
Warsaw University of Technology
The Faculty of Electronics and Information Technology

Institute of Control and Computation Engineering

Facebook user interests
exploration and recommendation
based on Facebook Social Graph

data analysis

Author:

Jakub Krzemień
student no. 214616

Supervisor:

Mariusz Kamola PhD

Warsaw, 2014



Streszczenie
Eksploracja i sugerowanie zainteresowań oparte o analizȩ danych z Facebook

Social Graph

Dynamiczny rozwój i rozpowszechnienie Internetu a także ogromna
popularyzacja serwisów spo lecznościowych sprawi ly, że ogromne ilości
informacji na temat użytkowników Internetu sa̧ dostȩpne na wycia̧gniȩcie
rȩki. Najpopularniejsze serwisy spo lecznościowe udostepniaja̧ wygodne
narzȩdzia dziȩki którym można wchodzić w interakcjȩ z użytkownikami
tych serwisów, a także uzyskiwać dostȩp do danych profilowych. Takie
informacje jeszcze kilka lat temu by ly niedostȩpne czy też nieosia̧galne.
W ostatnich czasach sytuacja ta uleg la zmianie co generuje nowe,
niezbadane jeszcze obszary zwia̧zane z analiza̧ i interpretacja̧ tego
typu danych. Również w zwiazku z rozwojem Internetu i ogromem
informacji w nim zawartych, sta lo siȩ poża̧dane by w jakís sposób
moderować czy selekcjonować treści dla użytkownika. Mechanizmy
serwuja̧ce reklamy w serwisach WWW staraja̧ sie prezentować treści,
które moga zainteresować danego użytkownika w oparciu o historiȩ
jego zapytań czy wcześniej przegla̧dane strony. Serwisy spo lecznościowe
jak np. Facebook filtruja̧ prezentowane dane, staraja̧c sie pokazywać
informacje jedynie od najbliższych czy najważniejszych znajomych.
Sklepy internetowe próbuja̧ sprzedać dodatkowe produkty dopasowuja̧c
je do poprzednich zakupów danego użytkownika. Wcześniej wspomni-
ane nowe, niezbadane jeszcze dane stanowia̧ ciekawa̧ alternatywȩ jako
podstawa dzia lania dla tego typu mechanizmów.

Celem niniejszej pracy jest analiza obecnie znanych i używanych
mechanizmów rekomendowania treści, a nastȩpnie próba stworzenia
nowego mechanizmu w oparciu o dane z sieci spo lecznościowej, w tym
wypadku Facebooka. Praca skupia sie na sugerowaniu muzyków i
zespo lów muzycznych w oparciu o zainteresowania użytkowników.

Ze wzglȩdu na subiektywna̧ naturȩ tego typu rozwia̧zania w ramach
pracy powsta ly także narzȩdzia maja̧ce na celu weryfikacjȩ otrzymy-
wanych wyników.

1



Abstract

Because of the dynamic evolution and propagation of the Internet
and the popularization of social networks, huge amounts of informa-
tion about the users of the Internet are easily accessible to anyone.
The most popular social networks provide efficient and easy to use
tools that allow to interact with their users, as well as access profile
data. This type of information just several years ago was not avail-
able or inaccessible. This change generates new, unexplored areas for
analysing and interpreting such data. Also because of the evolution
and popularization of the Internet and the vast amount of data stored,
it has become desirable to moderate and select the content that is be-
ing displayed to the user. Mechanisms presenting ads on websites try
to present content that can interest the user based on his browsing
history or previous queries. Social networks such as e.g. Facebook
filter the presented information and try to show only the data related
to the closest or most important friends of the user. E-commerce sites
try to sell additional goods by suggesting products based on previous
purchases made by the user. The aforementioned new, unexplored
data is an interesting alternative for the core of such systems.

The aim of this paper is to analyze the currently known and used
content suggestion mechanisms and then create a new one based on
data from a social network, in this case Facebook. In particular the
paper focuses on suggesting music bands and musicians based on user
interests.

Because of the subjective nature of such a solution, as a part of
this paper, verification tools have also been developed.

