
Towards Precise Architectural Decision Models

Marcin Szlenk
1

1
 Warsaw University of Technology, Institute of Control and Computation Engineering,

Nowowiejska 15/19,00-665 Warsaw, Poland, m.szlenk@elka.pw.edu.pl

Abstract. One of the modern approaches for documenting software architecture

is to show the architectural design decisions that led an architect to the final form

of software architecture. However, decisions that have been made in such a pro-

cess may need to be changed during further evolution and maintenance of the

software architecture. The main reasons for these changes are new or changed re-

quirements. In our team we have developed a graphical modelling notation for

documenting architectural decisions, called Maps of Architectural Decisions, that

can support the process of making changes in the software architecture. In this

work we define a formal background for the controlled process of making changes

in architectural decision models that are documented using that notation.

1 Introduction

Software architecture is developed as a result of numerous interrelated decisions.

The architecture itself, these decisions and the context of these decisions create the

architectural knowledge. Documenting architectural decisions is a new wave in

architecture modelling [2, 12]. It deals with the representation, capture, manage-

ment, and documentation of the design decisions made during architecting [9]. In

the process of software maintenance and evolution, architectural decisions may

undergo changes in response to new or changed requirements. Such decisions are

often related with each other and changing one of them may affect the more exten-

sive part of the decision model. Performing the changes in the architectural deci-

sion models in a rigorous way is an important problem we want to address in this

work. The proposed solution is based on the modelling notation called Maps of

Architectural Decisions (MAD) [13]. This work extends our previous work [11]

mainly by introducing the concept of decision consistency (Sect. 5) and defining

the formal metamodel of the MAD notation (Sect. 6).

2

2 Related Work and Motivation

A typical representation of architectural decisions are text records [1, 4, 12], that

are sometimes accompanied with illustrating diagrams [3]. Many diagrammatic

(based on graphs) models have been also proposed as a way to represent architec-

tural decision and decision making process in a more comprehensive way (see [10,

13, 14]). Graphical models and tools supporting architectural decisions and deci-

sion-making have been presented in [6, 10, 13].

Decision classifications have been developed to help to organise large sets of

architectural decisions. Most influential classifications by Kruchten [8] (existence,

non-existence, property and executive decisions) and Zimmermann [14] (execu-

tive, conceptual, technology and vendor asset decisions) substantially help to nav-

igate through a set of architectural decisions. In both references, not only the cate-

gories of architectural decisions have been defined but also the possible kinds of

relations between such decisions have been determined. In [8], Kruchten indicates

as much as ten different kinds of relations between architectural decisions.

Another architectural decision model and diagrammatic notation (MAD) have

been developed by our team and presented in [13]. MAD has been created to sup-

port architect-practitioners working on systems evolution. It does not impose any

predefined classification or hierarchy of architectural decisions and assumes a lim-

ited number of relation kinds between architectural decisions. This makes the

model of the decision process intuitive and easy to comprehend. To explain the

choices made and capture their rationale, the entire decision situation is presented,

including: the decision topic (or problem), considered design options, relevant re-

quirements, the advantages and disadvantages of every considered option.

Although there are many approaches for representing and capturing architec-

tural decisions, it seems that in all cases the following scenario is assumed: one

has an initial set of requirements and according to these requirements the architec-

tural decisions are made and documented. However, an important question arises:

what activities should be done when the initial set of requirements changes but

some or all of the decisions have been already captured in the model? Such a situ-

ation is quite usual during a project with iterative development [7] and typical for

the maintenance phase when requirements for the next release of a system appear.

The new or changed requirements will usually lead to a changed decision mod-

el, but the main problem here is how to perform these changes in a controlled way

and verify whether each change is justified by the context. The precise formal def-

initions would be welcomed here, as they open the further possibility of automatic

verification. It seems that, so far, this problem has not been given much attention

in the related works on architectural decision modelling. Thus, we would like to

address it here in terms of models expressed in the MAD notation.

