
Metamodel and UML Profile for Functional

Programming Languages

Marcin Szlenk
1

1
 Warsaw University of Technology, Institute of Control & Computation Engineering,

Nowowiejska 15/19, 00-665 Warsaw, Poland, m.szlenk@ia.pw.edu.pl

Abstract. Functional programming languages are ideally suited for developing

dependable software, but not much work have been done on modeling functional

programs. Although UML is mainly based on concepts which are native to imper-

ative object-oriented programming languages, this chapter shows how – through

the profile mechanism – it can be used to model software that is to be imple-

mented in a functional programming language. In this chapter Haskell was chosen

as one of the most popular modern, pure functional languages. First, a partial

metamodel of Haskell is defined and then the corresponding UML profile is pre-

sented.

1 Introduction

Unified Modeling Language (UML) [11, 14] is intended to be a universal general-

purpose modeling language for software systems. UML contains an extensibility

capability for customizing models for particular domains or platforms, where

UML extensions are organized into profiles. Basic UML – without profiles – re-

flects the imperative and object-oriented paradigm. A system is modeled as a

collection of discrete objects that interact to perform given work. Using UML to

model software that is to be implemented in languages supporting other program-

ming paradigms may seem to be odd at first, however, creating a dedicated UML

profile may give a natural and convenient modeling notation, which at the same

time benefits from the existing tool support for UML. This chapter is an attempt at

defining the UML profile for a programming language built on a functional pro-

gramming paradigm.

2 Functional Programming

Functional programming treats computations as the evaluation of functions (or

expressions), avoiding using state and mutable data [1, 4]. Thus, functions are

stated in a declarative way, where in contrast to the imperative programming, a

function definition shows what is to be done, rather than how it is to be done in

terms of state changes. Functions are treated here as any other values, that is, they

can be passed as arguments to other functions or be returned as a result of a func-

tion. Some functional programming languages, e.g. ML variants like Standard ML

[8], Objective Caml [13] or F# [3], allow to program in both functional and im-

perative (including object-oriented) style, while the others, e.g. Miranda [16] or

Haskell [5, 6], lack imperative programming constructs and remain purely func-

tional.

As far as UML modeling is concerned, one can distinguish two types of mod-

els: dynamic and static. The dynamic model is used to express the behaviour of a

system over time, whereas the static model shows those aspects that do not change

over time. The dynamism is intuitively understood here as changes in a system

state (which is constituted of the states of its objects), however, in pure functional

programs there is no concept of state or order of execution. It is left up to the run-

time system how to compute the values given the relations to be satisfied between

them. In that sense, in a functional programming language (or at least in its pure

subset) only the static structure of program is explicitly specified, while the dy-

namic aspects remain hidden.

2.1 Haskell

Haskell is nowadays probably the most popular purely functional programming

language. It has been designed as a vehicle for functional programming teaching,

research, and applications and efforts in improving it are still ongoing. In this

chapter the current Haskell specification [6] is used.

In Fig. 1 a sample program written in Haskell is presented. This is a simplified

example taken from [6]. The program is organized into one module called

‘AStack’, which contains a user-defined algebraic data type ‘Stack’ (parameter-

ized with a type variable ‘a’) and functions ‘push’, ‘size’, ‘pop’, and ‘top’ for

typical stack operations. The type variable ‘a’ can be replaced by concrete types

(such as ‘Int’, ‘Float’, and so on) when a given value of type ‘Stack’ is de-

clared or the functions are applied. This serves as a parametric polymorphism

mechanism.1 Both the data type and the functions are explicitly (they appear on an

export list) exported by the module and are available to anyone importing the

module. This sample program will be used later to explain and present the applica-

tion of a proposed UML profile, however, the basic knowledge of functional pro-

gramming is assumed.

1 The other kind of polymorphism called overloading can be defined in Haskell using

type classes.

module AStack (Stack, push, pop, top, size) where

data Stack a = Empty | MkStack a (Stack a)

push :: a -> Stack a -> Stack a

push x s = MkStack x s

size :: Stack a -> Int

size s = length (stkToLst s) where

 stkToLst Empty = []

 stkToLst (MkStack x s) = x : stkToLst s

pop :: Stack a -> (a, Stack a)

pop (MkStack x s) = (x, s)

top :: Stack a -> a

top (MkStack x s) = x

Fig. 1 A sample Haskell program

3 Metamodel

Although Haskell contains some unique features, this chapter will stick to a subset

which is common to several other functional programming languages. In particu-

lar, the system of type classes [6] will be omitted. It not only simplifies further

consideration but also allows to easily adapt the proposed profile to other func-

tional languages.

