
An Evolutionary Programming Based Algorithm
for HMM training

Ewa Figielska,Wlodzimierz Kasprzak

Institute of Control and Computation Engineering, Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

efigielska@poczta.wwsi.edu.pl, W.Kasprzak@ia.pw.edu.pl

Abstract. In this paper, we propose an evolutionary programming (EP)
based algorithm for the training of hidden Markov models (HMMs),
which are applied to automatic speech recognition. This algorithm (called
the EP algorithm) uses specially designed operators of mutation and se-
lection to find the HMM parameters and the number of states. In order
to evaluate the recognition capability of the HMMs trained by the EP al-
gorithm, a computational experiment is carried out using speech samples
for 20 words. The results indicate that the proposed EP algorithm is a
very promising tool for HMM training - the EP-HMM approach achieves
an average recognition rate of 97.92% and the training process requires
quite a small number of iterations of the algorithm.

1 Introduction

Statistic-based approaches, in which variations in speech are modeled statisti-
cally and which use automatic learning procedures, represent the current state of
the art in speech recognition [11, 7]. An example of a probabilistic model for dy-
namic systems is the Hidden Markov Model (HMM), which has been successfully
used in many applications, especially in speech recognition.

The topology of the HMM is described by the number of states used in it and
by the connections between these states. The term hidden refers to the type of the
Markov model in which the observation is a probabilistic function of the state.
An HMM is usually created for each spoken word (characterized by a sequence
of feature vectors) in a given lexicon. The recognition procedure consists of a
feature sequence extraction step (e.g. the MFCC-based features) and a search
step (e.g. dynamic programming search) for the best path in the HMM, that is
most likely to generate such a sequence. Several different ways of modeling the
distribution of the observed variable are: discrete, multi-dimensional Gaussian,
mixture of Gaussians or tied mixture of Gaussians (also called semi-continuous
model) [6]. The choice of specific distribution depends on the expected nature
of real-world variable distribution and also on the size of a training set.

HMM and its extensions can be modeled using more general probabilistic
modeling framework called Dynamic Bayesian Networks [10]. DBNs offer a pos-
sibility to track multiple input, output and hidden variables simultaneously and
thus to model conditional probabilities in more flexible way (while retaining the

first-order Markov assumption). A widely used model for general speech recogni-
tion is the Hierarchical HMM (HHMM). This topology is based on ”nesting” the
simpler HMMs in larger ones, so as to give the possibility to interpret a speech
signal at different levels - e.g. phoneme, word and sentence level [4].

Therefore, we ask for a procedure that finds an HMM which best describes
a spoken word. The main problems in creating such a procedure are: to define
the topology of the HMM and to determine the stochastic model parameters.
For isolated word recognition the left-to-right topology is generally used. The
classic approach to stochastic model parameter estimation is the Baum-Welch
algorithm [2]. The two drawbacks of this algorithm are: the number of states
must be known in advance, and a local optimization is achieved due to its hill-
climbing property. To overcome these drawbacks, it was proposed to use genetic
algorithms with their global optimization assumption [3]. But a large number of
iterations are required to achieve a globally optimized model. In order to estimate
the number of states and the model parameters in one computation step and
to speed-up the search, the genetic algorithm was tied with the Baum-Welch
algorithm [9].

In this paper, for training HMMs we propose an algorithm which is based
on evolutionary programming (EP). This algorithm (called EP algorithm) finds
both the stochastic HMM parameters (such as transition probability matrix,
mixture coefficient matrix, the mean vector and covariance matrix for Gaussian
distribution) and the best number of HMM states (we assume the left-to-right
HMM topology). As the proposed EP algorithm is based on mutation and se-
lection operators (evolutionary programming uses no recombination), the main
effort is directed to design such a mutation operator, which ensures a good per-
formance of the algorithm. We develop two mutation operators (the first one
changes the number of HMM states, whereas the second one changes the values
of HMM parameters). As the search process proceeds, the values of the mutation
parameters (associated with the mutation operators) are progressively reduced
so that the mutation is performed less frequently and the changes in the values
of HMM parameters lessen. This mutation mechanism aims at the exploration
of the search space at the beginning of the search process and the exploitation
of the solutions at its end.

In order to evaluate the recognition capability of the HMMs trained by the
proposed EP algorithm, a computational experiment is carried out using real
features of 20 words. The results demonstrate a high word recognition rate,
hence they verify a high performance of the EP-HMM approach. The results
also indicate that the proposed EP-HMM approach is superior to the GA-HMM
approach proposed in [3] and seems to be comparable with the hybrid GA-HMM
approach [9], combining GA with the Baum-Welch method.

