
Distributed Systems
Fault Tolerance

[2] Fault Tolerance

1. Basic concepts - terminology

2. Process resilience

– groups and failure masking

3. Reliable communication

– reliable client-server communication

– reliable group communication

4. Distributed commit

– two-phase commit (2PC)

– three-phase commit (3PC)

[3] Dependability

A component provides services to clients. To provide services, the component may

require the services from other components⇒ a component may depend on some

other component.

Dependability

A component C depends on C∗ if the correctness of C’s behavior depends on the

correctness of C∗’s behavior.

Properties of dependability:

– availability readiness for usage,

– reliability continuity of service delivery,

– safety very low probability of catastrophes,

– maintainability how easy a failed system may be repaired.

For distributed systems, components can be either processes or channels.

[4] Fault Terminology

Fault Tolerance

– Failure: When a component is not living up to its specifications, a failure

occurs.

– Error: That part of a component’s state that can lead to a failure.

– Fault: The cause of an error.

Different fault management techniques:

– fault prevention: prevent the occurrence of a fault,

– fault tolerance: build a component in such a way that it can meet its speci-

fications in the presence of faults (i.e., mask the presence of faults),

– fault removal: reduce the presence, number, seriousness of faults,

– fault forecasting: estimate the present number, future incidence, and the

consequences of faults.

[5] Different Types of Failures

Different types of failures. Crash failures are the least severe, arbitrary failures are

the worst.

[6] Failure Masking by Redundancy

2

Fault Tolerance

A B C

A1

A2

A3

V1

V2

V3

B1

B2

B3

V4

V5

V6

C1

C2

C3

V7

V8

V9

(a)

(b)

Voter

Triple modular redundancy (TMR).

[7] Process Resilience

Process groups: Protect yourself against faulty processes by replicating and dis-

tributing computations in a group.

(a) (b)

Flat group Hierarchical group Coordinator

Worker

a. flat groups: good for fault tolerance as information exchange immediately

occurs with all group members. May impose more overhead as control is

completely distributed (hard to implement).

b. hierarchical groups: all communication through a single coordinator ⇒

not really fault tolerant and scalable, but relatively easy to implement.

3

Fault Tolerance

[8] Groups and Failure Masking (1)

Group tolerance

When a group can mask any k concurrent member failures, it is said to be k-fault

tolerant (k is called degree of fault tolerance).

If we assume that all members are identical, and process all input in the same order.

How large does a k-fault tolerant group need to be?

– assume crash/performance failure semantics⇒ a total of k+1 members are

needed to survive k member failures.

– assume arbitrary failure semantics, and group output defined by voting⇒

a total of 2k + 1 members are needed to survive k member failures.

[9] Groups and Failure Masking (2)

Assumption: Group members are not identical, i.e., we have a distributed compu-

tation.

Problem: Nonfaulty group members should reach agreement on the same value.

Assuming arbitrary failure semantics, we need 3k + 1 group members to survive

the attacks of k faulty members.

We are trying to reach a majority vote among the group of loyalists, in the presence

of k traitors⇒ we need 2k+1 loyalists. This is also known as Byzantine failures.

[10] Groups and Failure Masking (3)

1 2

3 4

1

2

2 4

z

4
1 x

1

4

y

2

1
2
3
4

Got(
Got(
Got(
Got(

1, 2, x, 4
1, 2, y, 4
1, 2, 3, 4
1, 2, z, 4

)
)
)
)

1 Got 2 Got 4 Got
(((
(((
(((

1, 1, 1,
a, e, 1,
1, 1, i,

2, 2, 2,
b, f, 2,
2, 2, j,

y, x, x,
c, g, y,
z, z, k,

4 4 4
d h 4
4 4 l

)))
)))
)))

(a) (b) (c)
Faulty process

The Byzantine generals problem for 3 loyal generals and 1 traitor.

a. the generals announce their troop strengths (in thousands of soldiers),

4

Fault Tolerance

b. the vectors that each general assembles based on (a),

c. the vectors that each general receives in step 3.

[11] Groups and Failure Masking (4)

1

23

1
21

x

y

2 1
2
3

Got(
Got(
Got(

1, 2, x
1, 2, y
1, 2, 3

)
)
)

1 Got 2 Got
((
((
1, 1,
a, d,

2, 2,
b, e,

y x
c f

))
))

(a) (b) (c)
Faulty process

The same as before, except now with 2 loyal generals and one traitor.

[12] Reliable Communication

So far concentrated on process resilience (by means of process groups). What

about reliable communication channels?

Error detection:

– framing of packets to allow for bit error detection,

– use of frame numbering to detect packet loss.

Error correction:

– add so much redundancy that corrupted packets can be automatically cor-

rected,

– request retransmission of lost, or last N packets.

Most of this work assumes point-to-point communication.

[13] Reliable RPC (1)

What can go wrong during RPC?

1. client cannot locate server

5

Fault Tolerance

2. client request is lost

3. server crashes

4. server response is lost

5. client crashes

Notes:

1: relatively simple - just report back to client,

2: just resend message,

3: server crashes are harder as no one knows what server had already done.

