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1 Introduction

1.1 Problem Definition

Music recognition is the mathematical analysis of an audio signal generated by
musical instruments and its conversion into musical notation. The input data for the
system of music recognition is a digitally sampled signal representing the analogue
sound waveform generated by musical instruments. A typical example of such data
is the contents of a CD-Audio disc. From the user’s point of view, the operation of
an automated music recognition system is as follows: in response to digital sound
data at the input, the system returns a musical score at the output.

The input sound data can be received as a piece of music performed by only
one musician, playing one instrument (e.g. a piano sonata, a violin sonata etc.) or as
multi-instrument music, i.e. as a piece of music performed by many musicians (e.g. a
string quartet or chamber orchestra). Multi-instrument music can be seen as a union
of single-instrument music and in this case the recognition system could be based
on a system recognizing music performed on only one instrument. Such a solution
would require the separation of input data into the parts played on single instru-
ments. The implementation of this idea is, however, a long way off. The problem of
single-instrument music recognition is still a challenge without, as yet, a satisfactory
solution. The more complex the piece of multi-instrument music is, the more diffi-
cult it is to recognize solo instrument signals because they interfere with each other,



which moves the problem of music recognition to a more complex class1. On the
other hand, conversion of an acoustic signal into digital format distorts the music
data, which raises another issues to be dealt with. These arguments allow for the
conclusion that multi-instrument music recognition is still over the horizon of cur-
rent technological development. Therefore, in this paper the discussion is restricted
to the problem of single-instrument music only.

1.2 Music Recognition Stages

In the process of generating a musical score, using an input audio signal, there are
two unique stages (see Fig. 1):

• acoustical recognition, and
• music analysis.

The aim of acoustical recognition is to determine the number of simultaneously
sounding notes, to establish their pitches and time parameters, i.e. the start time
and duration. The result of this stage gives sufficient information to generate a
proper sequence of MIDI (Musical Instrument Digital Interface) commands. The
MIDI standard is primarily used to control digital musical instruments [9]. The
MIDI commands only contain the information about the occurrence of a certain
event at a given moment (e.g. the Note On and Note Off events define the starting
and ending time of a note) and they no longer contain any additional information
about the real sound waveform.

Music analysis is engaged, on the contrary, in determining the information re-
quired to generate musical score from data received at the acoustical recognition
stage (e.g. in the form of a MIDI file). It includes the recognition of tempo, tonality,
note values, dynamics and other musical characteristics which can be reflected in
printed music.

1.3 Acoustical Recognition

The music recognition stages above can be implemented completely independently
because both solve different technological problems. This paper deals with acous-
tical recognition and, more precisely, the problem of simultaneously sounding note
recognition. Regardless of the way in which the acoustical recognition stage is im-
plemented, there is always the issue of how to recognize the number and determine
the pitches of simultaneously sounding notes.

Let us consider the simplest schema of acoustical recognition. The input se-
quence of samples is divided into short time periods and then the notes employed

1 The problem of multi-instrument music recognition is similar to speech recogni-
tion, where a number of people speak simultaneously.

Fig. 1. Music recognition stages



in consecutive periods are recognized. Then, notes with the same pitch, recognized
in successive periods of time, are glued together. Below, we present a more formal
description of this solution:
The input samples of sound can be observed by moving them over a window with a
certain width. Let us assume that Z denotes the set of notes which are currently being
played. The operation of inserting a note into the set Z is accompanied by generating
a MIDI event indicating the starting time of a note as the moment corresponding
to a current position of the window. By analogy, the operation of removing a note
from the set Z is accompanied by generating an event indicating the ending time of
it. With the initially empty set Z, the following steps are performed:

1. Place the window at the beginning of the sequence of samples.
2. Define the set Z’ of notes occurring in the fragment visible in the window.
3. For all the notes in set Z perform:
• If the note n currently being played is not among the identified notes (n ∈

Z and n /∈ Z’) then remove it from set Z.
4. For all the notes in set Z’ perform:
• If the recognized note n’ is not among the notes currently being played (n’
∈ Z’ and n’ /∈ Z) than insert it into set Z.

5. If the analyzed fragment was the last one then remove the remaining notes from
set Z and finish. If not, shift the window to the next position (move at a distance
equal to the window’s width) and repeat the above steps, starting at 2.

The solution to step 2 in the above algorithm is the main objective of this paper.
The above algorithm requires further explanation. We should take into account

that the width of the window, which we move over the input data, determines the
time resolution for the output MIDI information. As the window is narrowed we can
identify start times and the duration of notes more accurately. In the case of most
musical compositions the sufficient size is a width equal to 50 ms. Obviously, the
narrower the window we use, the better resolution we get but the correct recognition
of notes becomes more difficult.