The strategy of defining the UML profile for Haskell is here similar to the one

used in UML profile specifications provided by Object Management Group

(OMG), e.g. [10]. First, the Haskell metamodel (a model of Haskell expressed in

UML) is defined. The goal of defining this metamodel is to set the scope of Has-

kell language which will be included in the profile and to set the level of abstrac-

tion for the profile elements. The metamodel presented below is intended to pro-

vide sufficient details to create Haskell design and implementation models.2 The

assumed level of abstraction allows to partially generate Haskell code (that will

need to be further completed by hand), but does not allow for full code generation

from models. As stated before, it is not a complete metamodel of the Haskell lan-

guage yet it describes a consistent and useful subset of the language. The UML

profile corresponding to this metamodel will be then defined in Sect. 4 Profile.

2 They correspond to Platform Specific Models (PSM) in Model Driven Architecture

(MDA) approach [9].

3.1 Haskell Metamodel

The Haskell metamodel is presented as three class diagrams completed with a

description of the important features of the diagram and additional constraints

expressed in Object Constraint Language (OCL) [7].

Module contents (Fig. 2) Haskell programs are organized into modules, which

play a similar role to packages in Java or namespaces in C++ language. Two kinds

of basic program elements defined in such a module are functions and user data

types, but it is not obligatory to define them in a certain module, i.e. the ‘module

Name where’ header at the beginning of a file (see Fig. 1) can be omitted.3 Before

the ‘where’ keyword a parenthesized list of functions, types and constructors

exported by a module can be added. The attribute ‘isExported’ in the metamo-

del indicates whether the element appears on the export list of a module. Modules

can also import other modules (their exported elements) by adding the ‘import’

declarations at the beginning of the module.4 In fact, the module system in Haskell

allows also for importing chosen elements of modules and hiding others. Module

imports may not form a cycle. Note that no additional constraints in the metamo-

del are needed here because this fact results from the semantics of the aggregation

relationship in UML, which is transitive and antisymmetric [11].

Haskell functions take zero or more arguments and must always return a result.

A zero-argument function is called a value. Haskell is a statically and strongly

typed language, but the user does not have to explicitly specify the types of func-

tions as they can be inferred by the system. Functions in Haskell are pure, i.e. they

do not have any side-effects. To examine and modify the current state of the

world, e.g. read and write files, read from a keyboard or print something on a

screen, one has to use IO (input/output) actions. Every IO action returns a value,

but in the type system the returned value is tagged with ‘IO’ type, distinguishing

actions from functions. For example, the type of the function ‘getChar’ is:

getChar :: IO Char,

what means that this function is actually an action and when it is invoked, the

result will have type ‘Char’. IO actions can be passed to functions. The attribute

‘isIO’ in the metamodel indicates whether the type is an ‘IO’ type.

User data types are defined using ‘data’ keyword (see Fig. 1). They are alge-

braic types, i.e. any value of such a type is created using a constructor, which is

just a function, expecting some arguments (of other types) and delivering a value

of the given user type. A constructor may also not take any arguments (may be a

value) and an algebraic type may have many constructors (these are separated with

3 In this case, the header is assumed to be ‘module Main (main) where’.
4 In fact, the module system in Haskell allows also for importing chosen elements of

modules and hiding others.

the ‘|’ character). A constructor cannot be an action and its result type is the user

type whose values it constructs. This constraint can be expressed in OCL as be-

low:

Constructor

resultType = userType and resultType.isIO = False.

Module

ModuleEntity

+ isExported : Boolean

UserType Function Argument

Constructor HaskellType

+ isIO : Boolean

+ importedModules

*

*

+ entities
*

0..1

+ constructors

1

1..*

+ arguments

1 *

*

1 + type
+ resultType

1

*

{ordered}

Fig. 2 Module contents

Types (Fig. 3) The most frequently used basic types in Haskell are: ‘Bool’,

‘Char’, ‘String’, ‘Int’, ‘Integer’ (infinite-precision integers), ‘Float’, ‘Dou-

ble’, and the unit type ‘()’ (which is used when an IO action returns nothing).

More complex types, like e.g. list types, are constructed from other types and are

shown in Fig. 4. Polymorphic types are described in Haskell using type variables.

For example, the type variable ‘a’ in Fig. 1 represents any type. A user-defined

type (an algebraic type) can be parameterized with one or more type variables and

thus become a polymorphic one.5

5 In fact, Haskell's type system is more sophisticated, but the simplified description pre-

sented here seems adequate to its purpose.

