Distributed Systems
Fault Tolerance

[2] Fault Tolerance

1. Basic concepts - terminology
2. Process resilience

— groups and failure masking
3. Reliable communication

— reliable client-server communication

— reliable group communication
4. Distributed commit

— two-phase commit (2PC)
— three-phase commit (3PC)

[3] Dependability

A component provides services to clients. To provide services, the component may
require the services from other components = a component may depend on some
other component.

Dependability
A component C depends on Cx if the correctness of C’s behavior depends on the
correctness of Cx’s behavior.

Properties of dependability:

availability readiness for usage,

reliability continuity of service delivery,

safety very low probability of catastrophes,

maintainability how easy a failed system may be repaired.

For distributed systems, components can be either processes or channels.

[4] Fault Terminology

Fault Tolerance

— Failure: When a component is not living up to its specifications, a failure
occurs.

— Error: That part of a component’s state that can lead to a failure.

— Fault: The cause of an error.

Different fault management techniques:

fault prevention: prevent the occurrence of a fault,

fault tolerance: build a component in such a way that it can meet its speci-
fications in the presence of faults (i.e., mask the presence of faults),

fault removal: reduce the presence, number, seriousness of faults,

fault forecasting: estimate the present number, future incidence, and the
consequences of faults.

[5] Different Types of Failures

Type of failure Description
Crash failure A server halts, but is working correctly until it halts
Omission failure A server fails to respond to incoming requests

Receive omission A server fails to receive incoming messages

Send omission A server fails to send messages
Timing failure A server's response lies outside the specified time interval
Response failure A server’s response is incorrect

Value failure The value of the response is wrong

State transition failure | The server deviates from the correct flow of control
Arbitrary failure A server may produce arbitrary responses at arbitrary times

Different types of failures. Crash failures are the least severe, arbitrary failures are
the worst.

[6] Failure Masking by Redundancy

Fault Tolerance

®
Q)

@

Voter

Al Vi

YN
&)

V5 C2
O

V6

A2 V2

A3 V3

€ %%é@

(b)

Triple modular redundancy (TMR).
[7] Process Resilience

Process groups: Protect yourself against faulty processes by replicating and dis-
tributing computations in a group.

Flat group

Hierarchical group

Coordinator

a. flat groups: good for fault tolerance as information exchange immediately

occurs with all group members. May impose more overhead as control is
completely distributed (hard to implement).

b. hierarchical groups: all communication through a single coordinator =
not really fault tolerant and scalable, but relatively easy to implement.

Fault Tolerance

[8] Groups and Failure Masking (1)

Group tolerance
When a group can mask any k concurrent member failures, it is said to be k-fault
tolerant (k is called degree of fault tolerance).

If we assume that all members are identical, and process all input in the same order.
How large does a k-fault tolerant group need to be?

— assume crash/performance failure semantics = a total of k + 1 members are
needed to survive kK member failures.

— assume arbitrary failure semantics, and group output defined by voting =
a total of 2k + 1 members are needed to survive k member failures.

[9] Groups and Failure Masking (2)

Assumption: Group members are not identical, i.e., we have a distributed compu-
tation.

Problem: Nonfaulty group members should reach agreement on the same value.

Assuming arbitrary failure semantics, we need 3k + 1 group members to survive
the attacks of k faulty members.

We are trying to reach a majority vote among the group of loyalists, in the presence
of k traitors = we need 2k + 1 loyalists. This is also known as Byzantine failures.

[10] Groups and Failure Masking (3)

1 Got(1,2,x, 4) 1 Got 2 Got 4 Got
2 Got(1,2,y, 4) 1.2, y.4) (1,2, x4) (1,2 x4)
3 Got(1,2,3,4) (a,b, c,d) (e f gh) (1,2 v4)
4 Got(1,2,z,4) 1,2,z4) (1,2,z4) (i} k)
Faulty process
(@) (b) ©

The Byzantine generals problem for 3 loyal generals and 1 traitor.

a. the generals announce their troop strengths (in thousands of soldiers),

Fault Tolerance

b. the vectors that each general assembles based on (a),

c. the vectors that each general receives in step 3.

[11] Groups and Failure Masking (4)

1 Got(1,2,x) 1 Got 2 Got
e-e 2 Got(1.2.y) L2y @Lzx
y ,2,3) (a,b,c) (d,ef)

Faulty process

@ (b) (c)

The same as before, except now with 2 loyal generals and one traitor.

