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Abstract.  Functional programming languages are ideally suited for developing 

dependable software, but not much work have been done on modeling functional 

programs. Although UML is mainly based on concepts which are native to imper-

ative object-oriented programming languages, this chapter shows how – through 

the profile mechanism – it can be used to model software that is to be imple-

mented in a functional programming language. In this chapter Haskell was chosen 

as one of the most popular modern, pure functional languages. First, a partial 

metamodel of Haskell is defined and then the corresponding UML profile is pre-

sented. 

1  Introduction 

Unified Modeling Language (UML) [11, 14] is intended to be a universal general-

purpose modeling language for software systems. UML contains an extensibility 

capability for customizing models for particular domains or platforms, where 

UML extensions are organized into profiles. Basic UML – without profiles – re-

flects the imperative and object-oriented paradigm. A system is modeled as a 

collection of discrete objects that interact to perform given work. Using UML to 

model software that is to be implemented in languages supporting other program-

ming paradigms may seem to be odd at first, however, creating a dedicated UML 

profile may give a natural and convenient modeling notation, which at the same 

time benefits from the existing tool support for UML. This chapter is an attempt at 

defining the UML profile for a programming language built on a functional pro-

gramming paradigm. 

2  Functional Programming 

Functional programming treats computations as the evaluation of functions (or 

expressions), avoiding using state and mutable data [1, 4]. Thus, functions are 

stated in a declarative way, where in contrast to the imperative programming, a 



function definition shows what is to be done, rather than how it is to be done in 

terms of state changes. Functions are treated here as any other values, that is, they 

can be passed as arguments to other functions or be returned as a result of a func-

tion. Some functional programming languages, e.g. ML variants like Standard ML 

[8], Objective Caml [13] or F# [3], allow to program in both functional and im-

perative (including object-oriented) style, while the others, e.g. Miranda [16] or 

Haskell [5, 6], lack imperative programming constructs and remain purely func-

tional. 

As far as UML modeling is concerned, one can distinguish two types of mod-

els: dynamic and static. The dynamic model is used to express the behaviour of a 

system over time, whereas the static model shows those aspects that do not change 

over time. The dynamism is intuitively understood here as changes in a system 

state (which is constituted of the states of its objects), however, in pure functional 

programs there is no concept of state or order of execution. It is left up to the run-

time system how to compute the values given the relations to be satisfied between 

them. In that sense, in a functional programming language (or at least in its pure 

subset) only the static structure of program is explicitly specified, while the dy-

namic aspects remain hidden. 

2.1  Haskell 

Haskell is nowadays probably the most popular purely functional programming 

language. It has been designed as a vehicle for functional programming teaching, 

research, and applications and efforts in improving it are still ongoing. In this 

chapter the current Haskell specification [6] is used. 

In Fig. 1 a sample program written in Haskell is presented. This is a simplified 

example taken from [6]. The program is organized into one module called 

‘AStack’, which contains a user-defined algebraic data type ‘Stack’ (parameter-

ized with a type variable ‘a’) and functions ‘push’, ‘size’, ‘pop’, and ‘top’ for 

typical stack operations. The type variable ‘a’ can be replaced by concrete types 

(such as ‘Int’, ‘Float’, and so on) when a given value of type ‘Stack’ is de-

clared or the functions are applied. This serves as a parametric polymorphism 

mechanism.1 Both the data type and the functions are explicitly (they appear on an 

export list) exported by the module and are available to anyone importing the 

module. This sample program will be used later to explain and present the applica-

tion of a proposed UML profile, however, the basic knowledge of functional pro-

gramming is assumed. 