2



Contents

1 Introduction 5

2 Basic information 7
2.1 Introduction to the concept of a social network . . . . . . . . . 7
2.2 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Facebook Social Graph and Open Graph concepts . . . 8
2.2.2 Facebook Platform, Graph API and Facebook Query

Language (FQL) . . . . . . . . . . . . . . . . . . . . . 8

3 Currently used recommendation algorithms 10
3.1 Collaborative Filtering - introduction . . . . . . . . . . . . . . 11

3.1.1 Traditional Collaborative Filtering . . . . . . . . . . . 12
3.1.2 Cluster Models . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Search-based filtering . . . . . . . . . . . . . . . . . . . 13
3.1.4 Slope One algorithm . . . . . . . . . . . . . . . . . . . 14

3.2 Commercially used recommendation algorithms . . . . . . . . 15
3.2.1 Amazon - Item-To-Item Collaborative Filtering . . . . 15
3.2.2 Last.fm - Label Propagation Algorithm . . . . . . . . . 16

4 Social-based recommendation algorithm concept 21
4.1 Data acqusition . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 User data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Building the graph . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Basic implementation . . . . . . . . . . . . . . . . . . . 34
4.3.2 Refined implementation . . . . . . . . . . . . . . . . . 35

4.4 Initial results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Cloudera Oryx 38
5.1 Oryx description . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Oryx architecture . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Oryx Collaborative Filtering algorithm . . . . . . . . . . . . . 40
5.4 PMML documents . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Apache Mahout . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Oryx initial test . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 FB Graph data with Oryx . . . . . . . . . . . . . . . . . . . . 44

6 Results verification 47
6.1 Verification with Amazon recommendations . . . . . . . . . . 47
6.2 Verification with Last.fm recommendations . . . . . . . . . . . 48
6.3 Amazon and Last.fm results comparison . . . . . . . . . . . . 49

3



6.4 Verification results . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Summary 53

8 Bibliography 54

4



1 Introduction

Just several years ago the biggest online platforms in the world would pro-
tect the valuable information they collect. However, in time a more open
approach was born, with public-facing APIs becoming open to the world and
specially prepared SDKs being developed to help interact with those end-
points. One of the leaders of such a modern, open approach was Facebook.
Very quickly Facebook applications became a natural element of the social
network ecosystem, with friends inviting other friends to online games or so-
cial applications where users could interact with their friends content such as
images or events in a new way. A new business was born with social media
agencies creating specialized campaigns whose goal was to become viral and
spread naturally like a virus. As a result, developers from all over the world
gained access to unprecedented amounts of new data - user profiles, their
interests, events they are attending, things they like, content they share and
much more. Data gathered from social networks can be utilized in various
ways, one of which is analyzed and studied in this thesis.

Recommendation Systems become more and more necessary for a variety
of reasons - the amount of content Internet users are experiencing is growing
rapidly and it has to be selected for them because the volume of information
is simply overwhelming. For the same reason the attention span of users
is shrinking, especially on mobile devices, and the content presented has to
be interesting to the user, otherwise it will be disregarded. E-commerce
platforms are very competitive and need to search for new ways to sell more
products. Social networks users are very active, creating too much data, so it
needs to be filtered. Popular cloud-based platforms for music and video try
to interest users in new musicians or movies. Mobile and web ads systems
need to present ads that can be interesting for the user, otherwise the click-
through rate will be very low. These several examples showcase a wide variety
of applications for Recommendation Systems. However, these Systems work
based on algorithms and mechanics that have been developed before the age
of Web 2.0 and the aforementioned freedom in access to social network data.

The aim of this paper is to analyze the current Recommendation Systems
and algorithms and to create a new one based on data from a social network,
in this case Facebook. In particular the paper focuses on suggesting mu-
sic bands and musicians. Because suggesting content is a highly suggestive
process, additional verification mechanisms were proposed and introduced.
Additionally, a popular open source Recommendation System, Oryx, is used
to compare results.

