This is even possible in station-
ary arrangements in in-door conditions. But with a mobile
robot moving in an in-door or eventually also in an out-
door environment the sound sources can really originate
from all the places surrounding the robot.

In this paper, we propose improvements of the basic
method of histogram mapping, based on signals coming
from a triangle of microphones, as applied for the detec-
tion and localization of sound sources. In the first ap-
proach, called the delay vector transformation approach
[15], a 3D time delay vector is created for a microphone
triangle, and by observing obvious constraints it is trans-
formed into a 1-D orientation histogram analysis. In the
second approach, instead of averaging the three individual
time-delay histograms, like it is done in the HM method,
we apply orientation histogram analysis for each micro-
phone pair separately, then generate from them source
orientation hypotheses (two hypotheses for each detected
source) and finally resolve the inherent hypothesis ambi-
guities by applying a clustering process.

We also propose to replace the standard time-delay
(or phase-difference) histogram analysis by the orienta-
tion histogram analysis. It is known that the estimation
of the TDOA at a microphone pair degrades when the di-
rection of the speech source deviates from the broadside
direction, e.g. [16], [11]. Thus, by dealing with the orien-
tation histogram, we shall avoid this endpoint degradation
problem.

In next section, the principle of the TDOA-based
source localization approaches are introduced. In section
3, the particular histogram mapping method (for a triangle
of microphones) is described and the ambiguity problem
of this method is identified. In section 4, the delay vector
transformation method is proposed to avoid the ambiguity
of the basic method. In section 5, the orientation ambigu-
ity problem is solved by a so called source voting method.
Individual orientation histograms obtained for pairs of mi-
crophones are analyzed first and for each detected source
two competitive hypotheses are created. Due to a final
clustering of the hypothesis set a unique orientation of
each source can be estimated. Some experimental results,
that verify the ability of both methods to resolve source
detection ambiguity, complete the paper.

2. The TDOA-based source localization

The basic principle of audio signal detection based on
the time delay between two microphones is explained in
Figure 1. For a single active sources, the peak value of the

cross correlation of two sensor signals in the time domain
occurs at the time delay:

D1,2 = (d1 − d2)/v, (1)

where d = d1 − d2 is the path length difference and v is
the propagation velocity of the source signal s(t). Know-
ing v, the delay value D1,2 defines a hyperbolic surface
on which the source must lie [4]. For sources that are suf-
ficiently distant from the microphone pair (with respect to
the base distance between two microphones), one can ap-
proximately assume the orientation angle has reached the
border value (e.g. 60o or −60o for source 1 in Figure 1).

(a)

(b)

Figure 1. The principle of TDOA-based
source localization with two microphones:
(a) one sound source, (b) two symmetric
directions per source are detected, corre-
sponding to a hyperbolic surface of possi-
ble locations

To be more specific, let us refer the experimental re-
sults given in [5]. The experimental setup included: the
base distance, b = 14 cm and the sampling rate, fs = 64
kHz. When no echo effects deteriorate the measurements,
it was found that with source distances of 1 − 3 m (i.e.
7b − 21b) the average detection error was below 6o. In
the modern methods of multi-speaker detection and local-
ization, the phase difference is measured in the frequency
domain, rather than the time domain differences. Then
the base distance is kept at 4 − 8 cm and the sampling
rate is 8 − 16 kHz. Hence, the expected orientation ap-
proximation error will be below 6o already at small source
distances starting from 28 cm.



Unfortunately, there is an ambiguity inherited in this
approach. From the principle in equation (1) and the Fig-
ure 1(b) it is visible, that two ”symmetric” orientations
are equally probable for a single source. Obviously, one
can force the sources always to be ”in front” of the micro-
phones. This is even possible in stationary arrangements
in in-door conditions. But with a mobile robot moving in
an in-door- or eventually also in an out-door-environment,
the sound sources can really originate from all the places
surrounding the robot. Hence, in such applications we
need to resolve this ambiguity problem.

3. The triangle of microphones

Let us assume a triangular microphone array as shown
in Figure 2. There are three microphones located at the
vertices of an equilateral triangle with size distance equal
to d. There exist speech and sound signals sk, (k =
1, 2, ...,K), each located at a different direction θk with
respect to the microphone coordinate system. Here, K
represents the number of sound sources that may be si-
multaneously active. For simplification, we restrict the
discussion to a two sources case, without loss of general-
ity.

3.1. Mixture of sources
Each mixture of sources, acquired by a particular mi-

crophone, is first transformed by a short-time Fourier
transform (STFT). The value of d limits the interesting
frequency bandwidth to [0, fmax], so that the phase shift
between every two microphones is less than π. Then the
spectrogram image (i.e. the magnitudes of Fourier coeffi-
cients) of every mixed signal is virtually the same and the
differences are only due to the phase information.