TypeVariable
HaskellType

+ isIO : Boolean

BasicType ConstructedType UserType

+ parameters*

*

Bool

Char String Int Integer Float Double

()

{ordered}

Fig. 3 Types

Constructed types (Fig. 4) Haskell offers also types which are constructed from

other types (which themselves can be basic or constructed). These constructed

types are:

 list types (e.g. ‘[Char]’ is a list of characters),

 tuple types (e.g. ‘(Int, Float)’ is an ordered pair, where the first element is

an integer and the second is a real), and

 function types (e.g. ‘Char -> Bool’ is a function which takes a character and

returns a boolean result).

ConstructedType

HaskellType

+ isIO : Boolean

ListType TupleType FunctionType

*

1

+ type

+ types

{list}

*

1..*

+ argumentTypes

{list}
1

**

1..*

+ resultType

Fig. 4 Constructed types

Lists can hold an arbitrary number of elements, but these elements must all be of

the same type. This contrasts with tuples, which hold only a fixed number of ele-

ments, but can be heterogeneous.

4 Profile

UML can be tailored to specific domains or programming environments by defin-

ing its dialect as a profile [14]. A UML profile identifies a subset of UML and

defines stereotypes and constraints that can be applied to the selected UML subset.

This section presents a UML profile for Haskell, but the profile presented can be

also adopted to other functional languages. The profile consists of eight stereo-

types which are a direct mapping of the concepts defined in the Haskell meta-

model presented in the previous section. Table 1 depicts the relation between the

stereotypes from the profile and the Haskell matamodel, as well as UML base

elements for the stereotypes (i.e. elements to which the stereotypes can be ap-

plied).

Table 1 Mapping metamodel concepts to profile elements

Metamodel element Stereotype UML base element

Module «Module» Class

Function «Function» Operation

Function «Value» Attribute

Function «IOAction» Operation

UserType «UserType» Class or Parameterized class

Constructor «Constructor» Operation

Module.entities «Contents» Dependency

Module.importedModules «Import» Dependency

4.1 Stereotypes

In the following, the stereotypes in the profile and their use are briefly described.

Module This stereotype can be applied to a Class. Classes annotated with this

stereotype represent Haskell modules. Functions defined in a given module can be

then specified on an operation list of a Class or on an attribute list if a function is a

value.

Function This stereotype is used on Operations to represent pure functions defined

in a Haskell program. The default UML syntax for an operation is used:

name (parameter: parameter-type,): return-type ,

where ‘name’ is the name of the given function, ‘parameter’ is the name of the

function argument, ‘parameter-type’ is the name of the type of that argument,

and ‘return-type’ is the name of the type of the function result. Both the names

of arguments, the names of their types and the name of the result type are optional

(their appearance depends on how detailed the function is modeled). The name of

the argument type and the name of the result type can be any Haskell type expres-

sions. The only difference is for parameterized types, where the names of the type

variables should be enclosed in angle brackets (< >), similar to the UML notation

for parameterized classes (template classes) [14]. For example, ‘Stack a’ and

‘Either a b’ should be written as ‘Stack<a>’ and ‘Either<a,b>’, respec-

tively. This is consistent to the way parameterized user-defined types are modeled

(see the description for the UserType stereotype below).

Value This stereotype should be used to show a zero-argument pure function and

it can be applied to an Attribute. The default UML syntax for an attribute is used:

name: type = value ,

where ‘name’ is the name of the given value, ‘type’ is the name of the value type

and ‘value’ is the given value. Only the name of the value is obligatory. The

syntax rules for the name of the value type are the same like in the case of the

Function stereotype.

IOAction This stereotype is used on Operations to represent IO actions. Its use is

the same as of the Function stereotype. Zero-argument action should be also

shown as an operation with IOAction stereotype. The operations annotated with

the Function or IOAction stereotypes and the attributes with the Value stereotype

can be declared only in a class having the Module stereotype.

UserType User-defined types should be shown as Classes annotated with a User-

Type stereotype. Constructors of such a type can be then specified on an operation

list of a Class. For user-defined types that are parameterized with type variables

the UserType stereotype should be applied to parameterized classes, where the

number and the names of the parameters correspond to the number and the names

of the type variables.

Constructor This stereotype can be applied to an Operation. Operations annotated

with this stereotype represent constructors of a given user data type. The syntax

for such an operation is the same as in the case of the Function stereotype. The

only difference is that the arguments of the constructor do not have names. The

operations annotated with the Constructor stereotype can be only declared in a

class bearing the UserType stereotype.

Contents Functions defined in a module are specified on an operation list of a

class representing this module. To show that a given user type is defined in a giv-

en module one should use a UML Dependency relationship with a Contents ste-

reotype applied to it. This relationship should connect a class representing the

module to a class representing the user type. The given user type may be con-

tained in only one module.

