
Operating Systems

Mutual Exclusion and Synchronization

Tomasz Kruk, Ph.D.
Faculty of Electronics and Information Technology

Warsaw University of Technology

https://www.linkedin.com/in/tomasz-jordan-kruk

tomasz.kruk@pw.edu.pl EOPSY, 1

Warsaw University of Technology

Warsaw University of Technology

Race Conditions in Operating System

IPC - InterProcess Communication

In operating systems running processes often share common memory areas,

files or other resources. So called races are to be avoided.

Def. 1

Race condition – situation in which two or more processes perform some

operation on shared resources and the final result of this operation depends

on the moment of realization of the operation.

tomasz.kruk@pw.edu.pl EOPSY, 2Warsaw University of Technology

Race Condition Occurence Example

An example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

PROCESS 1 PROCESS 2

1

2 chin = getchar();

3 chin =

getchar();

4 chout = chin; chout = chin;

5 putchar(chout);

6 putchar(chout

);

7

tomasz.kruk@pw.edu.pl EOPSY, 3Warsaw University of Technology

Critical Region/ Critical Section

To avoid race conditions some mechanism must be created to protect

against accessing resources by more than one process at the same

time. Some mutual exclusion mechanizm must be introduced.

Def. 2

Critical region – (also: critical section), the piece of a program, in

which there are some instructions accessing shared resources.

Instructions constituting the critical region must be preceded and

completed with instructions implementing mutual exclusion.

The choice of operations implementing mutual exclusion

mechanism is an important feature of each operating system.

tomasz.kruk@pw.edu.pl EOPSY, 4Warsaw University of Technology

Logical Conditions

to Implement Critical Region

For correct critical region implementation the following four conditions are

required:

1. No two procesess may be simultaneously inside their critical regions.

2. No assumptions may be made about speeds or the number of CPUs.

3. No process running outside the critical region may block other

processes.

4. No process should have to wait forever to enter its critical region.

tomasz.kruk@pw.edu.pl EOPSY, 5Warsaw University of Technology

Mechanisms Implementing

Mutual Exclusion

Two approaches:

1. Mechanisms with busy waiting for accessing critical region:

(a) disabling interrupts,

(b) lock variables (incorrect),

(c) strict alternation (incorrect),

(d) Peterson’s solution,

(e) TSL instruction.

2. Mechanisms with suspension of the waiting process:

(a) sleep and wakeup (incorrect),

(b) semaphores,

(c) monitors,

(d) message passing.

tomasz.kruk@pw.edu.pl EOPSY, 6Warsaw University of Technology

Mechanisms with Busy Waiting

1. Disabling interrupts

√

√

√

√

each process entering critical region disables interrupts,

advantage: process inside critical region may update shared resources

without any risk of races,

disadvantage: if after leaving the region interrupts are not reenabled

there will be a crash of the system. Moreover: useless in multiprocessor

architectures,

may be used inside operating system kernel when some system

structures are to be updated, but is not recommended for

implementation of mutual exclusion in user space.

tomasz.kruk@pw.edu.pl EOPSY, 7Warsaw University of Technology

2. Lock variables

A software solution. Considering having a single, shared lock variable,

initially 0. When process A attempts to enter critical region:

√

√

if lock = 0, set lock to 1 and enter critical region;

if not, wait until lock becomes 0.

Thus:
√

√

lock = 0 means no process in critical region,

lock = 1 means there is a process in critical region.

This solution is incorrect, race conditions occur.

tomasz.kruk@pw.edu.pl EOPSY, 8Warsaw University of Technology

3. Strict Alternation

PROCESS 0 PROCESS 1

1 while(TRUE) while(TRUE)

2 { {

3 while(turn != 0) while(turn != 1)

4 /* wait */; /* wait */;

5 critical_section(); critical_section();

6 turn = 1; turn = 0;

7 noncritical_section(); noncritical_section(

);

8 } }

√

√

√

initially turn=0, the third condition violated. P0 may be blocked by P1 outside

the critical region. Such situation is called starvation,

this solution requires strict alternation (switching), e.g. two files cannot be

printed one after another by the same process,

this solution is incorrect, the problem of race conditions replaced by the

problem of starvation.

tomasz.kruk@pw.edu.pl EOPSY, 9Warsaw University of Technology

4. Peterson’s Solution (I)

√

√

connecting two ideas: strict alternation and locking variables T. Dekker

as the first person (1965) found a correct solution to the mutual

exclusion problem. In 1981 Peterson found simpler solution to this

problem.

each process before entering critical region, calls enter_region with its

number as a parameter, after leaving critical region leave_region is

called.

tomasz.kruk@pw.edu.pl EOPSY, 10Warsaw University of Technology

Peterson’s Solution (II)

#define FALSE 0

#define TRUE 1

#define N 2

int turn;

int interested[N]; /* initially 0 */

/* process nr 0 or 1 */enter_region(int process)

{

int other;

other = 1 - process;

interested[process] = TRUE;

turn = process;

while((turn == process) && (interested[other] == TRUE));

}

leave_region(int process)

{

interested[process]=FALSE;

}

tomasz.kruk@pw.edu.pl EOPSY, 11Warsaw University of Technology

5. TSL Instruction

Hardware support, some computer architectures offer an instruction TEST

AND SET LOCK (TSL)

√ instruction TSL executes indivisibly in the following way:

⋆ reads the value of one word from the memory to some register,

⋆ at the same moment stores the value from that register to the same

location in memory.

