
Distributed Systems
Consistency and Replication

[2] Consistency and Replication

Consistency and replication

1. Introduction

2. Data-centric consistency models

3. Client-centric consistency models

4. Consistency protocols

[3] Introduction

Two primary reasons for replicating data:

– reliability – to increase reliability of a system,

– performance – to scale in numbers and geographical area.

Reliability corresponds to fault tolerance, performance/scalability corresponds to

high availability.

The cost of replication:

– modifications have to be carried on all copies to ensure consistency,

– when and how modifications need to be carried out, determines the price of

replication.

[4] Performance and Scalability

Main issue: To keep replicas consistent, we generally need to ensure that all con-

flicting operations are done in the the same order everywhere.

Conflicting operations:

read–write conflict a read operation and a write operation act concurrently,

write–write conflict two concurrent write operations.



Consistency and Replication

Guaranteeing global ordering on conflicting operations may be a costly operation,

downgrading scalability.

Solution: weaken consistency requirements so that hopefully global synchroniza-

tion can be avoided.

[5] Data-Centric Consistency Models (1)

Distributed data store

Process Process Process

Local copy

The general organization of a logical data store, physically distributed and repli-

cated across multiple processes.

Consistency model

A contract between a (distributed) data store and processes, in which the data store

specifies precisely what the results of read and write operations are in the presence

of concurrency.

[6] Data-Centric Consistency Models (2)

Strong consistency models: Operations on shared data are synchronized:

– strict consistency (related to time),

– sequential consistency (what we are used to),

– causal consistency (maintains only causal relations),

– FIFO consistency (maintains only individual ordering).

2



Consistency and Replication

Weak consistency models: Synchronization occurs only when shared data is

locked and unlocked:

– general weak consistency,

– release consistency,

– entry consistency.

Observation: The weaker the consistency model, the easier it is to build a scalable

solution.

[7] Strict Consistency

Strict consistency

Any read to a shared data item X returns the value stored by the most

recent write operation on X.

P1: P1:W(x)a W(x)a
R(x)NIL R(x)aR(x)aP2: P2:

(a) (b)

Behavior of two processes, operating on the same data item.

a. a strictly consistent store,

b. a store that is not strictly consistent.

[8] Linearizability and Sequential Consistency (1)

Sequential Consistency

The result of any execution is the same as if the operations of all pro-

cesses were executed in some sequential order, and the operations of

each individual process appear in this sequence in the order specified

by its program.

3



Consistency and Replication

P1: P1:W(x)a W(x)a
W(x)b W(x)b

R(x)b R(x)b
R(x)b R(x)aR(x)a R(x)b

R(x)a R(x)a

P2: P2:
P3: P3:
P4: P4:

(a) (b)

All processes should see the same interleaving of operations.

a. a sequentially consistent data store,

b. a data store that is not sequentially consistent.

[9] Linearizability and Sequential Consistency (3)

linearizable = sequential + operations ordered according to a global time.

4



Consistency and Replication

Four valid execution sequences for the presented processes. The vertical axis is

time.

[10] Causal Consistency (1)

Causal consistency

Writes that are potentially causally related must be seen by all pro-

cesses in the same order. Concurrent writes may be seen in a different

order on different machines.

P1: W(x)a
R(x)a

R(x)a
R(x)a

P2:
P3:
P4:

W(x)c
W(x)b

R(x)b
R(x)b
R(x)c

R(x)c

This sequence is allowed with a causally-consistent store, but not with sequentially

or strictly consistent store.

[11] Causal Consistency (2)

P1: P1:W(x)a W(x)a
R(x)aP2: P2:

P3: P3:
P4: P4:

W(x)b W(x)b

R(x)a R(x)a
R(x)a R(x)a
R(x)b R(x)b

R(x)b R(x)b

(a) (b)

a. a violation of a causally-consistent store,

b. a correct sequence of events in a causally-consistent store.

[12] FIFO Consistency (1)

FIFO consistency

Writes done by a single process are seen by all other processes in the

order in which they were issued, but writes from different processes

may be seen in a different order by different processes.

5



Consistency and Replication

P1: W(x)a
R(x)aP2:

P3:
P4:

W(x)b W(x)c

R(x)a
R(x)a R(x)c

R(x)cR(x)b
R(x)b

A valid sequence of events of FIFO consistency.

– PRAM consistency = pipelined RAM, writes from a single process can be

pipelined,

– easy to implement by tagging each write operation with a (process, sequence

number) pair.

[13] FIFO Consistency (2)

Statement execution as seen by the three earlier presented processes. The state-

ments in bold are the ones that generate the output shown.

[14] FIFO Consistency (3)

6



Consistency and Replication

Two concurrent processes.

Sequential vs. FIFO consistency:

– FIFO consistency: counterintuitive results – both processes can be killed,

– sequential consistency: none of interleavings results in both processes being

killed,

– in sequential consistency, although the order is non-deterministic, at least all

processes agree what it is. This is not the case in FIFO consistency.