Import This stereotype is to be applied to a Dependency relationship connecting

two classes representing modules where one of these modules imports the other.

This relationship should go from the class representing the importing module to

the class representing the imported module. The information whether a module

exports a function or data type defined in it should be shown as UML visibility

markers [14] placed before the name of a function or data type. The marker ‘+’

(public) denotes that the module element is exported and ‘-’ (private) that it is not

exported.

In Fig. 5 a model of a sample Haskell program from Fig. 1 is presented showing

the application of some of the stereotypes.

«UserType»
+ Stack

«Constructor»

+ Empty()
+ MkStack(:a, :Stack<a>)

a
«Module»

AStack

«Function»

+ push(x: a, s: Stack<a>): Stack<a>
+ size(s: Stack<a>): Int
+ pop(s: Stack<a>): (a, Stack<a>)
+ top(s: Stack<a>): a

«Contents»

Fig. 5 A sample model

4.2 Constraints

A stereotyped UML element may have additional constraints beyond those of the

base element [14]. Some of the additional constraints have been stated above, e.g.

that the user type may be contained in only one module, and some other are omit-

ted here. All such constraints come directly from the Haskell metamodel, what is

an essential advantage of creating the metamodel of the language for which the

UML profile is being defined.

5 Related Work

It seems that, so far, no work has been done on tailoring UML to model functional

programs. In [17], rather than tailor UML to model Haskell programs, the transla-

tion from standard UML elements to Haskell is proposed. As the author himself

admits, it results in some awkwardness in converting from the object-oriented to

the functional paradigm and the Haskell code produced this way looks much more

imperative than functional.

In general, not much work seems to have been done on modeling functional

programs. In [15] a graphical modeling language is proposed, however, it is not

related to UML in any way. Some visual functional programming languages [2,

12] have been also defined, but they focus on graphical representation of algo-

rithms rather than abstract models of programs.

6 Conclusion and Further Work

The main idea behind this chapter is filling the gap in the area of graphical nota-

tions for modeling functional programs. From the practical point of view, it seems

attractive to use a widely known UML notation with its extensive tool support,

rather than define a new notation from scratch. For that reason, the work on defin-

ing a metamodel and a UML profile for the Haskell language has been undertaken.

Some of the initial results of this work have been presented in this chapter. Further

work will focus on broadening the scope of Haskell included in the profile, as well

as on providing metamodel and profile implementations for popular UML model-

ing tools.

References

[1] Backus J (1978) Can Programming Be Liberated from the von Neumann Style?A Functional

Style and Its Algebra of Programs. Communications of the ACM 21(8):613–641

[2] Cardelli L (1983) Two-dimensional syntax for functional languages. Proceedings of ECICS

82:139–151

[3] Harrop J (2008) F# for Scientists. Wiley-Interscience

[4] Hudak P (1989) Conception, Evolution, and Application of Functional Programming Lan-

guages. ACM Computing Surveys 21(3):359–411

[5] Hutton G (2007) Programming in Haskell. Cambridge University Press

[6] Jones SP (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge Uni-

versity Press

[7] Warmer J, Kleppe A (1998) The Object Constraint Language: Precise Modeling With UML.

Addison-Wesley

[8] Milner R, Tofte M, Harper R, MacQueen D (1997) The Definition of Standard ML (Revised).

MIT Press

[9] Object Management Group (2003) MDA Guide Version 1.0.1 (omg/03-06-01)

[10] Object Management Group (2004) Metamodel and UML Profile for Java and EJB Specifi-

cation (formal/04-02-02)

[11] Object Management Group (2010) UML 2.3 Superstructure Specification (formal/2010-05-

05)

[12] Reekie HJ (1995) Realtime Signal Processing: Dataflow, Visual, and Functional Program-

ming. PhD thesis, University of Technology at Sydney

[13] Remy D (2002) Using, Understanding, and Unraveling the OCaml Language. In: Barthe G

(ed) Applied Semantics, Advanced Lectures. LNCS 2395:413–537, Springer-Verlag

[14] Rumbaugh J, Jacobson I, Booch G (2004) The Unified Modeling Language Reference

Manual, Second Edition. Addison-Wesley

[15] Russell D (2001) FAD: A Functional Analysis and Design Methodology. PhD thesis, Uni-

versity of Kent at Canterbury

[16] Turner DA (1985) Miranda: A non-strict functional language with polymorphic types. In:

Functional Programming Languages and Computer Architecture. LNCS 201:1–16, Sprin-

ger-Verlag

[17] Wakeling D (2001) A Design Methodology for Functional Programs. In: Taha W (ed)

Semantics, Applications, and Implementation of Program Generation. LNCS 2196:146–

161, Springer-Verlag