Figure 2. The arrangement of microphones.

3.2. WDO
One can assume, that different speech signals only

rarely overlap in the time-frequency domain. In the ideal
case, the W-disjoint orthogonality (WDO) property is sat-
isfied [6]: a single-frequency bin of the input signal at any
frame contains the spectral component of only one speech
signal. Hence, in time-frequency domain the signals have
the property of sparseness, i.e.

Si (t, f) · Sj (t, f) ≈ 0 , ∀i 6= j,∀(t, f) (2)

Assuming this WDO property, the many-source local-
ization problem may be transformed into a set of narrow-
band, single-source problems.

3.3. Delay time calculation
For every pair of microphones (let us denote them here

as 1 and 2) the anechoic mixing process can be expressed
as[
X1 (t, f)

X2 (t, f)

]
=

[
1 1

e−j 2πfδ1L e−j 2πfδ2L

] [
S1 (t, f)

S2 (t, f)

]
,

(3)
where δi ( i =1,2) is the delay between two microphones,
and L is the number of STFT points. Assuming that mi-
crophone no. 1 provides the reference data, under the con-
dition of WDO, the mixing model can be simplified to[

X1 (t, f)

X2 (t, f)

]
=

[
1

e−j 2πfδiL

]
Si (t, f) (4)

The delay δi is related to a phase function:

δ(t, f) =
L

2πf
φ(t, f) (5)

where φ(t, f) is the phase difference

φ(t, f) = 6 X1(t, f)− 6 X2(t, f). (6)

3.4. The histogram mapping method
In the histogram mapping method, the orientation dis-

tributions θ(i, j), one for each microphone pair (i, j), are
mapped into a histogram (Figure 3).

Figure 3. Example of histogram mapping
with prior ”front” constraint - three local ori-
entation histograms.



The three individual histograms are eventually reversed
and shifted in order to change the local orientations to the
global orientation of the triangle (Figure 4).

Figure 4. Example of histogram mapping
with prior ”front” constraint - histograms af-
ter order reversion and orientation shift.

Figure 5. Example of histogram mapping -
final averaged histogram.

Such normalized three individual histograms are added
together and averaged (Figure 5). Eventually, the final his-
togram can be smoothed allowing to remove insignificant
small peaks. Finally, the peaks are searched for in the av-

eraged histogram. The number of peaks in the resultant
histogram is equal to the number of active speakers, and
the center of each peak is the estimated direction of a sig-
nal generated by an active source (e.g. a speaker).

In practice, this approach succeeds if the location of
speakers can be in advance restricted to be in one of three
areas: ”in front” of microphone pair 1-2, or ”in front” of
microphone pair ”2-3” or ”in front” of microphone pair 3-
1. Only then the ambiguity of individual histograms can
be avoided, because in general any orientation solution es-
tablished in the interval [−90o, 90o] has an equally proper
symmetric solution in the interval of [90o, 270o]. Without
the above mentioned a priori knowledge the summation of
histograms can not be applied. But this constitutes a se-
vere constraint onto the use of all the three measurements.
To be able to combine 3 histograms the sources should
be located within of [−30o, 30o] with respect to the local
system of the ”front” pair. If only two histograms need
to be combined then this allowed interval is extended to
[−90o, 30o] or [−30o, 90o]. In the example in Figure 3 we
know in advance that the sources, if any, are located ”in
front” of the microphone pair 1-2. Hence, the histogram
for pair 1-2 is computed as usual, but the other two his-
tograms have to be reversed, i.e. the order of microphones
2-3 changes to 3-2, and the order of 3-1 changes to 1-3.
Due to this reversion the unknown sources are expected to
be located ”in front” of all the 3 microphone pairs.

3.5. The ambiguity in histogram mapping
If the time-delay (or orientation) histogram is com-

puted for a single pair of microphones the useful interval
of orientations is [−90o, 90o] with respect to the normal-
to-baseline vector. There is an inherent assumption that
the source is ”in front” of the two microphones. If the
source is placed symmetrically (with respect to the base-
line) ”in the back part” of microphones, the same his-
togram data will appear.

Figure 6. There are 3 regions representing
locations ”in front” of the corresponding
microphone pair.



For the triangle microphone arrangement, in the stan-
dard approach we need to know in advance in which of
the 3 ”front” regions the source is located (Figure 6).