5



The paper is divided into several chapters:

• Chapter 2 - Basic information about social networks and Facebook

• Chapter 3 - An analysis of currently used Recommendation Systems

• Chapter 4 - Detailed information about the developed Recommenda-
tion System

• Chapter 5 - An analysis of a popular open source Recommendation
System, Oryx

• Chapter 6 - A decription of proposed verification mechanisms, and the
results of this verification

6



2 Basic information

The success of social networks, understood as online platforms, is a phe-
nomenon that created new sources of unprecedented quantities of social data.
This allows for development of new concepts, one of which being the topic of
this thesis, that could have not been possible just a few years ago. Internet
turns out to be the perfect environment for a concept originating from social
behavior and network science.

2.1 Introduction to the concept of a social network

A social network is a theoretical structure emanating from sociology, psy-
chology and statistics. The most basic description defines a set of actors and
ties between these actors. ’Actors’ do not have to necessarily be individuals
- in a social network this term is also applied to groups, organizations and
whole societies.

The origins of social networking understood as an online platform which
is being used to create virtual social networks can be dated back to the
early 1970s [1]. From digital bulletin boards the idea evolved and made its
appearance in the World Wide Web during mid 1990s. The basic concept
back then was to bring people together to interact, for example via simple
publishing tools, predecessors of blogs, or through chat rooms. In the next
couple of years the focus shifted to user profiles, where people listed their
personal information and could look for users with common interests. The
first online platform with such functionality was SixDegrees.com, named af-
ter the concept of six degrees of separation - the theory suggesting that any
two people can be connected through a chain of at most five acquaintances.
With the evolution and propagation of Internet, more social networking sites
emerged and quickly gained popularity, e.g. Friendster.com , MySpace.com,
LinkedIn.com or Facebook.com.

7



2.2 Facebook

In the winter of 2004 TheFacebook.com was launched from the dorm room
of a Harvard sophomore, Mark Zuckerberg [2]. Its initial focus was similar
to other social networks, with the addition to exclusivity - users were only
able to register when using a harvard.edu e-mail domain, restricting its initial
user base to students of the Harvard College. From that moment Facebook
grew to over 1 billion users, as of October 2012 [4].

Many factors contributed to this astounding user growth. A few of addi-
tions to Facebook were especially important for the purposes of this thesis:

• Facebook Social Graph and Open Graph - features allowing to con-
nect users to entities existing both inside and outside of the Facebook
universum,

• Facebook Platform, Graph API and Facebook Query Language (FQL)
- technological features allowing developers to interact with objects
within the graph of Facebook connections.

2.2.1 Facebook Social Graph and Open Graph concepts

Social Graph lies in the core of Facebook - described as ”the global map-
ping of everybody and how they’re related” it’s a representation of people
and their connections. These connections reach far beyond Facebook - Open
Graph allows any developer to build on top off the social graph and define
new social graph objects, e.g. users can log-in to third party websites using
their Facebook credentials or interact, for example ’like’, with virtually any
object created by the developer.
These features, being one of the reasons for Facebooks popularity, are the
source of information for this thesis, which focuses on users interests, de-
scribed as connections with objects from the Social Graph.

2.2.2 Facebook Platform, Graph API and Facebook Query Lan-
guage (FQL)

Another reason for the phenomenon of Facebook is its Platform, which allows
developers to create their own services and applications that can interact
with Facebook and access data provided by Facebook. Two common ways
of interacting with Facebook data are available:

• Graph API - the basic element of the Facebook Platform. This API al-
lows to read and write data to and from Facebook. It gives a consistent

8



view of the Social Graph with a clear representation of all objects and
connections within the Graph. Every object is represented by its ID
and a set of attributes. Each of these objects has also a set of relation-
ships, or connections, to other objects, also accessible through their IDs
(e.g. a user is connected to his photo albums). Connection types vary
for object types, for example users can be connected to their friends and
an event can be connected with its attendees. Accessing Graph objects
is done with HTTP GET requests and all responses are JSON objects.
Facebook SDKs, although their use is not required, allow for easy in-
tegration. Official SDKs have been released for JavaScript, PHP, iOS
and Android. Countless third party SDKs are also available, ranging
from Flash to Ruby.