2 Musical Instrument Sound

2.1 Introduction

Sound generated by musical instruments is an acoustic wave. Such a wave has a
complex structure that does not have a precise mathematical model. In this paper
we discuss selected aspects of sound generated by musical instruments. Mathematical
modelling estimates aspects explored in the paper and provides tools for the analysis
of selected features of the sound of musical instruments.

2.2 Tone and Frequency

The sound of musical instruments is an acoustic wave at a certain frequency or
rather a series of such waves with differing frequencies interfering with each other.
Analyzing a single sound generated by one instrument, e.g. the sound generated by
a piano string in reaction to hitting one key of the keyboard, a sinusoidal wave of



fundamental frequency f is generated (also called the first harmonic) and its higher
harmonic frequencies, i.e. sinusoidal waves of frequencies equal to f , 2f , 3f , 4f ,
etc. can be detected. All these waves are generated by a vibrating string since not
only the whole string vibrates, but also its parts of lengths equal to 1/2, 1/3, 1/4,
etc. do. So then we can interpret sound generated by a string as a collection of
its harmonic partials. On the other hand, all harmonic partials aggregated create a
periodic wave with a complex shape and frequency f . Thus, the frequency of the first
harmonic is taken as the frequency of the sound. The set of values of the amplitudes
of the harmonic partials is called the harmonic spectrum of sound. The spectrum
decides about timbre and colour of sound and differentiates between the same tones
generated by different instruments, e.g. violin, flute, piano, etc. For instance, the
spectrum of the clarinet sound initially has odd harmonic partials much stronger
than others [1] (see Fig. 2).

The spectrum of a given instrument may change depending on the fundamental
frequency of a tone. It may even happen that the presence of a given harmonic
partial depends on the fundamental frequency. However, changes are usually rather
small and do not affect music recognition systems, in most cases.

2.3 Musical Scale

Frequency as a physical parameter of a sound corresponds to ear impression. We can
experience lower and higher tones. Some tones are mapped to the musical scale. For
instance, 440 hertz frequency corresponds to the note A4 – the symbol A4 denotes
tone A in octave number 4. The 880 hertz frequency corresponds to the note A5, i.e.
to note A in the octave number 5. Thus we have the following sequence of tones A:
A1 – 55 hertz, A2 – 110 hertz, A3 – 220 hertz, A4 – 440 hertz, A5 – 880 hertz, A6

– 1760 hertz, A7 – 3520 hertz, A8 – 7040 hertz, A9 – 14080 hertz. All these tones
are denoted by letter A since ear experience is very similar for all of them. Note
that higher A tones are harmonic for lower A tones. The frequencies between two
neighboring tones A are split into 12 intervals called halftones. Notes corresponding
to consecutive halftones are: A, A], B, C, C], D, D], E, F, F], G, G]. The proportion
of the frequencies corresponding to two consecutive halftones is equal to 12

√
2 : 1 (see

Table 1).

Amplitude

Frequency
0 5f 10f 15f 20f

Fig. 2. Clarinet sound spectrum (f = 233.08 Hz)



Table 1. Notes and their frequencies (Hz) [1]

C2 65.41

D[
2/C]2 69.30

D2 73.42

E[2/D]
2 77.78

E2 82.41
F2 87.31

G[
2/F]2 92.50

G2 98.00

A[
2/G]

2 103.83
A2 110.00

B[2/A]
2 116.54

B2 123.47

C3 130.81

D[
3/C]3 138.59

D3 146.83

E[3/D]
3 155.56

E3 164.81
F3 174.61

G[
3/F]3 185.00

G3 196.00

A[
3/G]

3 207.65
A3 220.00

B[3/A]
3 233.08

B3 246.94

C4 261.63

D[
4/C]4 277.18

D4 293.66

E[4/D]
4 311.13

E4 329.63
F4 349.23

G[
4/F]4 369.99

G4 392.00

A[
4/G]

4 415.30
A4 440.00

B[4/A]
4 466.16

B4 493.88

C5 523.25

D[
5/C]5 554.37

D5 587.33

E[5/D]
5 622.25

E5 659.26
F5 698.46

G[
5/F]5 739.99

G5 783.99

A[
5/G]

5 830.61
A5 880.00

B[5/A]
5 932.33

B5 987.77

2.4 Monophony vs. Polyphony

Monophony is music having only one voice line. Roughly speaking this means that in
any time at most one note can be played. By contrast, polyphony is a kind of music
with many voice lines, which means that many notes may be played at a time.
Recognition of monophonic music is much easier than recognition of polyphonic
music.