[15] Weak Consistency (1)

Weak consistency models

Introduction of explicit synchronization variables. Changes of local

replica content propagated only when an explicit synchronization takes

place.

Properties:

– accesses to synchronization variables associated with a data store are se-

quentially consistent,

– no operation on a synchronization variable is allowed to be performed until

all previous writes have been completed everywhere,

– no read or write operation on data items are allowed to be performed until

all previous operations to synchronization variables have been performed.

[16] Weak Consistency (2)

7



Consistency and Replication

P1: P1:W(x)a W(x)a
P2: P2:
P3:

W(x)b W(x)b

R(x)a

R(x)b R(x)a

R(x)b

R(x)a

(a) (b)

S S
S S
S

a. a valid sequence of events for weak consistency,

b. an invalid sequence for weak consistency.

Issue: The simplest method of weak consistency model implementation in case of

replication with full replicas.

[17] Release Consistency (1)

P1: W(x)a
P2:
P3:

W(x)b

R(x)a

R(x)b
Acq(L)

Acq(L)
Rel(L)

Rel(L)

A valid event sequence for release consistency.

[18] Release Consistency (2)

Release consistency properties:

– before a read or write operation on shared data is performed, all previous

acquires done by the process must have completed successfully,

– before a release is allowed to be performed, all previous reads and writes by

the process must have completed,

– accesses to synchronization variables are FIFO consistent (sequential con-

sistency is not required).

Additional issues:

– lazy release consistency versus eager release consistency,

8



Consistency and Replication

– barriers instead of critical regions possible.

[19] Entry Consistency (1)

– with release consistency, all local updates are propagated to other copies/servers

during release of shared data.

– with entry consistency, each shared data item is associated with a synchro-

nization variable.

– when acquiring the synchronization variable, the most recent values of its

associated shared data item are fetched.

Note: Where release consistency affects all shared data, entry consistency affects

only those shared data associated with a synchronization variable.

Question: What would be a convenient way of making entry consistency more or

less transparent to programmers?

[20] Entry Consistency (2)

P1: W(x)a
P2:
P3:

W(y)b

R(y)b
R(x)a R(y)NIL

Acq(Lx) Acq(Ly)
Acq(Lx)

Acq(Ly)

Rel(Lx) Rel(Ly)

A valid event sequence for entry consistency.

[21] Summary of Consistency Models

9



Consistency and Replication

a. Strong consistency models.

b. Weak consistency models.

[22] Client-Centric Consistency Models (1)

1. System model

2. Coherence models

– monotonic reads,

– monotonic writes,

– read-your-writes,

– write-follows-reads.

[23] Client-Centric Consistency Models (2)

Goal: Avoiding system-wide consistency, by concentrating on what specific clients

want, instead of what should be maintained by servers.

Background: Most large-scale distributed systems (i.e., databases) apply replica-

tion for scalability, but can support only weak consistency:

DNS updates are propagated slowly, and inserts may not be immediately visible.

10



Consistency and Replication

NEWS articles and reactions are pushed and pulled throughout the Internet, such

that reactions can be seen before postings.

Lotus Notes geographically dispersed servers replicate documents, but make no

attempt to keep (concurrent) updates mutually consistent.

WWW caches all over the place, but there need be no guarantee that you are

reading the most recent version of a page.

[24] Consistency for Mobile Users

Example: Consider a distributed database to which you have access through your

notebook. Assume your notebook acts as a front end to the database.

– at location A you access the database doing reads and updates.

– at location B you continue your work, but unless you access the same server

as the one at location A, you may detect inconsistencies:

– your updates at A may not have yet been propagated to B

– you may be reading newer entries than the ones available at A

– your updates at B may eventually conflict with those at A

Note: The only thing you really want is that the entries you updated and/or read at

A, are in B the way you left them in A. In that case, the database will appear to be

consistent to you.

[25] Eventual Consistency

Eventual consistency

Consistency model in large-scale distributed replicated databases that

tolerate a relatively high degree of inconsistency. If no updates take

place for a long time, all replicas gradually becomes consistent.

11



Consistency and Replication

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database

The principle of a mobile user accessing different replicas of a distributed database.

[26] Monotonic Reads (1)

Monotonic reads

If a process reads the value of a data item x, any successive read op-

eration on x by that process will always return that same or a more

recent value.

L1: WS(x ) R(x )

R(xL2:

1 1

2WS(x ;x1 2) )

L1: WS(x ) R(x )

R(xL2:

1 1

2WS(x2) )

(a) (b)

WS(x ;x1 2)

The read operations performed by a single process P at two different local copies

of the same data store.

a. a monotonic-read consistent data store,

b. a data store that does not provide monotonic reads.

[27] Monotonic Reads (2)

Example

12



Consistency and Replication

Automatically reading your personal calendar updates from different

servers. Monotonic reads guarantees that the user sees all updates, no

matter from which server the automatic reading takes place.