• Facebook Query Language (FQL) is a SQL-style interface that enables
developers to query the Graph API, with features designed specifically
for larger data-sets, e.g. multi-queries. Queries are performed with
HTTP GET requests and all responses are JSON objects. Despite fea-
tures like subqueries, typical ORDER BY and LIMIT clauses etc. FQL
is rather basic and lacks many features typical for SQL, for example
a FROM clause can contain only one table. Response times for large
data-sets are much better than when using Graph API though still
easily reach 30 seconds or more, making it important to optimize data
fetching and analysis logic.

While the Graph API represents data in the form of a network, FQL accesses
data logically described as tables, which allows for two different approaches
- depending on the data required, it is more natural to use one or the other.
Also, some data is only accessible via the Graph API while other only via
FQL. Finally, response times vary, depending on the amount and type of
data being fetched from the API. That is why for the purposes of this thesis
both options have been used.

9



3 Currently used recommendation algorithms

The task of any Recommender System is to try to rank given elements with a
rating which measures the potential usefulness of those elements for the user,
producing a rating as similar as possible to the rating that would be given to
those elements by that user - for elements that haven’t been yet considered
by that user. In other words such systems try to predict and suggest items
that the user could be interested in buying, music that the user could be
interested in listening to etc.

The need for Recommendation Systems came from noticing the fact that
users tend to rely on recommendations provided by others when making
daily, routine decisions - for example, people read movie reviews prior to
selecting a movie to watch. In the mid-90’s, when e-commerce started de-
veloping rapidly, such systems became especially necessary. In recent years
because of the growth of the Internet and the amount of choice an Internet
user has, such systems prove to be particularly useful. Hugely popular In-
ternet services such as Amazon, YouTube, Yahoo, NetFlix, Last.fm, IMDb,
among others, rely heavily on Recommender Systems for a variety of reasons
- a Recommender System can play many roles for the service provider.

The most popular functions of a Recommender System are[5]:

• Increasing the number of items sold - both for commercial and non-
commercial services this is the most typical use-case. For non-commercial
services this can be e.g. the number of articles a user reads.

• Selling more diverse items - Recommender Systems allow services to
popularize less known items.

• Increasing the user satisfaction - relevant recommendations can increase
the positive perception of the service.

• Increasing the user loyalty - Recommender Systems gather information
about the users behavior over time and with more information the re-
sults can be more precise. This means that the longer a user interacts
with the system, the bigger the likelihood that the results of the Rec-
ommender System will be meaningful, providing the user with valuable
information, which will result in a better returning users rate.

• Better understanding of users needs - as mentioned previously, Recom-
mender Systems gather information about user behavior. This infor-

10



mation is a valuable asset that can be used by the service provider for
a variety of purposes.

It is important to remember that Recommender Systems often operate in
a highly challenging environment:

• In the beginning, when new users or customers are created, the knowl-
edge about those entities is very limited. Sometimes the Recommender
System needs to produce results based on just a few ratings or pur-
chases.

• On the other hand users or customers that have been actively using the
product for a long time have generated a lot of data, possibly hundreds
or thousands of ratings or purchases.

• The input data is constantly changing with every user action. The new
data should be immediately taken into account by the Recommender
System.

• The data-set which needs to be analyzed by the Recommender Sys-
tem is colossal, for example a renowned retailer can have millions of
customers and even more unique items on sale.

• Typically the results have to be of very high-quality, otherwise the sole
purpose of a working Recommender System is not met. On the other
hand, those results need to be returned in realtime to ensure the user
experience is flawless.

3.1 Collaborative Filtering - introduction

The motivation for collaborative filtering comes from the idea that people
often get the best recommendation from someone with similar taste. Collabo-
rative filtering explores techniques for matching people with similar interests
and making recommendations on this basis.

That is one of the reasons why, as mentioned previously, typical applica-
tions of collaborative filtering often involve very large data sets. Collabora-
tive filtering has been successfully used with various data-sets and various
use-cases: e-commerce, finance, search engines, internet ad distribution net-
works, loyalty platforms and in other web applications that strive to deliver
a personalized experience to the end user.

To ensure that the provided examples operate within the same context, all

11



are described from the perspective of a successful e-commerce platform - a
platform that is used by a very large amount of users and contains a huge
set of items available for purchase. Because of the volatile nature of online
shopping it is also important the recommendations are fetched instantly but
at the same time their quality must be high.