3

3 Maps of Architectural Decisions

MAD notation works similarly to mind maps used to present a problem structure

graphically. The MAD models are built up of the following elements:

 Decision problem – represents the architectural issue being considered;

 Connector – in its basic form shows that one solved problem led an architect to

the one indicated by an arrow (a "leads to" relation);

 Solution – represents a single solution to the architectural problem considered;

 Requirement – represents a requirement relevant to a given architectural prob-

lem;

 Decision-maker – represents a person or a group of people responsible for the

resolution of a related architectural problem;

 Pro or Con – represents a single advantage or disadvantage of a given solution.

These elements have additional attributes, e.g. name, description, state, creation

date and resolution date for the decision problem [13]. The most important ele-

ments of the notation are shown in Fig. 1.

Symbols representing solutions to the problem and their different statuses:

Symbols representing decision problems and their possible states:

A connector between two decision problems:

Defined Requires
reassessment

Solved
Being

solved

Defined FeasableInfeasable Chosen

“leads to” relation

A relevant requirement: Requirement

Fig. 1 The MAD notation

3.1 Decision Problem Life Cycle

The main objective of MAD is to show a decision making process and its pro-

gress. It introduces the concept of a decision problem's state, proposing four pos-

sibilities: defined, being solved, solved, and requires reassessment (see Fig. 1).

The state transition rules have been defined for MAD using the concept of a deci-

sion problem's context. The context, in which the architectural decision problem is

being considered, contains both the requirements and the decisions that have been

4

already made [2]. To be more precise, not all the requirements and decisions made

before should be considered here but, naturally, only these which are relevant to

the given decision problem. In the MAD model the requirements are directly at-

tached to decision problems they are relevant to, and the earlier decisions (chosen

solutions), that led to the given problem, can be easily discovered by tracing the

"leads to" relationship. In [11] the three definitions have been introduced:

Definition 1 (Simplified MAD model)

By a simplified MAD model we understand a tuple (Problems, leadsTo, require-

ments, solution), where:

 Problems is a set of decision problems,

 leadsTo Problems Problems is a set of pairs of decision problems con-

nected through the "leads to" relation,

 requirements(p) is a set of requirements relevant to the problem p, and

 solution(p) is a single-element set containing a finally selected solution to the

problem p (if the solution is not selected yet, then solution(p) is undefined).

Definition 2 (Reachability relation)

Let M be a simplified MAD model and a relation  Problems Problems be the

transitive closure of the relation leadsTo. The relation  will be called a reachabil-

ity relation for the model M. If p  q then we will say that the problem q is reach-

able from the problem p.

Definition 3 (Context)

Let M be a simplified MAD model,  be the reachability relation for the model M.

The context of a problem p Problems in M is defined as:

context(p) = requirements(p) q  p solution(q).

Defined

Requires
reassessment

Solved

Being

solved

adding

removing

finding

solution

solution

found

finding

solution

context

changed

context

changed

context

changed

Fig. 2 The decision problem life cycle

Let us now discuss the life cycle of a decision problem in the MAD model.

When a new decision problem is added to the model it is in the "defined" state.

5

Next, when the possible solutions are being considered the problem is "being

solved", and once one of the solutions connected to the problem becomes "cho-

sen", the problem becomes "solved" and can lead to new problems. Whenever the

problem's context is changing, the problem should automatically change its state

into "requires reassessment". When the context of the decision problem has

changed due to the changes of the previous decisions, the problem itself may not

occur any more and in such a situation it should be removed from the model. The

described decision problem life cycle is summarized in Fig. 2.

3.2 Model Rebuilding

The decision problem life cycle leads us to the rigorous process of making chang-

es in MAD models in response to new requirements. When the new requirement

appears, the software architect can decide whether it is relevant to one or more of

the decisions captured in the MAD model. In the MAD model this new require-

ment will be then connected to proper decisions, changing at the same time their

contexts and their status into “requires reassessment” as a result. The similar situa-

tion will occur when one of the requirements already existing in the model is

changing.

