Modelling architectural decisions under changing requirements

Marcin Szlenk, Andrzej Zalewski, Szymon Kijas
Institute of Control and Computation Engineering
Warsaw Univeristy of Technology
Warsaw, Poland
{m.szlenk,a.zalewski,s.kijas} @elka.pw.edu.pl

Abstract—One of the approaches for documenting software
architecture is to treat it as a set of architectural design
decisions. Such decisions are always made in the context
of requirements that must be fulfilled and in the context
of decisions that were made before. Currently, models for
representing architectural decisions are mainly concentrated on
showing the decision making process of the initial architectural
design. However, decisions that have been made in such a
process may need to be changed during further evolution and
maintenance of the software architecture, typically in response
to the new or changed requirements.

A graphical modelling notation for documenting architec-
tural decisions (Maps of Architectural Decisions) has been
developed by our team. In this paper, it is presented how
this notation could be used to model architectural decisions
under changing requirements. It is proposed how one decision
change could be effectively propagated through the rest of
the architectural decision model and how a rigorous and tool-
supported process of updating such models could be organized.

Keywords-architectural decisions; graphical models; require-
ment changes;

I. INTRODUCTION

Architectural decisions [2], [11] are often perceived as
another wave in architecture modelling that deals with the
representation, capture, management, and documentation of
the design decisions made during architecting [8]. As all
other decisions in the software development process these
also may undergo changes, e.g in one of the succeeding
iteration steps in the iterative development process or during
the software maintenance phase. Such alterations are usually
related to changes in the requirements: a new requirement
has appeared or has been taken into account what forces
a software architect to change one or more decisions.
Architectural decisions are often related with each other
and changing one of them may affect the more extensive
part of the decision model. Performing the changes in the
architectural decision models in a rigorous way should be
considered an important issue and this is the problem this
paper addresses.

II. RELATED WORK AND MOTIVATION

Architectural decisions are usually represented as text
records [1], [4], [11], sometimes accompanied with illustrat-
ing diagrams [3]. The limitations of the textual models are

well-known in the genre of software engineering. Therefore,
sets of hundreds of architectural decisions necessary to rep-
resent sufficiently architecture of a large system, are difficult
to comprehend, analyse, verify and ensure completeness
and consistency or even just to navigate through them.
For that reason, diagrammatic (based on graphs) models
have been proposed as a way to represent architectural
decision and decision making process (see [10], [12], [13])
in a more comprehensive way. Graphical models and tools
supporting architectural decision and decision-making have
been presented in [5], [10], [12].

Decision classifications have been developed to help to
organise large sets of architectural decisions. Most influential
classifications by Kruchten [7] (existence, non-existence,
property and executive decisions) and Zimmermann [13] (ex-
ecutive, conceptual, technology and vendor asset decisions)
substantially help to navigate through a set of architectural
decisions. However, these categories are not always precise,
and in many cases can confuse engineers. In both references,
not only the categories of architectural decisions have been
defined but also the possible kinds of relations between such
decisions have been determined. In [7] Kruchten indicates
ten different kinds of relations between architectural deci-
sions.

Another architectural decision model and diagrammatic
notation, called “Maps of Architectural Decisions” (MAD),
have been developed by our team and presented in [12].
MAD has been created to support architect-practitioners
working on systems evolution. It does not impose any pre-
defined classification or hierarchy of architectural decisions
and assumes a limited number of relation kinds between
architectural decisions. This makes the model of the decision
process intuitive and easy to comprehend. To explain the
choices made and capture their rationale, the entire decision
situation is presented, including: the decision topic (or prob-
lem), considered design options, relevant requirements, the
advantages and disadvantages of every considered option.