4. The delay vector transformation method

Let us define a TDOA vector, which consists of the
TDOAs of the three microphone pairs, as:

τ(θ) = [τ12(θ), τ23(θ), τ31(θ)]T , (7)

where the theoretical values of the particular components
are given by

τ12(θ) =
d

c
sin θ +

2

3
π (8)

τ23(θ) =
d

c
sin θ (9)

τ31(θ) =
d

c
sin θ − 2

3
π (10)

It may be observed that for theoretical corresponding
delay time values a linear equation is satisfied:

τ12(θ) + τ23(θ) + τ31(θ) = 0 (11)

There is also a constraint posed onto the second norm of
the delay vector:

τ212(θ) + τ223(θ) + τ231(θ) =
3d2

2c2
(12)

This means that valid observations of vector τ(θ),
given in the 3D coordinate system spanned over delay
times registered by microphone pairs, are located on a cir-

cle with radius r(θ) = d
c

√
3
2 (Figure 7).

We can now define a mapping from this 3D space to a
2D space by using the following orthogonal transforma-
tion:

T = [t1, t2, t3], (13)

with the column vectors defined as:

t1 =

[
−
√

1

6
,

√
2

3
,−
√

1

6

]
(14)

t2 =

[
−
√

1

2
, 0,−

√
1

2

]
(15)

t3 =

[√
1

3
,

√
1

3
,

√
1

3

]
(16)

Now every transformed delay vector takes the form:

τ ′(θ) = Tτ(θ) = (17)

=

[
d

c

√
3

2
sin θ,

d

c

√
3

2
cos θ, 0

]T
. (18)

Hence, the orientation is obtained as: θ =
arctan

(
τ ′x/τ

′
y

)
.

Figure 7. The theoretically correct delay
vectors form a circle in the 3D delay space.

5. The source voting method

5.1. Selection of spectrogram data
It is already well recognized that particular spectro-

gram cell’s provide delay data of different quality, as in
practice the WDO principle is often violated. Here we
propose to use a restrictive cell selection rule, considering
two criteria:

1. select the local maxima along every column of the
spectrogram (a distribution across frequencies) each
frequency-indexed column,

2. select sufficiently large values along every row of the
spectrogram - a maximum value in given row is first
obtained and a threshold is set in proportion to this
maximum.

The result of combining above two criteria is illustrated in
Figure 8.

5.2. Orientation histogram
Another preliminary modification of a typical TDOA-

based approach will be the use of an orientation histogram
instead of analyzing directly the delay times or phase
shifts. For the case of orientations, the histogram bins are
linearly matching the angle scale, e.g. the difference of,
say, 10 degrees corresponds to the same number of bins
in cases when θ is nearly 90 degrees or near 0 degrees. In
opposite, in the histogram of delay times, the linear de-
composition of histogram bins in the time space will cor-
respond to a nonlinear scale in the orientation space, due
to the mapping by the sin() function.

In fact, where two sources are located at the same dis-
tance of 2 m from the center of two microphones, we can
write:

θ(t, f) = arcsin(δ(t, f) · c/d), (19)

where c is the average speed of sound and d - the base dis-
tance between two microphones. The delay time δ(t, f)
can be measured from the mixture spectrogram according



(a)

(b)

Figure 8. Illustration of the spectrogram se-
lection step: a) example of a spectrogram of
mixed signal, b) selected spectrogram ele-
ments that will be used for phase shift mea-
surements.

to equations (4) and (5). From (6) in turn we observe that
the delay time is nonlinearly dependent on the orientation
angle. We can write:

δ(θ) =
d

c
sin(θ) (20)

Let us notice the Figure 9, which illustrates the most
difficult case in T-F based speech separation when both
sources are oriented very closely and at 80 and 90 degrees
with respect to the normal to base line of microphones,
i.e. nearly in-line with this base line. Still two clear local
maxima are present in the orientation histogram, but not in
the time delay histogram. In the latter case the time delays
are nearly the same and they fall into a single histogram
bin.

5.3. The source localization algorithm
Let us consider again the problem illustrated in Figure

6. We assume that a single source is located at orienta-
tion θ, expressed in the global coordinate system (speak-
ing more exactly - with respect to a vertical system axis).
The histogram analysis performed independently for three
microphone pairs will return single peaks inducing the ori-

(a)

(b)

Figure 9. A difficult case of two sources at
orientations of 80 and 90 degrees: (a) the
orientation histogram succeeds, (b) but the
delay-time histogram fails

entations θ12, θ23 and θ31, specified in local coordinates
of each microphone pair. In fact, every peak is ambiguous
as it represents two locally symmetric solutions, θij and
θsymij :

if θij < 0 then θsymij = −180o − θij < 0 (21)
if θij > 0 then θsymij = 180o − θij > 0 (22)

for i 6= j, i, j = 1, 2, 3. Thus, six hypotheses for the un-
known global θ can be created:

θ(1) = θ12 + 60o, or θ(2) = θsym12 + 60o (23)
θ(3) = θ23 + 180o, or θ(4) = θsym23 + 180o (24)
θ(5) = θ31 − 60o, or θ(6) = θsym31 − 60o (25)

For example: θ(1) = 45o. Measurements at 1-2: location
is ”in front” - θ12 = −15o, → θsym12 = 165o → θ(2) =
−125o.