Example

Reading (not modifying) incoming mail while you are on the move.

Each time you connect to a different e-mail server, that server fetches

(at least) all the updates from the server you previously visited.

[28] Monotonic Writes (1)

Monotonic writes

A write operation by a process on a data item x is completed before

any successive write operation on x by the same process.

L1: W(x )

W(x ) W(xL2:

1

1 2)

L1:

L2:

(a) (b)

W(x2)

W(x )1

The write operations performed by a single process P at two different local copies

of the same data store

a. a monotonic-write consistent data store.

b. a data store that does not provide monotonic-write consistency.

[29] Monotonic Writes (2)

Example

Updating a program at server S2, and ensuring that all components on

which compilation and linking depends, are also placed at S2.

Example

Maintaining versions of replicated files in the correct order every-

where (propagate the previous version to the server where the newest

version is installed).

13



Consistency and Replication

[30] Read Your Writes

Read your writes

The effect of a write operation by a process on data item x, will always

be seen by a successive read operation on x by the same process.

L1:

R(xL2: 2WS(x ;x1 2) )

L1:

R(xL2: 2WS(x2) )

(a) (b)

W(x )1 W(x )1

a. a data store that provides read-your-writes consistency.

b. a data store that does not.

[31] Writes Follow Reads

Writes follow reads

A write operation by a process on a data item x following a previous

read operation on x by the same process, is guaranteed to take place

on the same or a more recent value of x that was read.

L1:

L2: WS(x ;x1 2)

L1:

L2: WS(x2)

(a) (b)

WS(x )1 WS(x )1

W(x2) W(x2)

R(x )1 R(x )1

a. a writes-follow-reads consistent data store,

b. a data store that does not provide writes-follow-reads consistency.

[32] Examples

Read-your-writes example

Updating your Web page and guaranteeing that your Web browser

shows the newest version instead of its cached copy.

14



Consistency and Replication

Writes-follow-reads example

See reactions to posted articles only if you have the original posting

(a read “pulls in” the corresponding write operation).

[33] Consistency Protocols

Consistency protocol

Describes the implementation of a specific consistency model. We will concentrate

only on sequential consistency.

– Primary-based protocols

– remote-write protocols,

– local-write protocols.

– Replicated-write protocols

– active replication,

– quorum-based protocols.

– Cache-coherence protocols (write-through, write-back)

[34] Remote-Write Protocols (1)

Data store

Single server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to server for x
W3. Acknowledge write completed
W4. Acknowledge write completed

W1

W3 R3

W2 R2

W4

R1. Read request
R2. Forward request to server for x
R3. Return response
R4. Return response

R1 R4

15



Consistency and Replication

Primary-based remote-write protocol with a fixed server to which all read and write

operations are forwarded.

[35] Remote-Write Protocols (2)

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

The principle of primary-backup protocol: read operations allowed on a locally

available copy, write operations forwarded to a fixed primary copy.

[36] Local-Write Protocols (1)

Data store

Current server
for item x

Client

1. Read or write request
2. Forward request to current server for x
3. Move item x to client's server
4. Return result of operation on client's server

3

2

1 4

New server
for item x

16



Consistency and Replication

Primary-based local-write protocol in which a single copy is migrated between

processes.

[37] Local-Write Protocols (2)

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Primary-backup protocol in which the primary migrates to the process wanting to

perform an update.

[38] Active Replication (1)

17



Consistency and Replication

Client replicates
invocation request

All replicas see
the same invocation

Object receives
the same invocation
three times

Replicated object

A

B1

B2

B3

C

The problem of replicated invocations.

[39] Active Replication (2)

Coordinator
of object B

Result

Coordinator
of object C

(a) (b)

Client replicates
invocation request

B1 B1

B2 B2

B3 B3

C1 C1

C2 C2

A A

Result

a. forwarding an invocation request from a replicated object,

b. returning a reply to a replicated object.

18



Consistency and Replication

[40] Quorum-Based Protocols

A A AB B BC C CD D D

E E EF F FG G GH H H

I I IJ J JK K KL L L

Read quorum

Write quorum

NR WN= 3, = 10 NR WN= 7, = 6 NR WN= 1, = 12

(a) (b) (c)

Three examples of the voting algorithm:

a. a correct choice of read and write set,

b. a choice that may lead to write-write conflicts,

c. a correct choice, known as ROWA (read one, write all).

Constraints: NR + NW > N and NW > N/2

[41] Cache-Coherence Protocols

Cache coherence strategies:

– coherence detection strategy - when inconsistencies are detected,

– coherent enforcement strategy - how caches are kept consistent with the

copies stored at servers.

When processes modify data:

– read-only cache - updates can be performed only by servers,

– write-through cache - clients directly modify cached data and forward up-

dates to servers,

– write-back cache - propagation of updates may be delayed by allowing mul-

tiple writes to take place before informing servers.

19


