
UML Static Models in Formal Approach

Marcin Szlenk

Warsaw University of Technology
Institute of Control & Computation Engineering

Nowowiejska 15/19, 00-665 Warsaw, Poland
M.Szlenk@ia.pw.edu.pl

Abstract. The semantics of models written in UML is not precisely
defined. Thus, it is hard to determine, how a given change in a model
influences its meaning and, for example, to verify whether a given model
transformation preserves the semantics of the model or not. In the paper
a formal (mathematical) semantics of key elements of the UML static
models is presented. The aim is to define the basic semantic relations
between models: a consequence (implication) and equivalence. The goal
of the definitions and examples presented in the article is to form a very
basic, concise, theoretical foundation for the formal comparison of the
UML static models, based on their meanings.

Key words: Software modeling, UML, Formal reasoning.

1 Introduction

Unified Modeling Language (UML) [9, 12] is a visual modeling language that is
used to specify, construct and document software systems. The UML has been
adopted and standardized by the Object Management Group (OMG). The UML
specification [12], published by OMG, is based on a metamodeling approach. The
metamodel (a model of UML) gives information about the abstract syntax of
UML, but does not deal with semantics, which is expressed in a natural language.
Furthermore, because UML is method-independent, its specification tends to set
a range of potential interpretations rather than providing an exact meaning.

As far as software modeling is concerned, we can distinguish two types of
models: dynamic and static. The dynamic model is used to express and model
the behaviour of a problem domain or system over time, whereas the static
model shows those aspects that do not change over time. UML static models are
mainly expressed using a class diagram that shows a collection of classes and their
interrelationships, for example generalization/specialization and association.

After the first UML specification was published, various propositions of UML
formalization have appeared. The semantics of class diagrams was expressed
using such formal languages as Z [4, 5], PVS-SL [1], description logic [2] and
RAISE-SL [6]. Some of the works were restricted to the semantics of models,
while the others were concerned with the issues of reasoning about models and
model transformation. It seems that the subject of reasoning about UML static

PREPRINT OF THE PROCEEDINGS OF CEE-SET 2007, www.cee-set.org, pp. 111

- 124, 2007.

112 Marcin Szlenk

models still lacks a formal approach to the problem of the semantic equivalence of
two models. There are some informal approaches but they result in unverifiable
model transformation rules (see e.g. [3, 8]).

In the paper the syntax and semantics of a UML static model restricted to
key elements of a class diagram are formally defined. The definitions which are
presented here adhere to the UML 2. Using the proposed formalization, we show
how one can reason about UML static models in a fully formal way, especially
about their equivalence.

2 Metalanguage

As a language for defining the semantics of UML static models, we use basic
mathematical notation. In this section we briefly outline only the list and func-
tion notation, as they may vary in different publications.

For a set A, P(A) denotes the set of all the subsets of A, and A∗ denotes the
set of all the finite lists of elements of A. The function len(l) returns the length
of a list l. For simplicity, we add the expression A∗(2), which denotes the set of
all finite lists with a length of at least 2. The function πi(l) projects the i-th
element of a list l, whereas the function πi(l) projects all but the i-th element.
The list [a1, . . . , an] is formally equal to the tuple (a1, . . . , an). For a finite set
A, |A| denotes the number of elements of A.

The partial function from A to B is denoted by f : A ⇀ B, where the function
dom(f) returns the domain of f . The expression f : A → B denotes the total
function from A to B (in this case it holds dom(f) = A).

3 Syntax

The key concepts used in UML static models: class, association and association
class are considered here. All of them are types of classifier.1 Taxonomical rela-
tionships among them, which are defined in the UML metamodel, are shown in
Fig. 1. It is worth emphasizing that an association class is a single model element
which is both an association and a class.

Definition 1 (Classifiers). With Classifiers we denote a set of all the clas-
sifiers (the names of classes, associations and association classes) which may
appear in a static model.

Below we formally define abstract syntax of simple UML static models. The
syntax is defined in a way which reflects the relationships from Fig. 1. It makes
both the definition of the syntax and the semantics (discussed later) more con-
cise.

Definition 2 (Model). By a (static) model we understand a tuple

M = (classes, assocs, ends,mults, specs) ,where: (1)
1 Association is included as a type of classifier since the introduction of UML 2.0.