[14] Reliable RPC (2)

If server crashes no one knows what server had already done. We need to decide

on what we expect from the server.

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

(a) normal case (b) crash after execution (c) crash before execution.

Possible different RPC server semantics:

– at-least-once-semantics: the server guarantees it will carry out an operation

at least once, no matter what.

– at-most-once-semantics: the server guarantees it will carry out an operation

at most once.

[15] Reliable RPC (3)

4: Detecting lost replies can be hard, because it can also be that the server had

crashed. You don’t know whether the server has carried out the operation.

6

Fault Tolerance

Possible solution: None, except that one can try to make your operations

idempotent – repeatable without any harm done if it happened to be carried

out before.

5: Problem: The server is doing work and holding resources for nothing (called

doing an orphan computation).

Possible solutions:

– orphan killed (or rolled back) by client when it reboots,

– broadcasting new epoch number when recovering ⇒ servers kill or-

phans,

– requiring computations to complete in a T time units, old ones simply

removed.

[16] Reliable Multicasting (1)

Basic model: There is a multicast channel c with two (possibly overlapping) groups:

– the sender group S ND(c) of processes that submit messages to channel c,

– the receiver group RCV(c) of processes that can receive messages from chan-

nel c.

Simple reliability If process P ∈ RCV(c) at the time message m was submitted

to c, and P does not leave RCV(c), m should be delivered to P.

Atomic multicast How to ensure that a message m submitted to channel c is deliv-

ered to process P ∈ RCV(c) only if m is delivered to all members of RCV(c).

[17] Reliable Multicasting (2)

If one can stick to a local-area network, reliable multicasting is ”easy”.

Let the sender log messages submitted to channel c:

– if P sends message m, m is stored in a history buffer,

– each receiver acknowledges the receipt of m, or requests retransmission at P

when noticing message lost,

– sender P removes m from history buffer when everyone has acknowledged

receipt.

7

Fault Tolerance

Why doesn’t this scale? The basic algorithm doesn’t scale:

– if RCV(c) is large, P will be swamped with feedback (ACKs and NACKs),

– sender P has to know all members of RCV(c).

[18] Basic Reliable-Multicasting Schemes

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

History
buffer

M25

M25

M25

M25

M25

M25

M25

M25

Last = 24

Last = 25

Last = 23

Last = 23

Last = 24

Last = 24

Last = 24

Last = 24

Receiver missed
message #24

ACK 25 ACK 25
ACK 25Missed 24

Network

Network

(a)

(b)

M25

A simple solution to reliable multicasting when all receivers are known and are

assumed not to fail: (a) message transmission and (b) reporting feedback.

[19] Scalable RM: Feedback Suppression

Idea: Let a process P suppress its own feedback when it notices another process

Q is already asking for a retransmission.

Assumptions:

– all receivers listen to a common feedback channel to which feedback mes-

sages are submitted,

– process P schedules its own feedback message randomly, and suppresses it

when observing another feedback message.

– random schedule needed to ensure that only one feedback message is even-

tually sent.

8

Fault Tolerance

NACK

NACK

NACK NACK NACK
T=3 T=4 T=1 T=2

Sender Receiver Receiver Receiver Receiver

Network

Receivers suppress their feedbackSender receives
only one NACK

[20] Scalable RM: Hierarchical Solutions

Idea: Construct a hierarchical feedback channel in which all submitted messages

are sent only to the root. Intermediate nodes aggregate feedback messages before

passing them on.

Main challenge: Dynamic construction of the hierarchical feedback channels.

C
C

S

(Long-haul) connection
Sender

Coordinator

Root
R

Receiver

Local-area network

[21] Atomic Multicast

Idea: Formulate reliable multicasting in the presence of process failures in terms

of process groups and changes to group membership.

Guarantee: A message is delivered only to the non-faulty members of the current

group. All members should agree on the current group membership.

Keyword: Virtually synchronous multicast.

9

Fault Tolerance

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

[22] Virtual Synchrony (1)

Network

Message is received by communication layer

Message is delivered to application

Message comes in from the network
Local OS

Comm. layer

Application

The logical organization of a distributed system to distinguish between message

receipt and message delivery.

[23] Virtual Synchrony (2)

Idea: We consider views V ⊆ RCV(c) ∪ S ND(c).

Processes are added or deleted from a view V through view changes to V∗. A view

change is to be executed locally by each P ∈ V ∩ V∗

10

Fault Tolerance

1. for each consistent state, there is a unique view on which all its members

agree. Note: implies that all non-faulty processes see all view changes in

the same order,

2. if message m is sent to V before a view change vc to V∗, then either all P ∈ V

that excute vc receive m, or no processes P ∈ V that execute vc receive m.

Note: all non-faulty members in the same view get to see the same set of

multicast messages,

3. a message sent to view V can be delivered only to processes in V , and is

discarded by successive views.

A reliable multicast algorithm satisfying 1. – 3. is virtually synchronous.