In the case of monophonic music, the input sound signal can contain only a single
harmonic structure (see Sect. 2.2). Excluding usually small inharmonic partials and
additional noise, such a sound signal may be approximately described by

x(t) =
∑
k

Ak(t) sin(kωt+ φk), (1)

where x(t) is the sound signal in the time domain; ω is the fundamental frequency
of the current note; Ak(t) is the amplitude of the kth harmonic at time t; φk is the
phase of the kth harmonic.

In this case acoustical recognition amounts to detecting the fundamental fre-
quency, finding a note corresponding to it (having in mind that the detected fun-
damental frequency usually differs slightly from that defined in Table 1) and estab-
lishing note duration.

Recognition of polyphonic music poses a more complicated problem. Since many
notes may sound at the same time, the analysis of the spectrum must consider
many harmonic structures corresponding to different simultaneous notes. Harmonic
partials of different notes may superimpose on each other, so then the analysis of
such data is much more difficult than in the case of monophony.

3 Mathematical Apparatus

3.1 Frequency Analysis

One of the most popular tools for determining the harmonic contents of a signal
is the Fourier transform. For analyzing the signal by virtue of its N input samples



(sequence x(n)), a so-called discrete Fourier transform (DFT) is used and is defined
as

S(m) =

N−1∑
n=0

x(n)e−i2πnm/N ,m = 0, 1, 2, . . . , N − 1. (2)

For N input samples in the time domain, DFT establishes the harmonic contents of
the input signal in N equally spaced points of the frequency axis. For a certain m,
the value S(m) (the value of the DFT) is the value of a spectrum at the frequency

fanalysis(m) =
mfs
N

, (3)

where fs denotes the frequency used to sample the input signal. For example, in the
case of data coming from CD-Audio this frequency is equal to 44.1 kHz.

When we examine signals in the frequency domain we are usually interested in
the values of their power in comparison to the power of another signal. If we show
the instantaneous power of signals, represented by successive values of the DFT,
then the easiest way is to compare them with the partial of the highest power

Spower(m) = 20 log10

(
|S(m)|
|S(mmax)|

)
dB. (4)

where mmax is the index of the DFT value with the highest power. It is the so-called
normalized decibel scale. Obviously the highest value on such a normalized scale is
0 dB.

3.2 Spectrum Analysis

As a result of the frequency analysis we obtain information about the harmonic
contents of the input signal. By virtue of this information we would like to find out
which note, or simultaneously sounding notes, correspond to the received harmonic
structure. This problem appears to be very interesting especially if we do not know
the number of simultaneously sounding notes and we do not know anything about the
instrument from which the input signal comes. Tanguiane [7] reduced this problem to
the search of the appropriate deconvolution of the chord spectrum. Only an outline
of this approach will be presented here.

In practice spectrum analysis is restricted to a certain frequency range. The
lower limit is defined by the fundamental frequency of the lowest note which is to
be recognized and the upper limit is a consequence of the frequency used to sample
the input signal2.

Let us divide the frequency range which we analyze into bands wherein the
signal power is represented by one value. By discrete spectrum we understand the
expression of the form

S = S(x) =

N−1∑
n=0

Snδ(x− n) =

N−1∑
n=0

Snδn, (5)

2 The spectrum of a discrete signal is a periodic function with the period equal to
the sampling rate.



where N is the total number of frequency bands; n is the index of a frequency band;
Sn is a value interpreted as the signal power in the nth frequency band; δn is the
Dirac delta function, i.e. the unit impulse at the nth frequency. For the given discrete
spectrum S we can introduce the conception of Boolean spectrum (associated with
S) defined by

s =
∨
n

s(n)δn, s(n) =

{
0 if Sn = 0,
1 if Sn 6= 0.

(6)

Each successive note on the musical scale has the frequency 12
√

2 times larger
than the preceding one (see Sect. 2.3). It means that equal distances of notes’ pitches
(e.g. the interval equal to one octave) do not correspond to equal distances on the
frequency axis. For example, the musical distances between the notes A3–A4 and A4–
A5 are equal to an octave but, in terms of their fundamental frequencies, these
distances are respectively 220 and 440 Hz. The corresponding distances on both
scales may be achieved by rescaling the frequency axis with the log2 function. The
index of the frequency band wherein falls a frequency f is defined by the formula

n =

⌊
C log2

f

f0
+ 0,5

⌋
, (7)

where C is the constant, equal to the number of frequency bands per octave; f0 is
the middle of the frequency band with the index 0.