Application

style?

Technology?

Application

server?

Database

server?

Hardware?

.NET

J2EE

JBoss

x86

SPARC

Single tier

Multi tier

PostgreSQL

()

(Multi tier)

(Multi tier, J2EE)
(Multi tier, J2EE)

(Multi tier, J2EE, JBoss, PostgreSQL)

Initial model
Application

style?

Technology?

Application

server?

Database

server?

Hardware?

.NET

J2EE

JBoss

x86

SPARC

Single tier

Multi tier

PostgreSQL

()

(Multi tier, No Java)

(Multi tier, J2EE)
(Multi tier, J2EE)

(Multi tier, J2EE, JBoss, PostgreSQL)

No

Java

Step 1.

Application

style?

Technology?

Database

server?

Hardware?

.NET

J2EE

x86

SPARC

Single tier

Multi tier

PostgreSQL

()

(Multi tier, No Java)

(Multi tier, .NET)

(Multi tier, .NET, MS SQL)

No

Java

MS SQL

Language?

C#

(Multi tier, .NET)

VB.NET

Step 6.

Fig. 3 Model rebuilding

6

Changing the status of any problem into “requires reassessment” may initiate

the process of model rebuilding. An example of such a process has been presented

in [11]. That process encompasses six steps. In Fig. 3, we present only the first

step and the final result of the whole rebuilding process. The intermediate steps

have been omitted. In the first step the new requirement telling that our company

is moving from Java technology has been connected with the “Technology?” deci-

sion problem. For detailed description of the successive steps, please refer to [11].

5 Decision Consistency in MAD Models

As it has been shown in the previous section, the appearance of new requirements

may result in a changed architectural decision model. Thus, the evolution process

of a system may result in a sequence of architectural decision models, where two

consecutive models reflect the single step of system evolution. Let us consider

such a sequence of two architectural models (i.e. one evolution step) and call them

M1 and M2. Let p be one of the solved decision problems (a problem in the

"solved" state) in the model M1. There are two possibilities:

 the problem p does not occur any more and is not present in M2,

 the problem p does still occur and is present in both the models: M1 and M2.

In the second case, if the problem p is also solved in the model M2 then:

 the problem p has the same finally selected solution (a solution in the "chosen"

state) in both of the models, or

 the problem p has a different finally selected solution, but in that case the con-

texts of p in M1 and M2 must be also different, otherwise there would not be

any justification for changing a solution to the problem p (i.e. in the meantime

p must have been in the "requires reassessment" state).

Let us now define the above relation between two MAD models formally.

Definition 4 (Decision consistency relation)

Let M1 and M2 be two simplified MAD models. We say that the decisions in M1

and M2 are consistent if they have the same finally selected solution or they con-

texts are different:

p Problems1 Problems2

solution1(p) is defined solution2(p) is defined

solution1(p) = solution2(p) context1(p) context2(p).

If M2 is a result of rebuilding M1 in a process of architecture evolution, the de-

cisions in the model M1 must be consistent with the decisions in the model M2 in

7

terms of the above definition. From the definition of the decision consistency rela-

tion it can be easily seen that this relation is both symmetric and reflexive.

6 Metamodel of MAD Notation

Although MAD notation offers constructions useful not only for documenting ar-

chitectural decisions but also for making rigorous changes in a set of interrelating

decisions, its biggest drawback when it comes to automatic verification of changes

is its lack of precise metamodel. In this section, the metamodel of the part of

MAD is presented. This metamodel is expressed in Alloy specification language

[5], what allows for the analysis of the proposed metamodel using Alloy Analyzer

tool.