2 Hidden Markov Model

A HMM is usually represented as a tuple λ = {S, π,A,B}, where [11]:
S - the set of N states,

π - the initial state probability vector: πj = P [s1 = i], 1 ≤ i ≤ N , s1 is the
initial state,

A = {aij} - the transition probability matrix, where aij = P [st+1 = j|st = i],
st is the state at time t, and aij has the following properties:

aij ≥ 0, 1 ≤ i, j ≤ N, (1)

N∑

j=1

aij = 1, 1 ≤ i ≤ N, (2)

B = {bj(o)} - the observation probability vector, where bj(o) is a random
function associated with state sj . In the most general model, it is a mixture of
M Gaussian distributions:

bj(o) =
M∑

m=1

cjmG(o, µjm, Ujm), 1 ≤ j ≤ N, (3)

where o is the observation vector, cjm is the mixture coefficient, µjm is the mean
vector and Ujm is the covariance matrix for the mth component in the Gaussian
distribution mixture in state j. Coefficients cjm satisfy the following constraints:

cjm ≥ 0, 1 ≤ j ≤ N, 1 ≤ m ≤ M, (4)

M∑
m=1

cjm = 1, 1 ≤ j ≤ N, (5)

3 The EP algorithm for HMM training

3.1 Evolutionary Programming

Evolutionary programming (originally introduced in [5]) is a search technique
inspired by the principles of genetics and Darwinian natural selection. It is con-
sidered as one of the methods (next to genetic algorithms, evolutionary strategies
and genetic programming) of the general approach called evolutionary comput-
ing. Its applications focus on continuous parameter optimization problems [1].
Evolutionary programming differs from the other evolutionary computing meth-
ods mainly by never using the crossover operator. It uses only inheritance from
one parent: it creates an offspring only by mutation.

3.2 EP-based HMM training

The proposed EP-based algorithm operates on a population of individuals, each
one representing a single HMM model. The process of looking for new solutions
uses mutation operators. Two mutation operators are introduced with the pur-
pose of (i) changing the number of states (MUT ST operator), and (ii) changing
the values of the HMM parameters, such as the transition probability matrix, the

mixture coefficient matrix, the mean vector and covariance matrix for the Gaus-
sian distribution (MUT VAL operator). With each mutation operator some mu-
tation parameters are associated (the mutation probability, Pst, with MUT ST;
the mutation probability, Pval, and mutation variance, V , with MUT VAL). As
the search process proceeds, the values of the mutation parameters are progres-
sively reduced so that the mutation is performed less frequently and the changes
in the values of HMM parameters lessen. This mutation mechanism aims at the
exploration of the search space at the beginning of the search process and the
exploitation of the solutions at its end.

The proposed EP based algorithm developed for HMM training can be out-
lined as follows.

1. Set the initial values of the mutation parameters.
2. Set t = 0 (t is the generation index).
3. Generate and evaluate the initial population of individuals P (t).
4. Repeat the following steps until stopping criterion is satisfied.

4.1. Repeat the following loop G times (G is the population size).
4.1.1. Select a parent from P (t).
4.1.2. Apply the mutation operators over the parent individual and pro-

duce an offspring.
4.1.3. Copy the offspring to population P (t + 1).

4.2. Evaluate P (t + 1).
4.3. Replace the worst individual of P (t + 1) by the best individual found

so far.
4.4. Set t = t + 1.
4.5. Update the values of the of the mutation parameters.

5. Return the best individual found.

The factors which characterize the EP algorithm are determined as follows.

Solution representation The solution is represented by a data structure shown in
Figure 1. Because we generate the HMM model of the left-to-right type, for the
representation of transition probability matrix we use a matrix tr of dimension
N×2 (instead of a matrix of dimension N×N) where element tr[i][j] corresponds
to the transition probability ai,i+j (the other values of aij , not represented in
tr, are equal to 0).

In the decoding process, the HMM model parameters are set to values of their
representatives, and then transition probabilities, aij , and mixture coefficients,
cjm, are normalized to satisfy constraints (2) and (5), respectively, so that:

aij = ãij/

N∑

k=1

ãik, 1 ≤ i ≤ N, (6)

and

cjm = c̃jm/

M∑

k=1

c̃jk, 1 ≤ j ≤ N, (7)

where ãij , c̃jm are the values of aij and cjm before normalization.

Fig. 1. Data structure representing the HMM model

Initial population An initial population of individuals is randomly generated.
The limits for minimal parameter values (described in Section 4.2) are taken
into consideration when a population is generated as well as when new solutions
are created by the mutation operators.