UML Static Models in Formal Approach 113

Klasa
Asocjacja binarna

(2-arna)

Asocjacja ternarna

(3-arna)

m..n

Liczność końca

asocjacji
Agregacja Kompozycja

Klasa asocjacji
Generalizacja

(Specjalizacja)

Classifier

Class Association

AssociationClass

Fig. 1. The part of the hierarchy of classifiers in the UML metamodel [12]

1. M.classes is a set of classes:

M.classes ⊆ Classifiers . (2)

2. M.assocs is a set of associations:

M.assocs ⊆ Classifiers . (3)

For the model M, a set of association classes and a set of all classifiers are
thus respectively defined as:

M.asclasses =def M.classes ∩M.assocs , (4)
M.classifiers =def M.classes ∪M.assocs . (5)

3. M.ends is a function of association ends. The function maps each association
to a finite list of at least two, not necessarily different, classes participating
in the association:

M.ends : M.assocs→ M.classes∗(2) . (6)

The position on the list M.ends(as) uniquely identifies the association end.
An association class cannot be defined between itself and something else [12,
p. 47]:

∀ac ∈ M.asclasses · ∀i ∈ {1, . . . , len(M.ends(ac))}· (7)
πi(M.ends(ac)) 6= ac .

4. M.mults is a function of multiplicity of association ends. Multiplicity is a
non-empty set of non-negative integers with at least one value greater than
zero. The default multiplicity is the set of all non-negative integers (N). The
function assigns to each association a list of multiplicity on its ends:

M.mults : M.assocs→ (P(N) \ {∅, {0}})∗(2) . (8)

As before, the position on the list M.mults(as) identifies the association end.
The multiplicity must be defined for each association end:

∀as ∈ M.assocs · len(M.mults(as)) = len(M.ends(as)) . (9)

114 Marcin Szlenk

5. M.specs is a function of specializations. The function assigns to each classi-
fier a set of all (direct or indirect) its specializations:

M.specs : M.classifiers→ P(M.classifiers) . (10)

The specialization hierarchy must be acyclical [12, p. 53], what means that a
classifier cannot be its own specialization:

∀cf ∈ M.classifiers · cf /∈ M.specs(cf) . (11)

By default a classifier may specialize classifiers of the same or a more general
type [12, p. 54], i.e. class may be a specialization of class; association may
be a specialization of association; association class may be a specialization
of association class, class or association. Formally:

∀cl ∈ M.classes ·M.specs(cl) ⊆ M.classes, (12)
∀as ∈ M.assocs ·M.specs(as) ⊆ M.assocs, (13)
∀cf ∈ M.classifiers ·M.specs(cf) * M.asclasses⇒ (14)

cf /∈ M.asclasses .

An association specializing another association has the same number of ends:

∀as1, as2 ∈ M.assocs · as2 ∈ M.specs(as1)⇒ (15)
len(M.ends(as1)) = len(M.ends(as2)) ,

which are connected to the same classifiers as in a specialized association or
to their specializations [12, p. 39]:

∀as1, as2 ∈ M.assocs · as2 ∈ M.specs(as1)⇒ (16)
∀i ∈ {1, . . . , len(M.ends(as1))} · πi(M.ends(as2)) ∈

{πi(M.ends(as1))} ∪M.specs(πi(M.ends(as1))) .

The above definition does not include directly attributes of classes. However,
an attribute has the same semantics as an association. An example of attributes
and corresponding associations are shown in Fig. 2.2

Klasa Asocjacja binarna
(2-arna)

Asocjacja ternarna
(3-arna)

m..n

Liczność końca
asocjacji Agregacja Kompozycja

Klasa asocjacji Generalizacja
(Specjalizacja)

 b : B
 c : C [m..n]

A

B

C

A

m..n

0..*

1
b

c
0..*

Fig. 2. Attributes and associations

Definition 3 (Models). Models denotes a set of all the models, as in defini-
tion 2.
2 This unification of attributes and associations is new to UML 2.0.

UML Static Models in Formal Approach 115

4 Semantics

A classifier describes a set of instances that have something in common [9]. An
instance of a class is called an object, whereas an instance of an association is
called a link. A link is a connection between two or more objects of the classes at
corresponding positions in the association. An instance of a class association is
both an object and a link, so it can both be connected by links and can connect
objects.