[12] Reliable Communication

So far concentrated on process resilience (by means of process groups). What
about reliable communication channels?

Error detection:
— framing of packets to allow for bit error detection,

— use of frame numbering to detect packet loss.

Error correction:

— add so much redundancy that corrupted packets can be automatically cor-
rected,

— request retransmission of lost, or last N packets.

Most of this work assumes point-to-point communication.

[13] Reliable RPC (1)
What can go wrong during RPC?

1. client cannot locate server

Fault Tolerance

2. client request is lost
3. server crashes
4. server response is lost

5. client crashes

Notes:
1: relatively simple - just report back to client,
2: just resend message,

3: server crashes are harder as no one knows what server had already done.

[14] Reliable RPC (2)

If server crashes no one knows what server had already done. We need to decide
on what we expect from the server.

REQ Server REQ Server REQ Server
Receive > Receive »| Receive
REP Execute No REP Execute No REP
<«— | Reply 2 _______ <

(a) (b) ()

(a) normal case (b) crash after execution (c¢) crash before execution.

Possible different RPC server semantics:

— at-least-once-semantics: the server guarantees it will carry out an operation
at least once, no matter what.

— at-most-once-semantics: the server guarantees it will carry out an operation
at most once.

[15] Reliable RPC (3)

4: Detecting lost replies can be hard, because it can also be that the server had
crashed. You don’t know whether the server has carried out the operation.

Fault Tolerance

Possible solution: None, except that one can try to make your operations
idempotent — repeatable without any harm done if it happened to be carried
out before.

5: Problem: The server is doing work and holding resources for nothing (called
doing an orphan computation).

Possible solutions:

— orphan killed (or rolled back) by client when it reboots,

— broadcasting new epoch number when recovering = servers kill or-
phans,

— requiring computations to complete in a T time units, old ones simply
removed.

[16] Reliable Multicasting (1)

Basic model: There is a multicast channel ¢ with two (possibly overlapping) groups:
— the sender group S ND(c) of processes that submit messages to channel c,

— thereceiver group RCV(c) of processes that can receive messages from chan-
nel c.

Simple reliability If process P € RCV(c) at the time message m was submitted
to ¢, and P does not leave RCV(c), m should be delivered to P.

Atomic multicast How to ensure that a message m submitted to channel c is deliv-
ered to process P € RCV(c) only if m is delivered to all members of RCV(c).

[17] Reliable Multicasting (2)
If one can stick to a local-area network, reliable multicasting is easy”.

Let the sender log messages submitted to channel c:
— if P sends message m, m is stored in a history buffer,

— each receiver acknowledges the receipt of m, or requests retransmission at P
when noticing message lost,

— sender P removes m from history buffer when everyone has acknowledged
receipt.

Fault Tolerance

Why doesn’t this scale? The basic algorithm doesn’t scale:
— if RCV(c) is large, P will be swamped with feedback (ACKs and NACKs),

— sender P has to know all members of RCV(c¢).

[18] Basic Reliable-Multicasting Schemes

Receiver missed
message #24

Sender Receiver Receiver Receiver Receiver
History M25
buffer Last = 24 Last =24 Last =23 Last = 24
M25 M25
A A A A
[L [F [7 [J [T
Network
(@)
Sender Receiver Receiver Receiver Receiver
Last = 25 Last =24 Last = 23 Last =24
8 M25 M25 M25
A A A A Il Il Il Il
ACK 25)
Network

(b)

A simple solution to reliable multicasting when all receivers are known and are
assumed not to fail: (@) message transmission and (b) reporting feedback.

[19] Scalable RM: Feedback Suppression

Idea: Let a process P suppress its own feedback when it notices another process
Q is already asking for a retransmission.
Assumptions:

— all receivers listen to a common feedback channel to which feedback mes-
sages are submitted,

— process P schedules its own feedback message randomly, and suppresses it
when observing another feedback message.

— random schedule needed to ensure that only one feedback message is even-
tually sent.

Fault Tolerance

Sender receives Receivers suppress their feedback
only one NACK
Sender Receiver Receiver Receiver Receiver
T=3 T=4 T=1 T=2
8 [NACK | [NACK | [NACK | [NACK |

NACK k

Network

[20] Scalable RM: Hierarchical Solutions

Idea: Construct a hierarchical feedback channel in which all submitted messages
are sent only to the root. Intermediate nodes aggregate feedback messages before
passing them on.