3.1.1 Traditional Collaborative Filtering

As described by the pioneers in this field, recommendation researchers and
team leaders in Amazon.com [6], a traditional collaborative filtering algo-
rithm perceive a customer as an N-dimensional vector of items, where N is
the number of all items available. The vectors components can be positive or
negative - if an item was purchased or rated positively, the component is pos-
itive. For negative ratings the component is negative. Because some items
can be very popular, such best-sellers are taken into account by dividing the
appropriate vector component by the amount of users who have purchased
or rated the item. Most users vector is very sparse since not many items
have been rated or purchased, which helps with the computation speed of
the algorithm. Recommendations are found by selecting several users that
are the most similar to the user requesting recommendations - that similar-
ity is typically measured by the cosine of the angle between two vectors of
the users that are being compared, although other techniques can also be
applied. Once the similar users are found, the algorithm needs to select the
appropriate items to recommend - usually simply the items most popular
among the group of similar users are suggested.

One of the bigger issues with such an approach is the inflicted computa-
tional expense - in theory in the worst case the algorithm needs to check all
users and all items so the processing expense would be O(MN) where M is
the number of all users and N is the number of items available. As mentioned
previously, the vector for most users is very sparse since most users rate and
purchase few items. That is why examining every user can be expected to
actually cost approximately O(M). However, a very limited group of users
can be considered ’power users’ who purchased and rated a big chunk of the
items available, so the final cost can be expressed as O(M + N). For a large
data-set that means a heavy performance penalty, as well as limited scala-
bility. To enhance the speed and responsiveness, the data-set needs to be
reduced. M can be reduced by selecting users at random or by not taking
into account users with few ratings and purchases. N can be reduced by
discarding best-sellers or unpopular items. The items that need to be ex-
amined can also be narrowed down for example by the category of the item.

12



Each attempt to reduce the data-set unfortunately also means that the final
recommendations quality is worse. Selecting users at random means that
when the recommendation is computed and the algorithm searches for users
similar to the user that is requesting recommendations, the selected group
will not be very similar to the user. Selecting items from a category means
that the recommendations will also belong to that category, which hurts item
discovery Removing popular and unpopular items means those will not be
suggested and users who purchased them will not receive recommendations
- which obviously can happen often for the most popular items.

3.1.2 Cluster Models

Cluster models are created by a Recommendation System by grouping users
into separate clusters, with each cluster containing users that are the most
similar to each other - searching for similar users becomes a classification
problem. Once the Recommendation System has the whole user base di-
vided into segments, ratings and purchases from a given cluster can be used
to generate recommendations for users from the same cluster. The clusters
can be generated manually but usually an automated algorithm is used. As
mentioned previously, Recommendation Systems typically operate on very
large data-sets. That is why usually to generate the clusters, some form of
a greedy cluster generation is used - for example initially clusters are cre-
ated by selecting users at random and then running a neccessary amount of
iterations to match users to those clusters, additionally merging segments
or generating new along the way. Sometimes it is also neccessary to reduce
dimensions or introduce sampling, if the data-set is too complex. Sometimes
users can be grouped into several segments at once, with an additional metric
of the strength of the relationship that is used for generating recommenda-
tions. This approach performs well in typical online scenarios since the most
expensive computation is done offline while the online comparison requires
only checking a certain amount of segments. However, the final quality of the
provided recommendations is poor. The segments contain many users which
are all treated similar so the recommendation results are averaged. To make
the results more accurate more segments are required, which has negative
impact on the online speed of the Recommendation System.

3.1.3 Search-based filtering

Search-based filtering (or content-based filtering) understands the problem of
creating a recommendation as a search for items that are somehow related.
With this technique, the Recommender System tries to generate a search

13



query that could find items that have something in common with the items
rated or purchased by the user. As an example, for a user that bought a DVD
Collection, the Recommender System can recommend other popular movies
from the same genre, starring the same actors, other movies directed by the
same director. The first problem with such an approach is the complexity
of the queries. If the Recommender System needs to give a recommendation
to an active user with hundreds or thousands of ratings and purchases, the
search query can be built only on a subset of the data, or some averaged-
out data - which affects the final quality of the provided recommendations.
The second issue is that a search-based Recommender System fails to deliver
items for discovery - the results are either very general, e.g. the most popular
movies from a given genre, or too limited, e.g. movies from the same director.