√ read and write operations are indivisable, i.e. any other process does

not have any access to the memory location untill the TSL instruction

finishes.

To demonstrate usage of TSL let us use shared variable flag to coordinate

access to shared resources.

√

√

when flag = 0, each process may set it to 1 with TSL instruction, and

after this enter critical region,

leaving the critical region flag should be set to 0 with move.

tomasz.kruk@pw.edu.pl EOPSY, 12Warsaw University of Technology

Critical region Organization with TSL

1 enter_region:

2 tsl register, flag

3 cmp register, #0

4 jnz enter_region

5 ret

leave_region:

mov flag, #0

ret

Processes competing for critical region must call enter_region and

leave_region procedures in correct order.

Disadvantages of solutions based on busy waiting

√

√

waste of processor time,

possibility of deadlock/starvation in systems with multipriority

scheduling, so called priority inversion.

tomasz.kruk@pw.edu.pl EOPSY, 13Warsaw University of Technology

Solutions with Waiting Process Suspension

1. Sleep and Wakeup

The simplest solution is to create two system calls sleep() and wakeup().

√

√

by calling sleep() the calling process is suspended till being woken by

other process calling wakeup(),

wakeup function called with process number as a single argument.

tomasz.kruk@pw.edu.pl EOPSY, 14Warsaw University of Technology

Example of sleep()/wakeup() usage

Producer-consumer problem - problem of a buffer with limited capacity.

Let two processes share a buffer with limited capacity. Process called

producer will put pieces of information in the buffer. Process called consumer

will take pieces of information from that buffer.

Let us assume:

√

√

if Pr is trying tu put a message into full buffer, Pr hat to be suspended,

if Co is trying to take a message from the empty buffer, Co has to be

suspended.

Let in count variables number of taken positions in the buffer is hold. Let the

size of the buffer will be N.

Producer: if(count == N) { go to sleep } else { add msg and count++ }

Consumer: if(count == 0) { go to sleep } else { take msg and count– }

tomasz.kruk@pw.edu.pl EOPSY, 15Warsaw University of Technology

Producer-Consumer with Race Conditions

#define N 100

int count=0;

void producer(void)

{

while (TRUE){

produce_item();

if (count == N)

sleep();

enter_item();

count = count + 1;

if (count == 1)

wakeup(consumer);

}

}

void consumer(void)

{

while (TRUE){

if (count == 0)

sleep();

remove_item();

count = count - 1;

if (count == N-1)

wakeup(producer);

consume_item();

}

}

Disadvantage: wakeup signal may be lost, which leads to deadlock.

tomasz.kruk@pw.edu.pl EOPSY, 16Warsaw University of Technology

2. Semaphores: definition

√

D e f :

1965 r. - E. W. Dijkstra proposed integer variable to count wakeup

signals,

Semaphore - initialized with nonnegative integer value and defined by

definition of two atomic operations, P(s) i V(s), such as:

P(S):

V(S):

while S <= 0 do

;

S := S − 1;

S := S + 1;

√ Dutch P and V from proberen (to test) and verhogen (to increment), now

usually down()/up(), wait()/signal(), and for binary semaphores often

lock()/unlock().

tomasz.kruk@pw.edu.pl EOPSY, 17Warsaw University of Technology

Semaphores: Implementation

struct semaphore

{

int count;

queue_t queue;

}

void down(semaphore s)

{

s.count--;

if(s.count < 0)

{

enter process to

queue s.queue;

block proces;

}

}

void up(semapahore s)

{

s.count++;

if(s.count <= 0)

{

remove one process

from s.queue and

put to ready queue;

}

}

tomasz.kruk@pw.edu.pl EOPSY, 18Warsaw University of Technology

Possible implementation of semaphores (beware, not a definition).