Evaluation To measure the fitness fg of an individual g, the value of an objective
function is used which is defined as follows [9]:

fg =
1
K

K∑

i=1

log(P (Oi|λg)), (8)

where λg are parameters of the HMM model represented by individual g, K is
the number of observation sequences in training data. The likelihood P (O|λ)
is calculated by the forward procedure [11]. The logarithm of the likelihood is
computed, as P (O|λ) is often very small and exceeds the precision range of a
computing machine.

Parent selection The binary tournament selection method is used. In a binary
tournament selection, two individuals are randomly chosen. The better fitting
one (with a greater objective function value) is then taken as a parent individual.

Mutation Two mutation operators are used: the state mutation operator MUT ST
and the value mutation operator MUT VAL.

The operator MUT ST changes the number of states in an individual with
probability Pst. If the state mutation is to be performed, the index, ϑ (Nmin ≤
ϑ ≤ Nmax), of the mutated state is randomly generated and then state ϑ is either

cloned (i.e. a new state has the same parameters as state ϑ and is put next to
state ϑ) or removed with probability equal to 0.5. Cloning a state is introduced in
our algorithm rather than including a state with randomly generated parameters
because, from our experience, the latter causes a significant decrease in the fitness
value of the individual.

The operator MUT VAL changes the value of a single parameter x (in the
model representation) with probability Pval according to the following equation:

x′ = x ·G(1.0, V), (9)

where x′ is a new value of parameter x and G(1.0, V) is a Gaussian random
number generated with mean 1.0 and variance V .

The values of mutation parameters Pst, Pval, and V are progressively reduced
(starting from their initial values) using reduction factors κst, κval and κV ,
respectively, until they achieve some minimal values. This reduction takes place
when the number of successive iterations without any improvement of the best
solution found so far is greater than 1.

Stopping condition The search process terminates after a predetermined number
of generations is performed.

4 Experiments

In order to evaluate the recognition rate of the HMMs trained by the proposed
EP algorithm, computational experiments were carried out using 20 words. The
training set contains 18 utterances of every word, whereas the testing set has 12
utterances, which are different than those used for training.

Before training the HMMs by the EP algorithm, the feature sequence extrac-
tion for the words to be used in training and testing is made.

4.1 Speech features

Twelve mel-frequency cepstral coefficients (MFCC) are computed for every signal
window of M (=512) samples each, with a 50% overlapping of two consecutive
windows, according to the standard equations shown below [11, 7, 8] (see Figure
2).

1) The M/2 Fourier power coefficients (k = 1 . . .M/2), for every window τ
under a Hamming window function wr(t) are:

FC(k, τ) = |F (k, τ)|2 =

∣∣∣∣∣
1
M

M−1∑
t=0

[
x(τ + t)e

−i2πkt
M · wτ (t)

]∣∣∣∣∣

2

(10)

2) The Mel-spectral coefficients by collecting the FCs in L (=32) triangle
sub-band filters D(l):

Fig. 2. Example of a speech signal (top window), its spectrogram (middle) and the set
of MFCC features (bottom)

MFCL(l, τ) =
M−1∑

k=0

[D(l, k) · FC(k, τ)] (11)

distributed according to the Mel scale:

fmel = 2595 log
(

1 +
f

700[Hz]

)
(12)

3) The MFCC coefficients, k = 1, . . . , 12, (see Figure 3) are:

MFCC(k, τ) =
L−1∑

l=0

[
log MFC(l, τ) · cos

(
k(2l + 1)π

2L

)]
(13)

4.2 EP algorithm parameterization

The bounds for the number of states of every HMM word model, Nmin and Nmax,
are set to 5 and 20, respectively. We always assume that the model is in state s1

at time 1. The number of components in the Gaussian distribution mixture is

Fig. 3. Example of average MFCC vectors (with 12 coefficients each) for the vowel /a/
and for 4 speakers

fixed to 6. The mixture coefficients cjm and diagonal covariance coefficients Ujm

are constrained to be greater than or equal to 10−4. Additionally, the smallest
value of the transition probability, aij , for j ∈ {i, i + 1} is set to 10−6, while for
j /∈ {i, i + 1} the values of aij are set to 0 according to the left-right type of the
model.

To ensure a reasonable computation time of the EP algorithm working with
individuals of great size (each of which representing all HMM parameters), the
population size and the allowed number of iterations must not be too great.
In our algorithm, the population size G is equal to 10 and the search process
terminates after 2500 iterations.

The initial values of Pst, Pval and V are equal to 0.6, 0.1 and 0.5, respectively.
The process of the reduction of the values of Pst, Pval and V terminates when
they become equal to 0.2, 0.001, and 0.01, respectively.