Definition 4 (Instances). Instances denotes a set of all the potential instances
of the classifiers from the set Classifiers.

The existing instances of a classifier are called its extent. If two classifiers
are linked by a specialization relationship, then each instance of a specializing
(specific) classifier is also an instance of a specialized (general) classifier [12]. In
other words, the extent of the specific classifier is a subset of the extent of the
general one.

The classifier extent usually varies over time as objects and links may be
created and destroyed. Thus, the classifiers’ extents form a snapshot of the state
of a modelled problem domain or system at a particular point in time.

Definition 5 (State). State is a pair

S = (instances, ends) ,where: (17)

1. S.instances is a partial function of extents. The function maps each classifier
to a set of its instances (extent):

S.instances : Classifiers ⇀ P(Instances) . (18)

2. S.ends is a partial function of link ends. The function assigns to each instance
of an association, i.e. link, a list of instances of classes (objects) which are
connected by the link:

S.ends : Instances ⇀ Instances∗(2) . (19)

The position on the list uniquely identifies the link end, which on the other
hand, corresponds to an appropriate association end.

Definition 6 (States). With States we denote a set of all the states as in the
definition 5.

The static model shows the structure of states (of a given domain or system)
or, from a different point of view, defines some constraints on states. Thus, the
model can be interpreted as the set of all such states in which the mentioned
constraints are satisfied. Below we define the relationship between models and
states as a relation of satisfaction: Sat ⊆ Models × States. If Sat(M,S) holds
then the constraints expressed as model M are satisfied in the state S. Next,
we formally define the meaning of a model as the set of all states in which the
model is satisfied.

116 Marcin Szlenk

Definition 7 (Satisfaction). Let S ∈ States and M ∈ Models. The model M
is satisfied in the state S and we write

Sat(M,S) , if and only if: (20)

1. S specifies the extents of all classifiers in M (and maybe others, not depicted
in the model M)3:

M.classifiers ⊆ dom(S.instances) . (21)

2. An instance of a given association only connects instances of classes partic-
ipating in this association (on the appropriate ends):

∀as ∈ M.assocs · ∀ln ∈ S.instances(as)· (22)
len(M.ends(as)) = len(S.ends(ln)) ∧
∀i ∈ {1, . . . , len(M.ends(as))}·

πi(S.ends(ln)) ∈ S.instances(πi(M.ends(as))) .

3. Instances of an association satisfy the specification of multiplicity on all as-
sociation ends.4 For any n− 1 ends of n-ary association (n ≥ 2) and n− 1
instances of classes on those ends, the number of links they form with in-
stances of the class on the remaining end belong to the multiplicity of this
end [12, p. 40]:

∀as ∈ M.assocs· (23)
∀i ∈ {1, . . . , len(M.ends(as))} · ∀p ∈ product(as, i)·

|{ ln ∈ S.instances(as) : πi(S.ends(ln)) = p }| ∈
πi(M.mults(as)) ,

where:

product(as, i) =def

len(M.ends(as))

×
j=1, j 6=i

S.instances(πj(M.ends(as))) . (24)

4. An extent of an association includes, at most, one link connecting a given
set of class instances (on given link ends):5

∀as ∈ M.assocs · ∀ln1, ln2 ∈ S.instances(as)· (25)
ln1 6= ln2 ⇒ ∃i ∈ {1, . . . , len(M.ends(as))}·

πi(S.ends(ln1)) 6= πi(S.ends(ln2)) .

3 This issue is discussed in terms of “complete” and “incomplete” class diagrams in [5].
4 The meaning of multiplicity for an association with more than two ends lacked pre-

cision in terms of its definition in UML prior to version 2.0. Possible interpretations
are discussed in detail in [7].

5 This condition does not have to be true for an association with a {bag} adornment.
However, for the sake of simplicity, such associations are not considered here.

UML Static Models in Formal Approach 117

5. An instance of a specializing classifier is also an instance of the specialized
classifier:

∀cf 1, cf 2 ∈ M.classifiers · cf 2 ∈ M.specs(cf 1)⇒ (26)
S.instances(cf 2) ⊆ S.instances(cf 1) .