 

 

 

                                                           
1 The other kind of polymorphism called overloading can be defined in Haskell using 

type classes.  



module AStack (Stack, push, pop, top, size) where 

 

data Stack a = Empty | MkStack a (Stack a) 

 

push :: a -> Stack a -> Stack a 

push x s = MkStack x s 

 

size :: Stack a -> Int 

size s = length (stkToLst s) where 

            stkToLst  Empty         = [] 

            stkToLst (MkStack x s)  = x : stkToLst s 

 

pop :: Stack a -> (a, Stack a) 

pop (MkStack x s) = (x, s) 

 

top :: Stack a -> a 

top (MkStack x s) = x 

Fig. 1 A sample Haskell program 

3  Metamodel 

Although Haskell contains some unique features, this chapter will stick to a subset 

which is common to several other functional programming languages. In particu-

lar, the system of type classes [6] will be omitted. It not only simplifies further 

consideration but also allows to easily adapt the proposed profile to other func-

tional languages.  

The strategy of defining the UML profile for Haskell is here similar to the one 

used in UML profile specifications provided by Object Management Group 

(OMG), e.g. [10]. First, the Haskell metamodel (a model of Haskell expressed in 

UML) is defined. The goal of defining this metamodel is to set the scope of Has-

kell language which will be included in the profile and to set the level of abstrac-

tion for the profile elements. The metamodel presented below is intended to pro-

vide sufficient details to create Haskell design and implementation models.2 The 

assumed level of abstraction allows to partially generate Haskell code (that will 

need to be further completed by hand), but does not allow for full code generation 

from models. As stated before, it is not a complete metamodel of the Haskell lan-

guage yet it describes a consistent and useful subset of the language. The UML 

profile corresponding to this metamodel will be then defined in Sect. 4 Profile. 

                                                           
2 They correspond to Platform Specific Models (PSM) in Model Driven Architecture 

(MDA) approach [9]. 



3.1  Haskell Metamodel 

The Haskell metamodel is presented as three class diagrams completed with a 

description of the important features of the diagram and additional constraints 

expressed in Object Constraint Language (OCL) [7]. 

 

Module contents (Fig. 2) Haskell programs are organized into modules, which 

play a similar role to packages in Java or namespaces in C++ language. Two kinds 

of basic program elements defined in such a module are functions and user data 

types, but it is not obligatory to define them in a certain module, i.e. the ‘module 

Name where’ header at the beginning of a file (see Fig. 1) can be omitted.3 Before 

the ‘where’ keyword a parenthesized list of functions, types and constructors 

exported by a module can be added. The attribute ‘isExported’ in the metamo-

del indicates whether the element appears on the export list of a module. Modules 

can also import other modules (their exported elements) by adding the ‘import’ 

declarations at the beginning of the module.4 In fact, the module system in Haskell 

allows also for importing chosen elements of modules and hiding others. Module 

imports may not form a cycle. Note that no additional constraints in the metamo-

del are needed here because this fact results from the semantics of the aggregation 

relationship in UML, which is transitive and antisymmetric [11]. 

Haskell functions take zero or more arguments and must always return a result. 

A zero-argument function is called a value. Haskell is a statically and strongly 

typed language, but the user does not have to explicitly specify the types of func-

tions as they can be inferred by the system. Functions in Haskell are pure, i.e. they 

do not have any side-effects. To examine and modify the current state of the 

world, e.g. read and write files, read from a keyboard or print something on a 

screen, one has to use IO (input/output) actions. Every IO action returns a value, 

but in the type system the returned value is tagged with ‘IO’ type, distinguishing 

actions from functions. For example, the type of the function ‘getChar’ is: 

 

getChar :: IO Char, 

 

what means that this function is actually an action and when it is invoked, the 

result will have type ‘Char’. IO actions can be passed to functions. The attribute 

‘isIO’ in the metamodel indicates whether the type is an ‘IO’ type. 

User data types are defined using ‘data’ keyword (see Fig. 1). They are alge-

braic types, i.e. any value of such a type is created using a constructor, which is 

just a function, expecting some arguments (of other types) and delivering a value 

of the given user type. A constructor may also not take any arguments (may be a 

value) and an algebraic type may have many constructors (these are separated with 

                                                           
3 In this case, the header is assumed to be ‘module Main (main) where’. 
4 In fact, the module system in Haskell allows also for importing chosen elements of 

modules and hiding others. 



the ‘|’ character). A constructor cannot be an action and its result type is the user 

type whose values it constructs. This constraint can be expressed in OCL as be-

low: 

 

Constructor 

resultType = userType and resultType.isIO = False. 
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Fig. 2 Module contents 

Types (Fig. 3) The most frequently used basic types in Haskell are: ‘Bool’, 

‘Char’, ‘String’, ‘Int’, ‘Integer’ (infinite-precision integers), ‘Float’, ‘Dou-

ble’, and the unit type ‘()’ (which is used when an IO action returns nothing). 