3.1.4 Slope One algorithm

Slope One is a very basic recommendation algorithm which can be quickly
implemented, and yet often gives results very similar to more complex coun-
terparts [3]. The basic idea behind the algorithm can be easily explained
with a simple illustration, as presented in Figure 1.

Figure 1: Slope One concept

Given two users - A and B, and two items, I and J, to predict users B
rating of item J one must find the average difference between ratings of items
I and J and simply add it to users B rating of item I. To further enhance the
results a weighted average is used, so that the number of users that rated
a given item is taken into consideration. This means that for Slope One to
work, one must store only two matrices - one with average rating differences

14



between each pair of items and one with rating counts for common ratings
for each pair of items.

3.2 Commercially used recommendation algorithms

As an example of currently used, widely popular recommendation algorithms,
two will be described - Amazon Item-To-Item Collaborative Filtering and
Last.fm Label Propagation Algorithm. Both are used in challenging environ-
ments and have been developed to serve demanding purposes and both are
important elements of the platforms they are a part of.

3.2.1 Amazon - Item-To-Item Collaborative Filtering

Amazon uses their Item-To-Item Collaborative Filtering [6] as one of the
most important marketing tools. Amazon has integrated recommendations
into nearly every part of the purchasing process from product discovery to
checkout. When browsing Amazon.com one will find multiple panes of prod-
uct suggestions; navigating to a particular product page will present areas
promoting items “Frequently Bought Together” or other items customers
also bought. Recommendations are even included within the checkout pages
on Amazon.com, functioning similarly to a supermarket checkout line with
impulse items - but here they are targetted specifically for each customer.

Being one of the biggest e-commerce retailers in the world, generating rec-
ommendations that are up-to-date and convert well into purchases, is a huge
challenge for Amazon, yet the algorithm behind it is not too complex and
bears resemblance to the previously described Slope One algorithm (section
3.1.4).

The algorithm matches purchased and rated items and finds most-similar
items by checking what items tend to be bought together by customers -
this information is stored in a item-similarity table. But instead of creating
a product to product matrix, which would be inefficient since most of the
products do not have customers in common, the following iterative algorithm
is used, as shown in Listing 1.

15



For each item in product cata log , I1
For each customer C who purchased I1

For each item I2 purchased by customer C
Record that a customer purchased I1 and I2

For each item I2
Compute the s i m i l a r i t y between I1 and I2

Listing 1: Item-to-Item iterative algorithm

This iterative approach finds the similarity between a product and all
other products that were purchased along with it, using a simple cosine
measure:

similarity( ~A, ~B) = cos( ~A, ~B) =
~A · ~B

‖ ~A‖ · ‖ ~B‖

Although this calculation is expensive, it is done offline.
With the item-similarity table in place, the algorithm finds items most similar
to items that were purchased or recommended by a given user, and then
recommends the most popular ones. This performs very well since users
typically do not have too many purchases and recommendations.

3.2.2 Last.fm - Label Propagation Algorithm

Last.fm is a music online platform, founded in the United Kingdom in 2002.
Last.fm gathers information about music listened to by people from all
around the world thanks to a process named ’audioscrobbling’ - Last.fm
builds a detailed profile of each user’s musical taste by recording details of
the tracks the user listens to, either from Internet radio stations, or the user’s
computer or many portable music devices. This information is transferred
(”scrobbled”) to Last.fm’s database either via the music player itself (from
services such as Deezer, Spotify, Rdio, Amarok and many other) or through
a plugin installed into the user’s music player. The data is used to build the
user’s profile automatically, personalize content and suggest new artists. By
April 2011, Last.fm had reported more than 50 billion scrobbles.