Definition 8 (Meaning). Let M ∈ Models and M : Models → P(States) be
the function which is defined as:

M(M) =def {S ∈ States : Sat(M,S) } . (27)

The value M(M) refers to the meaning of M.

5 Consequence

The mathematically defined semantics of a UML model allows for the reasoning
about the properties presented in a model. The properties which are implied
from the semantics of a given model, and are expressed in this model somehow
implicitly, may be shown directly in the form of a different model. The rela-
tionship between two such models is defined below as a relation of semantic
consequence: ⇒ ⊆ Models ×Models. If for a given problem domain or system
the properties expressed in the model M1 are true and it holds M1 ⇒ M2, then
for the forementioned problem domain or system the properties expressed in the
model M2 are also true.

Definition 9 (Consequence). Let M1,M2 ∈ Models. The model M2 is a (se-
mantic) consequence of M1 and can be expressed as

M1 ⇒ M2 , if and only if M(M1) ⊆M(M2) . (28)

The relation of consequence ⇒ is transitive in the set Models ((M1 ⇒ M2 ∧
M2 ⇒ M3) ⇒ (M1 ⇒ M3)), so to show that one diagram ia a consequence
of another, it can be proved in several simpler steps. Below one of the basic
reasoning rules is formally presented. Some other examples are shown in Fig. 3.
Many reasoning rules, including proof of their correctness, are presented in detail
in [10].

Theorem 1 (Extending multiplicity). Let M1,M2 ∈ Models be such that:

M1.classes = M2.classes , M1.mults 6= M2.mults , (29)
M1.assocs = M2.assocs , M1.specs = M2.specs ,

M1.ends = M2.ends ,

and the models include the association AS ∈ M1.assocs, such that the multiplicity
on its end k in the model M1 is a proper subset of the multiplicity on this end
in the model M2:

πk(M1.mults(AS)) ⊂ πk(M2.mults(AS)) , (30)

118 Marcin Szlenk

Removing a class

A

B

B

Removing an association

A

B C

A

B C

AS

Changing an association class into a class

A

B C

A

B C

D
D

Removing a relationship of generalization/specialization

A

CB

A

CB

Promoting an association

C

B D

AS

M1

B

M2 M1 {0}
A

A

N1

N2 N1 {0}

C

D

AS

M2

N2

Fig. 3. Examples of a consequence relationship

UML Static Models in Formal Approach 119

whereas the multiplicity specifications on the other ends of the association AS
and on the ends of the other associations are the same in both models:

πk(M1.mults(AS)) = πk(M2.mults(AS)) , (31)
∀as ∈ M1.assocs \ {AS} ·M1.mults(as) = M2.mults(as) . (32)

Then the model M2 is a consequence of M1 (see Fig. 4).

A

B C

AS

M1

A

B C

AS

M2

M1 M2

Fig. 4. Extending multiplicity

Proof. Let S ∈ M(M1) (i.e. Sat(M1,S) holds). Within the framework of the
proof that Sat(M2,S) holds we will show that point 3 of the definition 7 is
satisfied. The satisfaction of the remaining points of this definition is implied
directly from Sat(M1,S) and the condition (29).

Let as ∈ M2.assocs, i ∈ {1, . . . , len(M2.ends(as))} and p ∈ product(as, i)
(from the condition (29) the function ‘product’ has the same form for both
models M1 and M2). If as 6= AS or i 6= k, then the forementioned point is
satisfied from Sat(M1,S) and the conditions (31) and (32). Otherwise, from
Sat(M1,S) it holds:

|{ ln ∈ S.instances(AS) : πk(S.ends(ln)) = p }| ∈ πk(M1.mults(AS)) (33)

and from the condition (30):

|{ ln ∈ S.instances(AS) : πk(S.ends(ln)) = p }| ∈ πk(M2.mults(AS)) . (34)

5.1 Refinement

A refinement is a relationship that represents a fuller specification of something
that has already been specified at a certain level of detail or at a different seman-
tic level [9]. Fig. 5 shows seven simple models of the same problem domain but
at different levels of detail (at different stages of development). Each consecutive
model includes some more details about the modelled domain and thus can be
treated as a refinement of any of the previous models. At the same time, if a
given model is a refinement of another then they both are related by a conse-
quence relationship, as it is shown in the figure. Generally, if M1 ⇒ M2 holds
then the model M1 is at least as detailed (complete or precise) description of a
given problem domain or system as the model M2.