More complex types, like e.g. list types, are constructed from other types and are 

shown in Fig. 4. Polymorphic types are described in Haskell using type variables. 

For example, the type variable ‘a’ in Fig. 1 represents any type. A user-defined 

type (an algebraic type) can be parameterized with one or more type variables and 

thus become a polymorphic one.5 

 
 

 

 

                                                           
5 In fact, Haskell's type system is more sophisticated, but the simplified description pre-

sented here seems adequate to its purpose. 
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Fig. 3 Types 

Constructed types (Fig. 4) Haskell offers also types which are constructed from 

other types (which themselves can be basic or constructed). These constructed 

types are: 

 list types (e.g. ‘[Char]’ is a list of characters), 

 tuple types (e.g. ‘(Int, Float)’ is an ordered pair, where the first element is 

an integer and the second is a real), and 

 function types (e.g. ‘Char -> Bool’ is a function which takes a character and 

returns a boolean result). 
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Fig. 4 Constructed types 



Lists can hold an arbitrary number of elements, but these elements must all be of 

the same type. This contrasts with tuples, which hold only a fixed number of ele-

ments, but can be heterogeneous. 

4  Profile 

UML can be tailored to specific domains or programming environments by defin-

ing its dialect as a profile [14]. A UML profile identifies a subset of UML and 

defines stereotypes and constraints that can be applied to the selected UML subset. 

This section presents a UML profile for Haskell, but the profile presented can be 

also adopted to other functional languages. The profile consists of eight stereo-

types which are a direct mapping of the concepts defined in the Haskell meta-

model presented in the previous section. Table 1 depicts the relation between the 

stereotypes from the profile and the Haskell matamodel, as well as UML base 

elements for the stereotypes (i.e. elements to which the stereotypes can be ap-

plied). 

Table 1 Mapping metamodel concepts to profile elements 

Metamodel element Stereotype UML base element 

Module «Module» Class 

Function «Function» Operation 

Function «Value» Attribute 

Function «IOAction» Operation 

UserType «UserType» Class or Parameterized class 

Constructor «Constructor» Operation 

Module.entities «Contents» Dependency 

Module.importedModules «Import» Dependency 

4.1  Stereotypes 

In the following, the stereotypes in the profile and their use are briefly described. 

 
Module This stereotype can be applied to a Class. Classes annotated with this 

stereotype represent Haskell modules. Functions defined in a given module can be 

then specified on an operation list of a Class or on an attribute list if a function is a 

value. 

 

Function This stereotype is used on Operations to represent pure functions defined 

in a Haskell program. The default UML syntax for an operation is used: 



 

name (parameter: parameter-type, ): return-type , 

 

where ‘name’ is the name of the given function, ‘parameter’ is the name of the 

function argument, ‘parameter-type’ is the name of the type of that argument, 

and ‘return-type’ is the name of the type of the function result. Both the names 

of arguments, the names of their types and the name of the result type are optional 

(their appearance depends on how detailed the function is modeled). The name of 

the argument type and the name of the result type can be any Haskell type expres-

sions. The only difference is for parameterized types, where the names of the type 

variables should be enclosed in angle brackets (< >), similar to the UML notation 

for parameterized classes (template classes) [14]. For example, ‘Stack a’ and 

‘Either a b’ should be written as ‘Stack<a>’ and ‘Either<a,b>’, respec-

tively. This is consistent to the way parameterized user-defined types are modeled 

(see the description for the UserType stereotype below). 