For log2-scaled frequency axis a Boolean spectrum s of a sound of several si-
multaneously sounding notes can be treated as generated by multiple translations
of a Boolean spectrum of one note. The number of notes and their musical interval
(precisely, the number of frequency bands) in relation to a note with the spectrum
t is defined by the interval distribution i. Thus the spectrum s has the form of the
following

s =
∨
n

s(n)δn = t ∗ i, (8)

where both t and i are Boolean spectra.
Generally, each Boolean spectrum s can be represented as

s = t ∗ i+ ε− λ. (9)

In [7] Tanguiane shows how to find this representation for any Boolean spectrum s
minimizing, at the same time, the components ε and λ. This issue, however, is too
wide to be presented here in detail.

4 Chord Recognition Process

We assume that the input data for the recognition process is a sequence of signal
samples representing a sound of one or several notes played on any musical instru-
ment. The identification of notes occurring in the signal will be realized in several
stages (see Fig. 3):



Reading samples from file

Computation of DFT spectrum

Computation of power spectrum

Conversion into discrete spectrum

Conversion into Boolean spectrum

Finding spectrum deconvolution

Fig. 3. Chord recognition stages

1. The first step of the recognition process is the frequency analysis. For computing
the DFT spectrum of the input signal we use the fast Fourier transform (FFT)
algorithm [3, 4, 5]. The computation of the N -point DFT directly from the
definition (see Eq. 2) requires O(N) complex multiplications whereas the usage
of the FFT algorithm reduces the complexity of computation to O(N log2N).
The only disadvantage of the FFT algorithm in comparison with the classical
DFT algorithm is the requirement that the number of input samples must be
the whole power two.

2. For the obtained DFT spectrum we compute the corresponding power spectrum
and represent it using a normalized decibel scale (see Eq. 4).

3. The next step is to convert the power spectrum into the form of a discrete
spectrum with the simultaneous rescaling of the frequency axis (see Eq. 7). Ac-
cording to the applied resolution of the discrete spectrum its bands correspond
to wider or shorter frequency ranges. As the value of the discrete spectrum in the
given band the highest value of the power spectrum belonging to this frequency
range is taken3. As the lowest note which is to be recognized we took the note
C2. Thus the middle of the band with the index 0 is equal to the fundamental
frequency of the note C2 (65.406 Hz).

4. The discrete spectrum4 of the signal power is then converted into a Boolean
spectrum. From the definition of the Boolean spectrum s associated with the
discrete spectrum S (see Eq. 6) we have

3 The other approach may be based on estimation of the signal power in the given
band.

4 Because of the applied normalized decibel scale this spectrum does not completely
satisfy the definition of the discrete spectrum where the value 0 denotes the lack of
signal partial in the given band. Conformability to the definition may be achieved
by an appropriate rescaling of the spectrum values.



s(n) =

{
0 if Sn = 0,
1 if Sn 6= 0.

In practice, the Fourier transform signals the presence of partials (which are
possibly weak but always with power above zero) in each frequency band. This
fact does not allow us to apply the above definition directly. The simplest way
of overcoming this inconvenience is to remove all spectrum partials which lie
below a certain threshold. After this operation, according to the definition of
Boolean spectrum, we replace the remaining partials with unit values.

5. The last step is to find the deconvolution t∗i+ε−λ of the Boolean spectrum. The
interval distribution i, which we obtain as a result, is the answer to the question
about the number and pitches of notes employed in a chord. Determining the
notes’ pitches we interpret interval values in the spectrum i in relation to the
first partial of the spectrum t.

5 Examples of Recognition

Tables 2, 3 and 4 show the results of the recognition of three chords: (C4, E4, G4),
(C4, E4, G4, A]

4), (C4, E4, G4, A4, D4), played on the piano, organ and flute re-
spectively. The recording parameters were the same as in the case of CD-Audio, i.e.
16-bit samples were taken at 44,100 samples/s. The length of the input sequence
was equal to 2048 samples which corresponds to about 50 ms. Before the calculation
of the FFT (see step 1 in Sect. 4) the input samples were first centered and win-
dowed using the Hanning window [3, 4, 5]. The tables show the answer of our chord
recognition system only for those threshold values (see step 4 in Sect. 4) for which
the result of the recognition of one of the chords had changed. The misrecognized
notes are marked in bold.