120 Marcin Szlenk

Event

Opening
0..1

Event

Keynote

0..11

Opening

Follows

Keynote

Event

0..1

0..1

1

►

Follows◄

Event

0..1

0..1

Follows◄
Opening

F
o
llo

w
s

◄

Event

Opening
0..1

1

F
o

llo
w

s
◄

Keynote

Event

Opening
0..1

1

F
o

llo
w

s
◄

Removing a class

Opening

Event

0..1

0..1

Follows◄

Removing a relationship of

generalization/specialization

Promoting an association

Removing a class

Removing a relationship of

generalization/specialization

Promoting an association

1. 2.

3.4.

5. 6.

7.

Fig. 5. Refinement vs. consequence relationship

UML Static Models in Formal Approach 121

6 Equivalence

Two models with exactly the same meaning are a specific case of the relation of
consequence. Such cases are defined below as a relation of semantical equivalence:
⇔ ⊆ Models × Models. If M1 ⇔ M2 holds, then the models M1 and M2 are
completely interchangeable descriptions of a given problem domain or system
(or their parts).

Definition 10 (Equivalence). Let M1,M2 ∈ Models. The model M1 is (se-
mantically) equivalent to M2 and can be expressed as

M1 ⇔ M2 , if and only if M1 ⇒ M2 ∧M2 ⇒ M1 . (35)

6.1 An example of equivalence

For the specialization of an association, the UML metamodel [12] defines only two
syntactical constraints (see the definition 2): an association specializing another
association has the same number of ends and its ends are connected to the
same classifiers as in a specialized association or to their specializations. In fact,
these constraints partially reflect the semantics of a specializing association,
which instances are the specific cases of instances of a specialized association.
Between two such associations, however, other dependencies which have not been
taken into account in the UML metamodel and which can be shown using our
formalization also exist. Below we present one example of such dependencies.

Theorem 2 (Association specialization vs. multiplicity). Let M1,M2 ∈
Models be such that:

M1.classes = M2.classes , M1.mults 6= M2.mults , (36)
M1.assocs = M2.assocs , M1.specs = M2.specs ,

M1.ends = M2.ends ,

and the models include the associations AA,AB ∈ M1.assocs, such that AB is a
specialization of AA:

AB ∈ M1.specs(AA) , (37)

and for the multiplicity on the end k of the association AB the below condition
holds:6

πk(M2.mults(AB)) = (38)
πk(M1.mults(AB)) ∩ {0, . . . ,max(πk(M1.mults(AA)))} ,

whereas the multiplicity specifications on the other ends of the association AB
and on the ends of the other associations are the same in both models:

πk(M1.mults(AB)) = πk(M2.mults(AB)) , (39)
∀as ∈ M1.assocs \ {AB} ·M1.mults(as) = M2.mults(as) . (40)

Then the model M1 is equivalent to M2 (see Fig. 6).

122 Marcin Szlenk

B C
AA

E F
AB

A

M

N1

D

B C
AA

E F
AB

A

M

N2

D

N2 N1 {0,…,max(M)}

Fig. 6. Association specialization vs. multiplicity

Proof. Firstly, we will prove that M1 ⇒ M2 and then M2 ⇒ M1 hold.

M1 ⇒ M2. Let S ∈M(M1). Within the framework of the proof that Sat(M2,S)
holds we will show that point 3 of the definition 7 is satisfied. The satisfaction
of the remaining points of this definition is implied directly from Sat(M1,S) and
the condition (36).

Let as ∈ M2.assocs, i ∈ {1, . . . , len(M2.ends(as))} and p ∈ product(as, i)
(from the condition (36) the function ‘product’ has the same form for both
models M1 and M2). If as 6= AB or i 6= k, then the mentioned point is satis-
fied from Sat(M1,S) and the conditions (39) and (40). Otherwise, if we use the
symbols:

αAA(i, p) =def |{ ln ∈ S.instances(AA) : πi(S.ends(ln)) = p }| and (41)
αAB(i, p) =def |{ ln ∈ S.instances(AB) : πi(S.ends(ln)) = p }| , (42)

it remains to be shown that the below holds:

αAB(k, p) ∈ πk(M2.mults(AB)) . (*)

Because Sat(M1,S) holds, therefore:

αAA(k, p) ∈ πk(M1.mults(AA)) and (43)
αAB(k, p) ∈ πk(M1.mults(AB)) , (44)

and from condition (37) and from point 5 of the definition 7:

S.instances(AB) ⊆ S.instances(AA) . (45)

Then the following inequality holds:

αAB(k, p) ≤ αAA(k, p) (46)
6 If X is an infinite subset of N, then we assume {0, . . . , max(X)} =def N.