Although there are many approaches for representing and
capturing architectural decisions, it seems that in all cases
the following scenario is assumed: one has an initial set
of requirements and according to these requirements the
architectural decisions are made and documented. However,
an important question arises: what activities should be done

Symbols representing decision problems and their possible states:

Defined Reagulize Solved Being
. g reassesment solved

A connector between two decision problems:
—_—

“leads to” relation

Symbols representing solutions to the problem and their different statuses:

Infeasable [Feasable] [Chosen]

A relevant requirement:

The part of the MAD notation

Figure 1.

when the initial set of requirements changes but some or all
of the decisions have been already captured in the model?
Such a situation is quite usual during a project with iterative
development [6] and typical for the maintenance phase when
requirements for the next release of a system appear. It seems
that, so far, this problem has not been given much attention
in the related works on architectural decision modelling.
Thus, we would like to address it here. It appears that the
MAD notation offers some constructions particularly useful
for this problem, as it will be shown further in the paper.

III. MAPS OF ARCHITECTURAL DECISIONS

MAD was crafted to assist architects in architecture
decision-making, without enforcing any particular archi-
tecting approach or decision-making order. MAD works
similarly to popular mind maps used to present a problem
structure graphically. The MAD models are built up of the
following elements:

e Decision problem — represents the architectural issue
being considered;

e Connector — in its basic form shows that one solved
problem led an architect to the one indicated by an
arrow (a “leads to” relation);

o Solution — represents a single solution to the architec-
tural problem considered;

e Requirement — represents a requirement relevant to a
given architectural problem;

e Decision-maker - represents a person or a group of
people responsible for the resolution of a related ar-
chitectural problem;

e Pro or Con - represents a single advantage or disad-
vantage of a given solution.

These elements have additional attributes, e.g. name, de-
scription, state, creation date and resolution date for the
decision problem. For the detailed description please refer
to [12]. The most important elements of the notation are
shown in Fig. 1.

IV. DECISION PROBLEM LIFE CYCLE

MAD concentrates on showing a decision making process
and its progress. It does not provide classification categories
for architectural decisions but instead introduces the concept
of a decision problem’s state, proposing four possibilities:
defined, being solved, solved, and requires reassessment (see
Fig. 1). This distinguishes MAD from the other approaches
mentioned in Sec. II. However, in [12], the meaning of
these states have been explained only superficially and no
state transition rules have been defined. To define such rules
in this paper, first the concept of an architectural decision
problem’s context will be introduced.

The context, in which the architectural decision problem
is being considered, contains both the requirements and the
decisions that have been already made [2]. To be more
precise, not all the requirements and decisions made before
should be considered here but, naturally, only these which
are relevant to the given decision problem. In the MAD
model the requirements are directly attached to decision
problems they are relevant to, and the earlier decisions
(chosen solutions), that led to the given problem, can be
easily discovered by tracing the “leads to” relationship. Let
us first introduce two definitions:

Definition 1 (Simplified MAD model). By a simplified
MAD model we understand a tuple (Problems, leadsTo,
requirements, solution), where:

e Problems is a set of decision problems,

e leadsTo C Problems x Problems is a set of pairs
of decision problems connected through the “leads to”
relation,

o requirements(p) is a set of requirements relevant to
the problem p, and

o solution(p) is a single-element set containing a finally
selected solution to the problem p (if the solution is not
selected yet, then solution(p) is undefined).

Definition 2 (Reachability relation). Let M be a simplified
MAD model and a relation =C Problems x Problems be
the transitive closure of the relation leadsTo. The relation
> will be called a reachability relation for the model M. If
p > g then we will say that the problem ¢ is reachable from
the problem p.

According to the informal definition mentioned earlier, the
context of a problem can be now defined as shown below.

Definition 3 (Context). Let M be a simplified MAD model,
> be the reachability relation for the model M. The context
of a problem p € Problems in M is defined as:

context(p) = requirements(p) U U solution(q).
q=p

Let us now discuss the life cycle of a decision problem
in the MAD model. When a new decision problem is added

Initial model

()

Application
style?

Technology?

(Multi tier, J2EE)

(Multi tier)

(Multi tier, J2EE)

Single tier Application
style?
Multi tier

(Multi tier, J2EE)

(Multi tier, No Java)

Technology?

(Multi tier, J2EE)

Single tier

JBoss Application D
server? server?

atabase

JBoss Application
server?