Measurements at 2-3: location is ”in the back” -
θsym23 = −135o, → θ23 = −45o → θ(3) = 135o ,
θ(4) = 450.



Figure 10. Three histograms obtained for pairs of microphones if two sources are active.

Measurements at 3-1: location is ”in the back” -
θsym31 = 105o,→ θ31 = 75o,→ θ(5) = 15o , θ(6) = 450.

Hence, if the histogram analysis is perfectly done,
we obtain 3 ”votes” for the hypothesis θ = 45o

and single ”votes” for 3 different other hypotheses:
−125o, 135o, 15o. The ambiguities that exist for each pair
of microphones have been resolved by combining the re-
sults for three microphone pairs.

In general, all the orientation histogram peaks are de-
tected first. Next, every ”weak” peak is canceled when it is
a ”symmetric” version of some dominating peak. Hence,
only strong peaks will remain that represent true source
directions.

It has been validated in our experiments, that for two
sources the triangle arrangement is sufficient in practice
(Figure 10). The problem gets more complex if more
sources are simultaneously active. Then the probability is
growing, that a real orientation of one source is equal to a
”symmetric” orientation of some other source. A possible
solution is to assume some signal sparsity and to consider
histograms created for shorter time intervals, i.e. to expect
that a smaller number of sources is simultaneously active
in every short-time interval.

5.4. Unique solution in the vector transformation
method

The delay vector transformation method always solves
the problem, while detecting source orientations in the in-
terval θ ∈ [−π/2, π/2]. Obviously, a symmetric solution
θsim ∈ [π/2, 3/2π] is also possible. But here we can eas-
ily avoid the ambiguity problem if considering the signs
of X and Y components in the arc tangent function (like
for example in MATLAB is given as the atan2 function).
We can use the location of given histogram peak (located
along the red circle in Fig. 7) to make a one-to-one corre-
spondence between the peak (a delay vector) and a direc-
tion angle within the entire interval of [−π, π].

6. Results

The mixture signals have been generated by first ac-
quiring each source signal by each microphone, and then
adding appropriate signals for given microphones to simu-
late the mixture. Finally, a Gaussian white noise has been
added to simulate the environment noise. The signal pro-
cessing parameters were as follows: sampling frequency
- 16 kHz, microphone distance - 0.08 m, window - Ham-
ming, STFT frame - 1024 samples, STFT overlap - 512
samples, assumed wave speed - 340 m/s. The frame length
was set in such a way that the bandwidth of frequencies
up to 16 kHz was covered, which is the most appropriate
bandwidth for analyzing a speech signal.

First, we evaluate the single source orientation quality.
The following RMSE (root means square error) measure
is computed from the results of experimental series:

RMSE =

√√√√ N∑
i=1

(θ̄i − θ)2/N (26)

In Table 1 we show that our ”voting” method is able to
detect the source and to estimate the orientation with sim-
ilar high quality for the whole range of directions. Notice
that the histogram resolution was set to 10o, i.e. a range
of orientations from −90o to 90o is digitized into 19 bins.
The results of the second proposed approach - the vector
transformation method - has been virtually the same. Both
methods rely on the same pre-processed and selected data
elements, representing reliable phase-difference measure-
ments between pairs of microphones. This is the reason
while the source estimation quality should be similar. The
results are in fact the same as we use a relatively small
number of histogram bins - this is motivated by the fact
that our aim is not directly a high estimation quality but
experimentally to verify the disambiguation ability of both
methods.



Table 1. Source orientation estimation qual-
ity by the source voting method.

In Table 2 results of source estimation are shown when
two speakers are simultaneously active. One speaker has
been set at one of three directions: 0o,−30o, 30o, while
the directions of the other speaker have varied from−165o

to 180o with an interval of 15o.

Table 2. Source orientation estimation qual-
ity if two sources are active.

7. Summary

Two methods has been proposed that independently re-
solve ambiguities in TDOA-based source detection and
localization, when the signals are acquired by a trian-
gle of microphones. We have shown that the previous
histogram mapping method suffers from ambiguous de-
tections due to symmetric localizations. The first im-
provement is achieved by changing the averaging of three
TDOA histograms into the pre-analysis of individual ori-
entation histograms, followed by a clustering of gener-
ated orientation hypotheses. The second improvement is
achieved due to the delay vector transformation method.
By experimental tests we confirmed that both proposed
methods work properly for the full range of orientations.
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