UML Static Models in Formal Approach 123

and from the equation (43):

αAB(k, p) ∈ {0, . . . ,max(πk(M1.mults(AA)))} . (47)

From the equation (44):

αAB(k, p) ∈ πk(M1.mults(AB)) ∩ {0, . . . ,max(πk(M1.mults(AA)))} (48)

and the property (*) holds on the assumption (38).

M2 ⇒ M1. From the assumptions of our theorem:

πk(M2.mults(AB)) ⊆ πk(M1.mults(AB)) . (49)

If the above sets are equal, then M1 = M2. Otherwise, the assumptions of theo-
rem 1 are satisfied.

Example 1 (Imprecise multiplicity specification). Fig. 7 illustrates a situation at
a hypothetical scientific conference, where participants can be the authors (or
co-authors) of no more than two papers submitted to the conference. If the
submitted paper is accepted for the presentation during the conference, it is
presented by one of its authors. By virtue of theorem 2, one author cannot have
more than two presentations.

Author Paper
1..2

Accepted
0..3

1..*

Submits►

Presents►

1

Author Paper
1..2

Accepted
0..2

1..*

Submits►

Presents►

1

Fig. 7. Imprecise multiplicity specification

7 Conclusion

Theoretical research work in the area of UML formalization, although rather
difficult to be applied directly in software engineering practice, can be useful in
facilitating a better understanding of UML modeling concepts and can contribute
to improving the UML specification itself. In the paper we have proposed a
concise formalization of basic UML static models and have shown they can be
helpful in formal reasoning. The presented formalization can easily include other
elements of UML static models, which have not been addressed here, for example
an aggregation, a composition or abstract classifiers [10]. It was also used to
define the problem of the semantic consistency of individual models [11].

124 Marcin Szlenk

References

1. Aredo D., Traoré I., Stølen K.: Towards a Formalization of UML Class Structure in
PVS. Research Report 272, Department of Informatics, University of Oslo (1999)

2. Berardi D., Cal̀ı A., Calvanese D., De Giacomo G.: Reasoning on UML Class Di-
agrams. Technical Report, Dipartimento di Informatica e Sistemistica, Università
di Roma (2003)

3. Egyed A.: Automated Abstraction of Class Diagrams. ACM Transactions on Soft-
ware Engineering and Methodology 11(4) (2002) 449–491

4. Evans A.: Reasoning with UML Class Diagrams. Second IEEE Workshop on In-
dustrial Strength Formal Specification Techniques (WIFT98) (1998)

5. France R.: A Problem-Oriented Analysis of Basic UML Static Requirements Mod-
eling Concepts. Proceedings of OOPSLA’99 (1999) 57–69

6. Funes A., George C.: Formalizing UML Class Diagrams. In Liliana Favre (Ed.),
UML and the Unified Process, Idea Group Publishing, (2003) 129–198

7. Génova G., Llorens J., Mart́ınez P.: The Meaning of Multiplicity of N-ary Associ-
ation in UML. Software and Systems Modeling 2(2) (2002) 86–97

8. Gogolla M., Richters M.: Equivalence Rules for UML Class Diagrams. UML’98 -
Beyond the Notation, First International Workshop (1998) 87–96

9. Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference
Manual, Second Edition. Addison-Wesley (2004)

10. Szlenk M.: Formal Semantics and Reasoning about UML Conceptual Class Dia-
gram (in Polish). PhD Thesis, Warsaw University of Technology (2005)

11. Szlenk M.: Formal Semantics and Reasoning about UML Class Diagram. Proceed-
ings of DepCoS-RELCOMEX’2006 (2006) 51–59

12. UML 2.1.1 Superstructure Specification (formal/2007-02-05). Object Management
Group (2007)