  

Value This stereotype should be used to show a zero-argument pure function and 

it can be applied to an Attribute. The default UML syntax for an attribute is used: 

 

name: type = value , 

 

where ‘name’ is the name of the given value, ‘type’ is the name of the value type 

and ‘value’ is the given value. Only the name of the value is obligatory. The 

syntax rules for the name of the value type are the same like in the case of the 

Function stereotype. 

 

IOAction This stereotype is used on Operations to represent IO actions. Its use is 

the same as of the Function stereotype. Zero-argument action should be also 

shown as an operation with IOAction stereotype. The operations annotated with 

the Function or IOAction stereotypes and the attributes with the Value stereotype 

can be declared only in a class having the Module stereotype. 

 

UserType User-defined types should be shown as Classes annotated with a User-

Type stereotype. Constructors of such a type can be then specified on an operation 

list of a Class. For user-defined types that are parameterized with type variables 

the UserType stereotype should be applied to parameterized classes, where the 

number and the names of the parameters correspond to the number and the names 

of the type variables. 

 

Constructor This stereotype can be applied to an Operation. Operations annotated 

with this stereotype represent constructors of a given user data type. The syntax 

for such an operation is the same as in the case of the Function stereotype. The 

only difference is that the arguments of the constructor do not have names. The 

operations annotated with the Constructor stereotype can be only declared in a 

class bearing the UserType stereotype. 



 

Contents Functions defined in a module are specified on an operation list of a 

class representing this module. To show that a given user type is defined in a giv-

en module one should use a UML Dependency relationship with a Contents ste-

reotype applied to it. This relationship should connect a class representing the 

module to a class representing the user type. The given user type may be con-

tained in only one module. 

 

Import This stereotype is to be applied to a Dependency relationship connecting 

two classes representing modules where one of these modules imports the other. 

This relationship should go from the class representing the importing module to 

the class representing the imported module. The information whether a module 

exports a function or data type defined in it should be shown as UML visibility 

markers [14] placed before the name of a function or data type. The marker ‘+’ 

(public) denotes that the module element is exported and ‘-’ (private) that it is not 

exported. 

 

In Fig. 5 a model of a sample Haskell program from Fig. 1 is presented showing 

the application of some of the stereotypes. 

 

 

«UserType»
+ Stack

«Constructor»

+ Empty()
+ MkStack(:a, :Stack<a>)

a
«Module»

AStack

«Function»

+ push(x: a, s: Stack<a>): Stack<a>
+ size(s: Stack<a>): Int
+ pop(s: Stack<a>): (a, Stack<a>)
+ top(s: Stack<a>): a

«Contents»

 

Fig. 5 A sample model 

4.2  Constraints 

A stereotyped UML element may have additional constraints beyond those of the 

base element [14]. Some of the additional constraints have been stated above, e.g. 

that the user type may be contained in only one module, and some other are omit-

ted here. All such constraints come directly from the Haskell metamodel, what is 

an essential advantage of creating the metamodel of the language for which the 

UML profile is being defined. 

 



5  Related Work 

It seems that, so far, no work has been done on tailoring UML to model functional 

programs. In [17], rather than tailor UML to model Haskell programs, the transla-

tion from standard UML elements to Haskell is proposed. As the author himself 

admits, it results in some awkwardness in converting from the object-oriented to 

the functional paradigm and the Haskell code produced this way looks much more 

imperative than functional. 

In general, not much work seems to have been done on modeling functional 

programs. In [15] a graphical modeling language is proposed, however, it is not 

related to UML in any way. Some visual functional programming languages [2, 

12] have been also defined, but they focus on graphical representation of algo-

rithms rather than abstract models of programs. 

6  Conclusion and Further Work 

The main idea behind this chapter is filling the gap in the area of graphical nota-

tions for modeling functional programs. From the practical point of view, it seems 

attractive to use a widely known UML notation with its extensive tool support, 

rather than define a new notation from scratch. For that reason, the work on defin-

ing a metamodel and a UML profile for the Haskell language has been undertaken. 

Some of the initial results of this work have been presented in this chapter. Further 

work will focus on broadening the scope of Haskell included in the profile, as well 

as on providing metamodel and profile implementations for popular UML model-

ing tools. 
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