The results shown allow us to make some vital observations. A simple prediction
to make was that the correctness of recognition significantly depends on the num-
ber of notes employed in a chord. As the number of simultaneously sounding notes

Table 2. Example of chord recognition (piano)

dB C4, E4, G4 C4, E4, G4, A]
4 C4, E4, G4, A4, D5

0 G4 G4 D5

-1 G4 G4 G4

-2 G4 G4 G4

-5 C4 G4, A4 G4, D5

-6 C4, C5 C4, C5 G4, D5

-7 C4, C5 E4, A4, E5 G4, D5

-8 E4, F4, E5 C4, F4, C5 E4, G4, D5

-9 correct C4, C]]]
4, C5 F]]]4, G4, D5, G5

-10 correct C4, F4, G]]]
4 C4, F]]]4, A4, G4, D5

-12 correct C4, F4, G]]]
4 E4, G4, C5

-13 correct correct E4, G4, C5

-14 C4, C]]]
4, C5 C4, E4, F]]]4, A]

4 E4, G4, C5



Table 3. Example of chord recognition (organ)

dB C4, E4, G4 C4, E4, G4, A]
4 C4, E4, G4, A4, D5

0 G4 G4 A5

-1 C4 C4 E4, G4, D5

-2 E4,E5 E4, E5 correct
-3 E4,F4,E5 C4, C5 C4, E4, D5

-4 E4,F4,E5 C4, C5 C4, A4, D5

-5 C4,C]]]
4,C5 C]]]

4, G4, A4 C4, A4, C5, D5

-6 correct C4, E4, G4 C4, E4, G4, A4

-8 correct correct C4, E4, G4, A4

-9 correct correct correct

-10 correct correct C]]]
4, E4, C]]]

5

-12 A]]]
3, C]]]

4, F]]]4 A]]]
3, D4, F4, G]]]

4 C]]]
4, E4, C]]]

5

-14 A]]]
3, D4, F4 C4, E4, F]]]4, A]

4 C4, C]]]
4, A4, C5, D5

Table 4. Example of chord recognition (flute)

dB C4, E4, G4 C4, E4, G4, A]
4 C4, E4, G4, A4, D5

0 G4 G4 D6

-1 G4 A]
4 D6

-3 G4 G4 D6

-4 G4 G4, G5 A5

-5 G4 G4, G5 C4

-6 E4, E5 G4, A4, G5 E4, E5

-7 E4, F4, E5 F4, G4, A]
4,E5 E4, E5

-8 E4, F4, E5 E4, G4 E4, E5

-10 E4, G4 E4, G4 C4, C]]]
4, C5

-11 E4, G4 E4, F4, B4 C4, A4, D5

-12 E4, G4 E4, F4, G]]]
4, E5 C4, A4, C5, D5

-13 E4, G4 E4, F4, G]]]
4, E5 C4, A4, C5, D5

is increased, it becomes more difficult to recognize them accurately. There are two
main reasons for this. Firstly, the increased number of strong harmonic partials in a
sound signal makes the problem of spectral leakage in FFT-based spectrum analysis
more noticeable [3, 4]. This problem could be reduced by calculating the FFT for
more samples of the signal, but as previously mentioned in Sect. 1.3, it would de-
crease the time resolution in the whole process of acoustical recognition. Secondly,
the increased number of harmonic partials in the signal causes an increase of the
complexity (number of partials) of the Boolean spectrum (see step 4 in Sect. 4).
Consequently, this reduces the effectiveness of the algorithm for finding the decon-
volution of the Boolean spectrum (see step 5 in Sect. 4). Briefly, with the increased
complexity of the Boolean spectrum it becomes increasingly likely that one or a
subset of its partials fit more than one note at the same time.



The analysis of the above results leads us to make another observation. The cor-
rectness of recognition depends not only on the number of simultaneously sounding
notes but also on the kind of instrument on which they were played. The origin for
this phenomena is, however, the same. Musical instruments differ in the number and
the relative amplitudes of the harmonic partials in their sound. This is particularly
apparent with the sound of the organ. Here the only harmonic partials which ap-
pear have a distance of one octave between them [6]. Thus, the complexity of its
spectrum is much smaller in comparison to other musical instruments researched,
which visibly makes recognition easier.

6 Conclusion

Analyzing the properties of the proposed solution to the problem of simultane-
ously sounding note identification we performed a number of tests taking account
of different initial conditions such as the kind of musical instrument, the number of
simultaneously sounding notes and the number of signal samples. The issue which
still requires a solution is an appropriate choice of the threshold value (or values)
used to generate the Boolean spectrum. As a result of analyzing the answers of the
recognition process for several threshold values, it is possible to accurately identify
the whole chord even if we did not get the correct answer for any of these values. In
view of this the results obtained, thus far, seem to be very promising, indeed.
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