Main challenge: Dynamic construction of the hierarchical feedback channels.

(Long-haul) connection
Local-area network

Coordinator

Receiver

[21] Atomic Multicast

Idea: Formulate reliable multicasting in the presence of process failures in terms
of process groups and changes to group membership.

Guarantee: A message is delivered only to the non-faulty members of the current
group. All members should agree on the current group membership.

Keyword: Virtually synchronous multicast.

Fault Tolerance

Reliable multicast by multiple
P1 joins the group point-to-point messages P3 crashes P3 rejoins

P1 \“
/

P2 i /Z/
" \ &4 i | u\
P4 — / | |
"G ={P1,P2,P3,P4} © G ={P1,P2,P4} © G ={P1,P2,P3,P4}
Time —»

Partial multicast
from P3 is discarded

[22] Virtual Synchrony (1)

A Application

Message is delivered to application

\ 4

A Comm. layer

vi []
L]

Message is received by communication layer

Message comes in from the network
9 ! \ Local OS
Network

The logical organization of a distributed system to distinguish between message
receipt and message delivery.

[23] Virtual Synchrony (2)
Idea: We consider views V C RCV(c) U SND(c).

Processes are added or deleted from a view V through view changes to V. A view
change is to be executed locally by each P € V N Vx

10

Fault Tolerance

1. for each consistent state, there is a unique view on which all its members
agree. Note: implies that all non-faulty processes see all view changes in
the same order,

2. if message m is sent to V before a view change vc to V', then either all P € V
that excute ve receive m, or no processes P € V that execute vc receive m.
Note: all non-faulty members in the same view get to see the same set of
multicast messages,

3. a message sent to view V can be delivered only to processes in V, and is
discarded by successive views.

A reliable multicast algorithm satisfying 1. — 3. is virtually synchronous.

[24] Virtual Synchrony (3)
A sender to a view V need not be member of V,

If a sender S € V crashes, its multicast message m is flushed before § is removed
from V: m will never be delivered after the point that S ¢ V

Note: Messages from S may still be delivered to all, or none (non-faulty) processes
in V before they all agree on a new view to which S does not belong

If a receiver P fails, a message m may be lost but can be recovered as we know
exactly what has been received in V. Alternatively, we may decide to deliver m to
members in V — P

Observation: Virtually synchronous behavior can be seen independent from the
ordering of message delivery. The only issue is that messages are delivered to an
agreed upon group of receivers.

[25] Virtually Synchronous Reliable Multicasting

Multicast Basic M ge Ordering Total-Ordered Delivery?
Reliable multicast None No
FIFO multicast FIFO-ordered delivery No
Causal multicast Causal-ordered delivery No
Atomic multicast None Yes
FIFO atomic multicast | FIFO-ordered delivery Yes
Causal atomic multicasi Causal-ordered delivery Yes

Different versions of virtually synchronous reliable multicasting.

[26] Implementing Virtual Synchrony

11

Fault Tolerance

Unstable Flush message

o message\?

a. process 4 notices that process 7 has crashed and sends a view change.
b. process 6 sends out all its unstable messages, followed by a flush message.

c. process 6 installs the new view when it has received a flush message from
everyone else.

[27] Distributed Commit

— Two-phase commit (2PC)

— Three-phase commit (3PC)

Essential issue: Given a computation distributed across a process group, how can
we ensure that either all processes commit to the final result, or none of them do
(atomicity)?

[28] Two-Phase Commit (1)

Model: The client who inititated the computation acts as coordinator; processes
required to commit are the participants.

Phase 1a Coordinator sends VOTE_REQUEST to participants (also called a pre-
write).

Phase 1b When participant receives VOTE_REQUEST it returns either YES or
NO to coordinator. If it sends NO, it aborts its local computation.

Phase 2a Coordinator collects all votes; if all are YES, it sends COMMIT to all
participants, otherwise it sends ABORT.

12

Fault Tolerance

Phase 2b Each participant waits for COMMIT or ABORT and handles accord-
ingly.

[29] Two-Phase Commit (2)

Vote-request
Vote-abort

Vote-request
Vote-commit

Commit
Vote-request

Vote-abort Vote-commit Global-abort Global-commit
Global-abort Global-commit ACK ACK
(aBorT) (commiT)
(@) (b)

a. the finite state machine for the coordinator in 2PC,

b. the finite state machine for a participant.