Working with such a large dataset was one of the challenges that Last.fm
engineers faced when building a recommendation mechanism. The final al-
gorithm was built in a way that could easily utilize MapReduce. MapReduce
is a highly scalable programming model and associated implementation for
processing large data sets in parallel with a distributed algorithm in a cluster,
described by Google in 2004 [10] and heavily used in a variety of the most

16



important Google products. In case of Lastm.fm a popular open-source Java
implementation is used, Hadoop MapReduce.

To generate valid recommendations Last.fm builds a graph where the vertices
are users and artists, whereas the edges are created when a user expresses
some form of interest with a given artist - e.g. listens to a track or starts
following that artist, as presented in Figure 2. When making random walks
in such a graph from a given user, if an artist is visited often and there are
many short paths to that artist, the artist should be selected as a good rec-
ommendation, as presented in Figure 3. A graph random walk is equivalent
to the label propagation algorithm which belongs to a family of algorithms
that can be easily coded with MapReduce.

Label propagation algorithm step by step:

• Start with a partially labeled graph, in our example user nodes are
labeled with songs that they listened to.

• Each label has an associated weight, in our case it is the count of how
many times a track was listened to, as presented in Figure 4.

• Iterate as presented in Figure 5:

– Propagate labels to adjacent nodes,

– Accumulate and renormalize the received labels at each node,

• Final labels include unknown items.

• After running enough iterations or reaching convergence, new labels at
user nodes are recommendations whereas new labels at item nodes are
similar items.

• It is important to disregard hubs - very popular items or users that
listen to everything. This is achieved by abandoning the random walk
after a given number of steps, which can by mimicked in the label
propagation algorithm by propagating a dummy label whose weight is
based on the degree of the source node. In the final output, the dummy
label is ignored.

17



Figure 2: Last.fm graph (with user U and music track t)

Figure 3: Last.fm graph (many short paths from U to t, t should be recom-
mended)

18



Figure 4: Last.fm label propagation algorithm graph - edge weights are
counts of how many times a track was listened to, each user is labeled with
the tracks he listened to and the proportion of the distribution of his interest
between those tracks.

19



Figure 5: Last.fm graph: label propagation algorithm - accumulation and
renormalization. For node d: 1 x (b,0.5),(d,0.5), 3 x (b,0.2),(d,0.3),(e,0.5)
gives (b,0.275),(d,0.35),(e,0.375). In the next iteration these labels will prop-
agate to user V who will receive a recommendation of track e with a weight
of 0.375.

20



4 Social-based recommendation algorithm con-

cept

The amount of social data that is now openly available to any developer al-
lows to research freely information that a few years ago was accessible to only
a given few that were running the biggest social or e-commerce platforms in
the world. The general idea behind the experimental algorithm that was cre-
ated and implemented for the purpose of this thesis is to collect, explore and
analyze social data that is accessible through the Facebook Social Graph,
using it as the basis for a recommendation engine. To allow for verification
of the results, the developed algorithm focused on musical interests of the
users. However, thanks to the amount of different interests a Facebook user
includes in his profile, it is in theory possible to use the same algorithm in
other areas, especially in the entertainment field and with fast-moving con-
sumer goods.

In order to test and verify such a concept, several web applications have
been developed. An overview of the overall architecture is presented in Fig-
ure 6.

4.1 Data acqusition

Thanks to the well documented Facebook SDK it is not a complicated task
to acquire the necessary data. The first step is registering a Facebook appli-
cation, which supplies the developer a public and private API key that can
be used for all calls to the Facebook API. After that all that is required is
a simple script which works as a web application, which asks users to log
in with their Facebook credentials to the previously created application and
to allow access to all essential information, which then has to be fetched
with appropriate FQL and/or Graph API queries and saved in a database
for further analysis. Thanks to the social graph, a single user can give ac-
cess to valuable information of all their friends - unless they opt-out of this
feature, which is enabled by default. Initial tests showed that over 90% of
users did not change this setting. The script first fetches unique identifiers of
all friends of the user that logs in with his credentials and gives appropriate
permissions to the script, and then performs FQL queries for each friend,
resulting in thousands of records per one real user of the application.

There are many sections of a Facebook user profile that can be filled with
likes for specific entities. The possible sections are ranked in Figure 7.