Semaphores: Producer-Consumer Algorithm

#define N 100

semaphore mutex = 1;

semaphore empty = N;

semaphore full = 0;

int count = 0;

void producer(void)

{

while (TRUE)

{

produce_item();

down(empty);

down(mutex);

enter_item();

up(mutex);

up(full);

}

}

void consumer(void)

{

while (TRUE)

{

down(full);

down(mutex);

remove_item();

up(mutex);

up(empty);

consume_item();

}

}

tomasz.kruk@pw.edu.pl EOPSY, 19Warsaw University of Technology

Mutex - the Binary Semaphore

√

√

used, when there is no requirement to count signal occurences but only

to organize mutual exclusion,

efficient and simple implementation, e.g. for user-level threads.

mutex_lock:

TSL REGISTER, MUTEX

CMP REGISTER, #0

JZE ok

CALL thread_yield

JMP mutex_lock

ok: RET

mutex_unlock:

MOVE MUTEX, #0

RET

tomasz.kruk@pw.edu.pl EOPSY, 20Warsaw University of Technology

3. Monitors

In order to make writing programs with mutual exclusion easier, Hoare (1974)

and Hansen (1975) proposed higher-level synchronization mechanism,

monitor.

√

√

√

monitor is a set of procedures, variables and structures, which are

grouped together in one structure. Only one active process may be

inside monitor,

monitors are constructions of higher-level languages. Responsibility for

correct implementation of mutual exclusion is in charge of compiler,

in introduced concept there is a lack of mechanism for process

suspension,

tomasz.kruk@pw.edu.pl EOPSY, 21Warsaw University of Technology

Monitors: Notation

Monitor representation in some language with Pascal-like syntax.

monitor Buffer

var

byte b[100];

integer head, tail;

procedure insert(int item)

begin

...

end;

procedure remove(int item)

begin

...

end;

end monitor;

monitor Buffer

{

char b[100];

integer head, tail;

public void insert(Item i)

{

...

}

public Item remove(void)

{

...

}

}

tomasz.kruk@pw.edu.pl EOPSY, 22Warsaw University of Technology

Monitors: Process Suspension

It was proposed to introduce conditional variables with two operations wait(

variable) and signal(variable).

√

√

when monitor procedure discovers that it is not possible to continue

some operation, wait is performed on some conditional variable.

Process which executes procedure is suspended.

other process may now enter the critical region. When it lives, it

performs signal in order to wake up the process suspended on some

conditional variable.

After signal calling:

√

√

Hoare version: the awoken process continues execution and the calling

one is suspended,

Hansen version: the calling process has to leave at once the monitor.

tomasz.kruk@pw.edu.pl EOPSY, 23Warsaw University of Technology

Monitors: Producer-Consumer Algorithm (I)

procedure remove;

begin

if count = 0

then wait(empty);

remove_item;

count := count - 1;

if count = N-1

then signal(full);

end;

monitor Buffer

condition full, empty;

integer count;

procedure enter;

begin

if count = N

then wait(full);

enter_item;

count := count + 1;

if count = 1

then signal(empty);

end;

count := 0;

end monitor;

Monitors: Producer-Consumer Algorithm (II)

procedure consumer;

begin

while true do

begin

Buffer.remove;

consume_item;

end

end;

√

√

√

√

wait()/signal() function pair protects against loosing signals (what may happen

with sleep()/wakeup()),

not all higher-level languages offer monitors (Euclid, Concurrent Pascal),

some languages offer incomplete mechanisms (Java and synchronized),

solutions not dedicated for distributed environment because of required

accessibility of shared memory.

tomasz.kruk@pw.edu.pl EOPSY, 25Warsaw University of Technology

procedure producer;

begin

while true do

Begin

produce_item;

Buffer.enter;

end

end;

Monitors: Producer-Consumer Algorithm

in Java (I)

public class ProducerConsumer {

static final int N = 100; static producer p = new producer();

mon = new our_monitor();static consumer c = new consumer(); static

our_monitor public static void main(String args[])

{

p.start();

c.start(); }

static class producer extends Thread {

public void run() { // contains thread code

int item;

while (true) {

item = produce_item();

mon.insert(item); } }

private int produce_item(){ } }

static class consumer extends Thread {

public void run(){

int item;

while(true){

item = mon.remove();

consume_item(); } }

private void consume_item(){ } }

tomasz.kruk@pw.edu.pl EOPSY, 26Warsaw University of Technology

Monitors: Producer-Consumer Algorithm

in Java (II)

static class our_monitor{

private int buffer[]] = new int [N]; private int count = 0, lo = 0, hi = 0;

public synchronized void insert(int val){

if (count == N) go_to_sleep();

buffer(hi) = val;

hi = (hi +1) % N; // ring buffer

count = count + 1; // one more item in buffer

if (count == 1) notify(); // notify() in in Java

} public synchonized int remove(){

int val;

if (count == 0) go_to_sleep(); // buffer

empty val = buffer[lo];

lo = (lo+1) % N;

count = count - 1;

if (count == N-1) notify();

return val; }

private go_to_sleep(){

try {wait();}

catch(InterruptedException exp){}; }

}

}

tomasz.kruk@pw.edu.pl EOPSY, 27Warsaw University of Technology

4. Message Passing

Based on two system calls:

√

√

send(destination, &message);

receive(source, &message);

Different methods of message addressing:

1. direct addressing, each process contains unique address. The

following rendezvous mechanism may be used:

√

√

if send called before receive, the sending process suspended till the

moment of the very message sending after receive call,

if receive called before send, the receiving process suspended till the

moment of the very message sending after send call.