[30] 2PC - Failing Participant (1)
Consider participant crash in one of its states, and the subsequent recovery to that

state:

initial state no problem, as participant was unaware of the protocol,

ready state participant is waiting to either commit or abort. After recovery, par-
ticipant needs to know which state transition it should make — log the co-
ordinator’s decision,

abort state merely make entry into abort state idempotent, e.g., removing the
workspace of results,

commit state also make entry into commit state idempotent, e.g., copying workspace
to storage.

When distributed commit is required, having participants use temporary workspaces
to keep their results allows for simple recovery in the presence of failures.

[31] 2PC - Failing Participant (2)

Alternative: When a recovery is needed to the Ready state, check what the other
participants are doing. This approach avoids having to log the coordinator’s deci-
sion.

Assume recovering participant P contacts another participant Q:

13

Fault Tolerance

State of Q Action by P

COMMIT Make transition to COMMIT|

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Result: If all participants are in the ready state, the protocol blocks. Apparently,
the coordinator is failing.

[32] 2PC - Coordinator

actions by coordinator:

write START_2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
write GLOBAL _ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;
}
record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT {
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
} else {
write GLOBAL _ABORT to local log;
multicast GLOBAL_ABORT to all participants;

[33] 2PC - Participant

14

Fault Tolerance

actions by participant:

write INIT to local log;
wait for VOTE _REQUEST from coordinator;
if timeout {

write VOTE_ABORT to local log;

exit;

}
if participant votes COMMIT {
write VOTE COMMIT to local log;
send VOTE_COMMIT to coordinator;
wait for DECISION from coordinator;
if timeout {
multicast DECISION _REQUEST to other participants;
wait until DECISION is received; /* remain blocked */
write DECISION to local log;

}

if DECISION == GLOBAL_COMMIT
write GLOBAL_COMMIT to local log;

else if DECISION == GLOBAL_ABORT
write GLOBAL_ABORT to local log;

}else {
write VOTE_ABORT to local log;
send VOTE_ABORT to coordinator;

[34] 2PC - Handling Decision Requests

actions for handling decision requests: /* executed by separate thread */

while true {
wait until any incoming DECISION REQUEST is received; /* remain blocked */
read most recently recorded STATE from the local log;
if STATE == GLOBAL_COMMIT
send GLOBAL _COMMIT to requesting participant;
else if STATE == INIT or STATE == GLOBAL_ABORT
send GLOBAL ABORT to requesting participant;
else
skip; /* participant remains blocked */

Actions for handling decision requests executed by separate thread.

[35] Three-Phase Commit (1)

Problem: with 2PC when the coordinator crashed, participants may not be able
to reach a final decision and may need to remain blocked until the coordinator
recovers.

Solution: three-phase commit protocol (3PC). The states of the coordinator and
each participant satisfy the following conditions:

15

Fault Tolerance

— there is no single state from which it is possible to make a transition directly
to either a COMMIT or ABORT state,

— there is no state in which it is not possible to make a final decision, and from
which a transition to a COMMIT state can be made.

Note: not often applied in practice as the conditions under which 2PC blocks rarely
occur.

[36] Three-Phase Commit (2)

Phase 1a Coordinator sends VOTE_REQUEST to participants

Phase 1b When participant receives VOTE_REQUEST it returns either YES or
NO to coordinator. If it sends NO, it aborts its local computation

Phase 2a Coordinator collects all votes; if all are YES, it sends PREPARE to all
participants, otherwise it sends ABORT, and halts

Phase 2b Each participant waits for PREPARE, or waits for ABORT after which
it halts

Phase 3a (Prepare to commit) Coordinator waits until all participants have ACKed
receipt of PREPARE message, and then sends COMMIT to all

Phase 3b (Prepare to commit) Participant waits for COMMIT

[37] Three-Phase Commit (3)

Vote-request

INIT Vote-abort
Commit Vote-request
Vote-request Vote-commit
WAIT READY
Vote-abort Vote-commit Global-abort Prepare-commit
Global-abort Prepare-commit ACK Ready-commit
(ABORT) (PRECOMMIT) (ABORT) (PRECOMMIT)
Ready-commit Global-commit
Global-commit ACK
COMMIT COMMIT
@) (b)

a. finite state machine for the coordinator in 3PC,

b. finite state machine for the participant.

16