Database
server?

SPARC \
%86 Hardware?

PostgreSQL

SPARC \
<86 Hardware?

PostgreSQL

(Multi tier, J2EE, JBoss, PostgreSQL)

2 0

Application Single tier
style?
Multi tier

(Multi tier, No Java)

Technology?

(Multi tier, .NET) (Multi tier, .NET)

Database
server?

Application
server?

Hardware?

PostgreSQL

Application Single tier
style?
Multi tier

\ (Muilti tier, No Java)

Technology?

(Multi tier, .NET)

Database
server?

Hardware?

PostgreSQL

(Multi tier, .NET, PostgreSQL)

(Multi tier, J2EE, JBoss, PostgreSQL)

4) i .
Application Single tier
style?
Multi tier

(Multi tier, No Java)

(Multi tier, .NET)
Database
server?

Hardware?

Technology?

PostgreSQL

(Multi tier, NET, MS SQL)

(Multi tier, .INET, JBoss, PostgreSQL)

® 0

(Multi tier, No Java)

Technology?

SPARC

¥86 Hardware?

Application Single tier
style?
Multi tier

(Mult tier, .NET)

Database
server?

PostgreSQL

(Multi tier, .NET, MS SQL)

6) 0

Application Single tier
style?
Multi tier

(

Multi tier, No Java

)

Technology?

(Multi tier, .NET)

Database
server?
MS sQL

PostgreSQL

(Multi tier, .NET)

Language?
VB.NET
SPARC
Hardware?

(Multi tier, NET, MS SQL)

Figure 2. An example of model rebuilding

to the model it is in the “defined” state. Next, when the
possible solutions are being considered the problem is “be-
ing solved”, and once one of the solutions connected to the
problem becomes “chosen”, the problem becomes “solved”
and can lead to new problems. The above state transitions are
quite intuitive, however, the question remains: when should a
given problem change its state into “requires reassessment’?
We argue, that such a change should always be motivated
by the alteration of the problem’s context, i.e. the problem
should change its state into “requires reassessment” if and
only if its context has changed. The information about the
problem’s context is captured in the MAD model, and thus,
such a state transition should occur automatically in response
to certain changes in the model. When the context of the

decision problem has changed due to the changes of the
previous decisions, the problem itself may not occur any
more and needs to be removed from the model (what will
take place in the example shown in Sec. V).

V. AN EXAMPLE OF MODEL REBUILDING

When a new requirement appears, the software architect
can decide whether it is relevant to one or more of the
decisions captured in the architectural decision model. In the
MAD model this new requirement will be then connected to
proper decisions, changing at the same time their contexts
and their status into “requires reassessment” as a result. This
would initiate the process of model rebuilding. An example
of such a process is presented in Fig. 2 and explained below.

The initial MAD model shown in Fig. 2, although aca-
demic in nature, should be understandable to the reader
without difficulty. According to Zimmermann’s classification
[13], the model combines both conceptual, technology, and
vendor asset level decisions. The current context of each
decision problem is shown in the parentheses. This is for
informative purpose only and it is not a standard element of
the MAD notation. For the simplicity, only the newly added
requirement has been shown in the model. The process
encompasses Six steps:

1) The new requirement (a request for a change) telling
that our company is moving from the Java technology
has been connected with the “Technology?” decision
problem.

2) The architect has chosen a different technology as a
solution to the “Technology?” problem.

3) In the case of .NET technology there is no such con-
cept as an application server [9], so the ”Application
server?” problem does not occur any more and has
been removed from the model.

4) An alternative solution for the “Database server?”
problem has been added and chosen.

5) The “"Hardware?” problem has been analyzed in the
new context, but the solution remained unchanged.

6) Because there is more than one .NET programming
language, the new solution for the “Technology?”
problem has generated a new decision problem: “Lan-
guage?”. Two solutions have been considered here and
one of them has been chosen.

Please note, the MAD model does not have to be completed
(i.e. all the decision problems are solved) to add new
requirements to it, and perform the updating process similar
to the one presented above.