2. indirect addressing, via some mailbox playing the role of the

intermediate buffer. send and receive has as an argument mailbox

address, not the address of any particular process.

tomasz.kruk@pw.edu.pl EOPSY, 28Warsaw University of Technology

Messages: Producer-Consumer Algorithm (I)

Preliminary assumptions:

√

√

√

√

√

√

messages have the same size,

messages sent but still not received automatically buffered by the

operating system,

N messages used, analogically to N positions in a shared buffer,

messages treated as a transport medium for information, i.e. they may

be either full or empty,

algorithm starts with sending by consumer N empty messages to

producer,

it is obligatory for producer to have an empty message received from

consumer in order to send a message to consumer. The number of

messages between producer and consumer is constant and irrespective

of production or consumption speed.

tomasz.kruk@pw.edu.pl EOPSY, 29Warsaw University of Technology

Messages: Producer-Consumer Algorithm (II)

#define N 100

void producer(void)

{

int item;

message m;

}

void consumer(void)

{

int item, i;

message m;

for(i = 0; i < N; i++)

send(producer, &m);

while(TRUE)

{

receive(consumer, &m);

extract_item(&m, &item);

send(consumer, &m);

}

while(TRUE)

{

produce_item(&item);

receive(consumer, &m);

build_message(&m, &item);

send(consumer, &m);

} }

tomasz.kruk@pw.edu.pl EOPSY, 30Warsaw University of Technology

The Dining Philosophers Problem (I)

√

√

√

√

√

five philosophers sitting around a circular table,

five plates and five forks alternately on the table,

each philosopher only eats and thinks, for eating one plate and two

forks are required,

fork is a resource shared by adjacent philosophers,

how to organize synchronization?

tomasz.kruk@pw.edu.pl EOPSY, 31Warsaw University of Technology

The Dining Philosophers Problem (II)

#define N 5

void philosopher(int i)

{

while(TRUE)

{

think()

take_fork(i);

take_fork((i + 1) % N);

eat();

put_fork((i + 1) % N);

put_fork(i);

}

}

Incorrect solution – possible deadlock occurence.

tomasz.kruk@pw.edu.pl EOPSY, 32Warsaw University of Technology

#define LEFT (i + N - 1) % N

#define RIGHT (i + 1) % N

int state[N];

semaphore mutex = 1;

semaphore s[N];

void put_forks(i) {

down(&mutex);

state[i] = THINKING;

test(LEFT);

test(RIGHT);

up(&mutex);

}

void test(i) {

if (state[i] == HUNGRY && \\

state[LEFT] != EATING && \\

state[RIGHT] != EATING) {

state[i] = EATING;

up(&s[i]);

}

}

The Dining Philosophers Problem (III)

#define N 5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

void philosopher(int i) {

while (TRUE) {

think();

take_forks(i);

eat();

put_forks(i);

}

}

void take_forks(int i) {

down(&mutex);

state[i] = HUNGRY;

test(i);

up(&mutex);

down(&s[i]);

}

tomasz.kruk@pw.edu.pl EOPSY, 33Warsaw University of Technology

The Readers-Writers Problem

semaphore mutex = 1;

semaphore db = 1;

int rc = 0;

void

writer(void)

{

while(TRUE)

{

think_up_data();

down(&db);

write_data_base();

up(&db);

}

}

void

reader(void)

{

while(TRUE)

{

down(&mutex);

rc = rc + 1;

if(rc == 1)

down(&db);

up(&mutex);

read_data_base();

down(&mutex);

rc = rc - 1;

if(rc == 0)

up(&db);

up(&mutex);

use_data_read();

}

}

tomasz.kruk@pw.edu.pl EOPSY, 34Warsaw University of Technology

The Sleeping Barber Problem

#define CHAIRS 5

semaphore customers = 0;

semaphore barbers = 0;

semaphore mutex = 1;

int waiting = 0;

void barber(void)

{

while(TRUE)

{

down(&customers);

down(&mutex);

waiting = waiting - 1;

up(&barbers);

up(&mutex);

cut_hair();

}

}

/* how many sitting on chairs */

/* how many sleep without work */

void customer(void)

{

down(&mutex);

if(waiting < CHAIRS)

{

waiting = waiting + 1;

up(&customers);

up(&mutex);

down(&barbers);

get_haircut();

} else {

up(&mutex);

}

}

tomasz.kruk@pw.edu.pl EOPSY, 35Warsaw University of Technology