Alloy is a declarative language for expressing structural constraints based on

the first-order logic. An Alloy model is composed of sets (called ‘signatures’), re-

lations in these sets (represented as signatures’ fields) and constraints over the sets

and relations (called ‘facts’). For detailed description, please refer to [5] or to the

Alloy project Web site http://alloy.mit.edu.

The partial MAD metamodel is presented in Fig. 4 and Fig. 5. The main ele-

ments of the MAD models (represented as the MAD signature) are: decision prob-

lems (the DecisionProblem signature), requirements (the Requirement signa-

ture) and solutions (the Solution signature). Every single problem and solution

in the MAD model must be in one of the possible states represented here as the

singleton subsets of the ProblemState and SolutionState signatures (com-

pare with Fig. 1).

sig MAD {}

sig DecisionProblem {}

sig Requirement {}

sig Solution {}

abstract sig ProblemState {}

one sig DefinedProblem extends ProblemState {}

one sig RequiresReassessment extends ProblemState {}

one sig Solved extends ProblemState {}

one sig BeingSolved extends ProblemState {}

abstract sig SolutionState {}

one sig DefinedSolution extends SolutionState {}

one sig Infeasible extends SolutionState {}

one sig Feasible extends SolutionState {}

one sig Chosen extends SolutionState {}

Fig. 4 Signatures

8

Fig. 5 shows the different possible relations between models, problems, solu-

tions, requirements and problems' and solutions' states, that take place in MAD

models. For example, the requirements relation defines the set of requirements

relevant to the problem (graphically connected to the problem). The following ad-

ditional constraints have been added as the Alloy facts:

1. If the problem belongs to the model all of its preceding problems and succes-

sors also belong to that model;

2. The "leads to" relation cannot form a cycle;

3. Not more than one of considered solutions for the problem can be in the "cho-

sen" state;

4. If the problem has a preceding problem, the preceding one must have been

solved in the past (and then its solution generated the next problem) and can

never be again in the "defined" state;

5. The solved problem must have a chosen solution.

sig MAD {

 problems: set DecisionProblem,

 problemState: problems -> one ProblemState,

 leadsTo: problems -> problems,

 requirements: problems -> Requirement,

 solutions: problems -> (Solution -> one SolutionState)

}{

 all p: problems | p.(leadsTo + ~leadsTo) in problems // 1.

 all p: problems | p not in p.^leadsTo // 2.

 all p: problems | lone s : Solution |

 s -> Chosen in solutions[p] // 3.

 all p: problems | all q: p.~leadsTo |

 problemState[q] != DefinedProblem // 4.

 all p: problems | problemState[p] = Solved =>

 one s: Solution | s -> Chosen in solutions[p] // 5.

}

Fig. 5 The MAD signature details

For the above MAD metamodel, the decision consistency relation, which was

defined in Sect. 5, can be written in the form of an Alloy predicate as in Fig. 6.

9

fun context[m: MAD, p: DecisionProblem]: Requirement + Solution {

 m.requirements[p] + {s: Solution | some q: m.problems |

 p in q.^(m.leadsTo) and s -> Chosen in m.solutions[q] }

}

fun solution[m: MAD, p: DecisionProblem]: Solution {

 {s: Solution | s -> Chosen in m.solutions[p]}

}

pred consistent [m1: MAD, m2: MAD] {

 all p: m1.problems & m2.problems |

 (m1.problemState[p] = Solved and

 m2.problemState[p] = Solved) =>

 (solution[m1,p] = solution[m2,p] or

 context[m1,p] != context[m2,p])

}
Fig. 6 Decision consistency relation

As it has been mentioned, Alloy specifications can be analyzed using the Alloy

Analyzer tool. Such an analysis may be of two forms: simulation, which involves

finding instances that satisfy a given property, or checking, which involves finding

a counterexample―an instance that violates a given property. For the proposed

metamodel, a number of instances have been generated with the Alloy Analyzer

and these instances have been studied to assure both the correctness and com-

pleteness of the metamodel, i.e. that all the constraints have been captured and ap-

propriately expressed.