[24] Virtual Synchrony (3)

A sender to a view V need not be member of V ,

If a sender S ∈ V crashes, its multicast message m is flushed before S is removed

from V: m will never be delivered after the point that S < V

Note: Messages from S may still be delivered to all, or none (non-faulty) processes

in V before they all agree on a new view to which S does not belong

If a receiver P fails, a message m may be lost but can be recovered as we know

exactly what has been received in V . Alternatively, we may decide to deliver m to

members in V − P

Observation: Virtually synchronous behavior can be seen independent from the

ordering of message delivery. The only issue is that messages are delivered to an

agreed upon group of receivers.

[25] Virtually Synchronous Reliable Multicasting

Different versions of virtually synchronous reliable multicasting.

[26] Implementing Virtual Synchrony

11

Fault Tolerance

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

(a) (b) (c)

View change

Unstable
message

Flush message

a. process 4 notices that process 7 has crashed and sends a view change.

b. process 6 sends out all its unstable messages, followed by a flush message.

c. process 6 installs the new view when it has received a flush message from

everyone else.

[27] Distributed Commit

– Two-phase commit (2PC)

– Three-phase commit (3PC)

Essential issue: Given a computation distributed across a process group, how can

we ensure that either all processes commit to the final result, or none of them do

(atomicity)?

[28] Two-Phase Commit (1)

Model: The client who inititated the computation acts as coordinator; processes

required to commit are the participants.

Phase 1a Coordinator sends VOTE_REQUEST to participants (also called a pre-

write).

Phase 1b When participant receives VOTE_REQUEST it returns either YES or

NO to coordinator. If it sends NO, it aborts its local computation.

Phase 2a Coordinator collects all votes; if all are YES, it sends COMMIT to all

participants, otherwise it sends ABORT.

12

Fault Tolerance

Phase 2b Each participant waits for COMMIT or ABORT and handles accord-

ingly.

[29] Two-Phase Commit (2)

COMMIT COMMIT

INIT INIT

WAIT READY

ABORT ABORT

Commit
Vote-request

Vote-request
Vote-commit

Vote-request
Vote-abort

Vote-abort
Global-abort

Global-abort
ACK

Vote-commit
Global-commit

Global-commit
ACK

(a) (b)

a. the finite state machine for the coordinator in 2PC,

b. the finite state machine for a participant.

[30] 2PC – Failing Participant (1)

Consider participant crash in one of its states, and the subsequent recovery to that

state:

initial state no problem, as participant was unaware of the protocol,

ready state participant is waiting to either commit or abort. After recovery, par-

ticipant needs to know which state transition it should make→ log the co-

ordinator’s decision,

abort state merely make entry into abort state idempotent, e.g., removing the

workspace of results,

commit state also make entry into commit state idempotent, e.g., copying workspace

to storage.

When distributed commit is required, having participants use temporary workspaces

to keep their results allows for simple recovery in the presence of failures.

[31] 2PC – Failing Participant (2)

Alternative: When a recovery is needed to the Ready state, check what the other

participants are doing. This approach avoids having to log the coordinator’s deci-

sion.

Assume recovering participant P contacts another participant Q:

13

Fault Tolerance

Result: If all participants are in the ready state, the protocol blocks. Apparently,

the coordinator is failing.

[32] 2PC – Coordinator

[33] 2PC – Participant

14

Fault Tolerance

[34] 2PC – Handling Decision Requests

Actions for handling decision requests executed by separate thread.

[35] Three-Phase Commit (1)

Problem: with 2PC when the coordinator crashed, participants may not be able

to reach a final decision and may need to remain blocked until the coordinator

recovers.

Solution: three-phase commit protocol (3PC). The states of the coordinator and

each participant satisfy the following conditions:

15

Fault Tolerance

– there is no single state from which it is possible to make a transition directly

to either a COMMIT or ABORT state,

– there is no state in which it is not possible to make a final decision, and from

which a transition to a COMMIT state can be made.

Note: not often applied in practice as the conditions under which 2PC blocks rarely

occur.

[36] Three-Phase Commit (2)

Phase 1a Coordinator sends VOTE_REQUEST to participants

Phase 1b When participant receives VOTE_REQUEST it returns either YES or

NO to coordinator. If it sends NO, it aborts its local computation

Phase 2a Coordinator collects all votes; if all are YES, it sends PREPARE to all

participants, otherwise it sends ABORT, and halts

Phase 2b Each participant waits for PREPARE, or waits for ABORT after which

it halts

Phase 3a (Prepare to commit) Coordinator waits until all participants have ACKed

receipt of PREPARE message, and then sends COMMIT to all

Phase 3b (Prepare to commit) Participant waits for COMMIT

[37] Three-Phase Commit (3)

PRECOMMITPRECOMMIT

COMMITCOMMIT

INIT INIT

WAIT READY

ABORT ABORT

Commit
Vote-request

Vote-request
Vote-commit

Vote-request
Vote-abort

Vote-abort
Global-abort

Global-abort
ACK

Vote-commit
Prepare-commit

Prepare-commit
Ready-commit

(a) (b)

Global-commit
ACK

Ready-commit
Global-commit

a. finite state machine for the coordinator in 3PC,

b. finite state machine for the participant.

16