VI. CONCLUSIONS AND FURTHER WORK

MAD models have been developed to assist system archi-
tects in a similar way as mind maps do. This helps to capture
architectural knowledge as it gradually comes to light while
elaborating the architecture (i.e. decision-making). In this
paper it has been shown how MAD models can be built in
an iterative way, where new requirements appear after the
whole or parts of the model were created. It is a natural
continuation of our previous work ([12]), as MAD has been
motivated by the rapid, random changes typical for the
evolution of systems supporting emergent organisations.

MAD has been validated in the real life conditions of one
of the largest telecom firms in Poland and a software tool
supporting MAD has been also developed [12]. Future work
will be focused around extending this tool to support the
process of rebuilding models in response to the new require-
ments. This support will be based on the idea presented in
this paper, leading an architect through interactively guided
and monitored steps. Next, further empirical evaluation of
the concept will be conducted.

ACKNOWLEDGMENT

This work was sponsored by the Polish Ministry
of Science and Higher Education under grant number
5321/B/T02/2010/39.

REFERENCES

[1] M. Ali Babar, T. Dingsgyr, P. Lago, and H. van Vliet, Eds.,
Software Architecture Knowledge Management: Theory and
Practice, Springer-Verlag, 2009.

[2] J. Bosch and A. Jansen, “Software Architecture as a Set of Ar-
chitectural Design Decisions,” Proc. 5th Working IEEE/IFIP
Conference on Software Architecture (WICSAO0S5), IEEE
Computer Society, pp. 109-120, 2005.

[3] R. Capilla, F. Nava, and J. C. Dueiias, “Modeling and Docu-
menting the Evolution of Architectural Design Decisions,”
Proc. of the Second Workshop on Sharing and Reusing
Architectural Knowledge Architecture, Rationale, and Design
Intent, IEEE CS Press, pp. 9-16, 2007.

[4] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using Patterns
to Capture Architectural Decisions,” IEEE Software, vol. 24,
no. 4, pp. 3845, 2007.

[5] A. Jansen, P. Avgeriou, and J. S. van der Ven, “Enriching
Software Architecture Documentation,” Journal of Systems
and Software, vol. 82, no. 8, pp. 1232-1248, 2009.

[6] P. Kruchten, The Rational Unified Process — An Introduction,
3rd ed., Addison-Wesley, 2003.

[7]1 P. Kruchten, P. Lago, and H. van Vliet, “Building Up and
Reasoning About Architectural Knowledge” in C. Hofmeister
(Ed.), Proceedings of Second International Conference on the
Quality of Software Architectures (QoSA 2006), LNCS 4214,
pp. 43-58, Springer-Verlag, 2006.

[8] P. Kruchten, R. Capilla, and J. C. Dueiias, “The Role of
a Decision View in Software Architecture Practice,” IEEE
Software, vol. 26, no. 2, March/April 2009, pp. 36-42.

[9] Microsoft Application Architecture Guide (Patterns & Prac-
tices), 2nd ed., Microsoft Press, 2009.

[10] M. Shahin, P. Liang, and M. R. Khayyambashi, “Improving
understandability of architecture design through visualiza-
tion of architectural design decision,” Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge, ACM, pp. 88-95, 2010.

[11] J. Tyree and A. Akerman, “Architecture Decisions: De-
mystifying Architecture,” IEEE Software, vol. 22, no. 2,
March/April 2005, pp. 19-27.

[12] A. Zalewski, S. Kijas, and D. Sokotowska, “Capturing Archi-
tecture Evolution with Maps of Architectural Decisions 2.0,”
in I. Crnkovic, V. Gruhn, and M. Book (Eds.), ECSA 2011,
LNCS 6903, pp. 83-96, Springer-Verlag, 2011.

[13] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and
N. Schuster, “Managing architectural decision models with
dependency relations, integrity constraints, and production
rules, ” Journal of Systems and Software, vol. 82, no. 8, pp.
1249-1267, 2009.