7 Conclusion and Further Work

MAD notation has been originally developed as a simple tool for system architects

to document architectural decisions [13]. It has appeared that this notation offers

some constructions particularly useful for building the models in an iterative way,

where new requirements appear after the whole or parts of the model were created

[11]. In other words, the MAD notation may support the process of making

changes in the software architecture during further evolution and maintenance of

the software architecture.

MAD has been validated in the real life conditions of one of the largest telecom

firms in Poland and a software tool supporting MAD has been also developed

[13]. The tool has been designed as a diagram editor being an extension to MS

Word. Unfortunately, the main problem we faced trying to extend this tool to sup-

port the process of rebuilding models was the lack of a precise MAD metamodel.

In this work, such a metamodel has been proposed. After creating a tool based on

10

this metamodel, further empirical evaluation of the concepts presented here will be

conducted.

This work was sponsored by the Polish Ministry of Science and Higher Education under grant

number 5321/B/T02/2010/39.

References

[1] Ali Babar M, Dingsøyr T, Lago P, van Vliet H (eds) (2009) Software Architecture

Knowledge Management: Theory and Practice. Springer-Verlag

[2] Bosch J, Jansen A (2005) Software Architecture as a Set of Architectural Design Decisions.

Proc. 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05): 109-120,

IEEE Computer Society

[3] Capilla R, Nava F, Dueñas JC (2007) Modeling and Documenting the Evolution of Archi-

tectural Design Decisions. Proc. of the Second Workshop on Sharing and Reusing Architec-

tural Knowledge Architecture, Rationale, and Design Intent : 9-16, IEEE CS Press

[4] Harrison NB, Avgeriou P, Zdun U (2007) Using Patterns to Capture Architectural Deci-

sions. IEEE Software 24(4):38-45

[5] Jackson D (2012) Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT

Press

[6] Jansen A, Avgeriou P, van der Ven JS (2009) Enriching Software Architecture Documenta-

tion. Journal of Systems and Software 82(8):1232-1248

[7] Kruchten P (2003) The Rational Unified Process - An Introduction, 3rd edn. Addison-

Wesley

[8] Kruchten P, Lago P, van Vliet H (2006) Building Up and Reasoning About Architectural

Knowledge. In: Hofmeister C (ed) Proceedings of Second International Conference on the

Quality of Software Architectures (QoSA 2006). LNCS 4214:43-58, Springer-Verlag

[9] Kruchten P, Capilla R, Dueñas JC (2009) The Role of a Decision View in Software Archi-

tecture Practice. IEEE Software 26(2):36-42

[10] Shahin M, Liang P, Khayyambashi MR (2010) Improving understandability of architecture

design through visualization of architectural design decision. Proceedings of the 2010 ICSE

Workshop on Sharing and Reusing Architectural Knowledge:88-95, ACM

[11] Szlenk M, Zalewski A, Kijas S (2012) Modelling architectural decisions under changing re-

quirements. Proc. Joint 10th Working Conference on Software Architecture & 6th European

Conference on Software Architecture (WICSA/ECSA 2012): 211-214. IEEE CS

[12] Tyree J, Akerman A (2005) Architecture Decisions: Demystifying Architecture. IEEE

Software 22(2):19-27

[13] Zalewski A, Kijas S, Sokołowska D (2011) Capturing Architecture Evolution with Maps of

Architectural Decisions 2.0. In Crnkovic I, Gruhn V, Book M (eds) Proc. 5th European

Conference on Software Architecture (ECSA 2011). LNCS 6903:83-96, Springer-Verlag

[14] Zimmermann O, Koehler J, Leymann F, Polley R, Schuster N (2009) Managing architectur-

al decision models with dependency relations, integrity constraints, and production rules.

Journal of Systems and Software 82(8):1249-1267