Three experiments were performed with the following values of the reduction
factors:

– Experiment I with κst = κval = κV = 1.0;
– Experiment II with κst = κval = 0.990, and κV = 0.999;
– Experiment III with κst = κval = κV = 0.990;

For each of the experiments 5 simulation runs were carried out.

4.3 Performance of the EP HMM training

The results of the experiment are presented in Table 1 and Figure 4.
Table 1 shows the recognition rates of HMMs obtained in each simulation of

the EP algorithm for each of the experiments. In this table, we can see that the
best results were obtained in experiment II. In this case, the average recognition
rate has the greatest value. Moreover, the recognition rate is not less than 95%
in all the simulations of this experiment what indicates that the EP algorithm
with κst = κval = 0.990, and κV = 0.999 behaves more stably than the other
two algorithms (used in experiments I and III). In experiment I, in one of the
simulations the recognition rate of 100% was achieved.

Figure 4 shows the average (over 5 simulations) recognition rates vs. the
number of generations for experiments I, II and III. In this figure we can observe,
that in the first 1000 generations of the EP algorithms in experiment II and
III, the average recognition rate of 95% is achieved, and that in the succeeding
generations of the algorithm in experiment II, the quality of the produced HMMs
still improves. In experiment I, the recognition rate of 95% was achieved after
2250 generations.

Table 1. Recognition rates (%)

Experiment I Experiment II Experiment III

Simulation 1 98.75 95.00 92.92
Simulation 2 92.92 99.17 97.50
Simulation 3 92.08 99.17 99.58
Simulation 4 100.00 97.50 96.67
Simulation 5 94.59 98.75 95.00

Average 95.67 97.92 96.33

The obtained results indicate that the recognition performance of our EP-
HMM approach is good. The average recognition rate obtained in experiment II
is equal to 97.92%.

The proposed EP based training of HMM, regarding the computational effort
(it required 2500 iterations to achieve the recognition rate of 97.92%), is superior
to the genetic algorithm based training proposed in [3], which reportedly required
20000 generations to achieve the recognition rate of around 96%. The quality of
results seems to be comparable with the hybrid GA approach proposed in [9].

5 Summary and concluding remarks

In this paper we have proposed the evolutionary programming based algorithm
for training hidden Markov models applied to speech recognition. On basis of the

Fig. 4. The average recognition rates (over 5 simulations) vs. the number of generations
for experiments I, II and III

performed experiment we can conclude that the performance of the EP-HMM
approach is relatively high. The achieved average recognition rate is equal to
97.92%.

Further research should include training with a greater number of words.

Acknowledgments
The support by a research grant from the Faculty of Electronic Engineering
and Information Technology of Warsaw University of Technology is gratefully
acknowledged.

References

1. Back T., H.-P. Schwefel, Evolutionary computation: an overview, Proceedings of the
Third IEEE Conference on Evolutionary Computation, Piscataway, NJ, 1996, pp.
20-29.

2. Baum L.E., T. Petrie, G. Soules, N. Weiss, A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains, Ann. Math.
Statistics, 41 (1), 1970, pp. 164-171.

3. Chau, C.W., S. Kwong, C.K. Diu, W.R. Fahrner, Optimisation of HMM by a genetic
algorithm, Proceedings ICASSP, 1997, pp. 1727-1730.

4. Fine S., Y. Singer, N. Tishby: The hierarchical Hidden Markov Model: Analysis and
applications. Machine Learning, 1998, pp.32-41.

5. Fogel L, A.J. Owens, M. J. Walsh, Artificial Intelligence for Simulated Evolution,
1966.

6. Gales M.J.F.: Semi-Tied Covariance Matrices for Hidden Markov Models. IEEE
Transactions on Speech and Audio Processing, Vol. 2, 1999.

7. Junqua J.-C., J.-P. Haton, Robustness in automatic speech recognition, Kluwer
Academic Publications, Boston etc., 1996.

8. Kasprzak W., F.A. Okazaki, R. Seta: A common feature representation scheme for
speech and contour recognition, In: K. Wojciechowski et al. (eds.): Computer Vi-
sion and Graphics, ICCVG 2004. Series: Computational Imaging and Vision, vol.
32, Springer 2005, pp. 463-468.

9. Kwong S., C.W. Chau, K.F. Man, K.S. Tang: Optimisation of HMM topology and
its model parameters by genetic algorithms. Pattern Recognition 34, 2001, pp. 509-
522.

10. Murphy K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. Ph.D. Thesis, UC Berkeley, 2002.

11. Rabiner L. and B. Juang, Fundamentals of Speech Recognition, Prentice Hall,
1993.