21



Figure 6: Application architecture

As an initial field of interest for this thesis the ’Music’ section was analysed,
because it is a popular interest among Facebook users and because it can be
subjectively verified manually.

Many platforms are supported with the official Facebook SDK. For this
thesis PHP was chosen as the primary language and the data was stored
in a MySQL database, which is not optimal in terms of performance and
scalability but is sufficient for the experiments described in this paper.

22



Figure 7: Basic user profile sections

The information that was gathered from each user:

• Basic information about the user:

– Age and gender,

– Number of friends,

– Number of interests,

– Number of events to which the user has RSVP’d ”attending”;

• User’s friends, understood as edges of the social graph - each database
record stores two unique identifiers representing two vertices of the
graph;

• User’s interests, understood as vertices of the social graph - each database
record stores the users unique identifier, the interest unique identifier
and its category (when creating a fanpage, which becomes a separate
social graph entity, the administrator has an option to choose a cate-
gory for the page from a closed tree of hundreds of items). Even though
all data is gathered from the ”Music” section, not all interests belong to
categories related with music. A ”GROUP BY” query listed in Table

23



1 shows how many different categories are being fetched just from the
”Music” section. That is why the input data is filtered and only entities
from the ”Musician/band” category are used for further analysis;

• Basic information about each artist:

– Name

– Music genre

– Current location

– Current number of all likes (popularity);

24



4.2 User data analysis

The characteristics of the basic data that was gathered from user profiles is
worth a quick look.

• The number of friends per user is depicted on the histogram - Figure
8. Three groups of users can be observed:

– typical users who have between 150 and 600 friends - approxi-
mately 80% of all users,

– power users who have between 650 and 1000 friends - approxi-
mately 15% of all users,

– single individuals who have either a very small (0-100) or a very
high (1100-1700) friends count - approximately 5% of all users.

• The number of interests per user is depicted on the histogram - Figure
9. Because a typical exponential characteristic can be observed, the
histogram is presented with a logarithmic scale. Very few users have
more than 40 interests linked with their profile. Several heavy users
can be observed with an interest count in the range of 70 to 145. Addi-
tionally one individual with approximately 290 interests exists, though
he is not visualized on the histogram. An individual FB Graph query
shows that this user is a popular music DJ who heavily uses Facebook,
which explains the amount of interests listed.

• The number of events to which a user has RSVP’d ’attending’ is de-
picted on the histogram - Figure 10. Similarily to the number of in-
terests, a typical exponential characteristic can be observed, which is
why the histogram is also presented with a logarithmic scale. Very few
users have more than 9 events marked as ’attending’. Several heavy
users can be observed with an event count in the range of 17 to 18. The
individual heavy user with over 290 interests belongs to that group but
does not stand out as with the interests count.

The analysis of the individual heavy user - musical DJ - suggests the
three characterists might be uncorrelated. That user has the most interests,
but another user has the most friends. Similarily, there are several users
that have more events marked as ’attending’ in comparison to that user. To
support this thesis and to investigate the possible relationship between the
characteristics, three additional diagrams are presented below:

25



• Figure 11 - a scatter plot presenting the relationship between the num-
ber of friends and the number of interests linked to the users profile
(users without friends or without interests are not taken into account),

• Figure 12 - a scatter plot presenting the relationship between the num-
ber of interests and the number of events to which a user has RSVP’d
’attending’ (users without interests or without events marked as ’at-
tending’ are not taken into account).

• Figure 13 - a scatter plot presenting the relationship between the num-
ber of friends and the number of events to which a user has RSVP’d
’attending’ (users without friends or without events marked as ’attend-
ing’ are not taken into account).

For each of those relationships covariance and Pearson’s correlation coef-
ficient was calculated:

• Friends and interests:

– σ(f, z) = 1625.7355

– rf,z = 0.2339

• Interests and events:

– σ(z, v) = 79.9202

– rz,v = 0.4881

• Friends and events:

– σ(f, v) = 231.1366

– rf,v = 0.1748

As suggested previously, all three graphs and the calculated values of
covariance and Pearson’s correlation coefficient show that indeed the three
metrics (number of interests, number of friends, number of events marked as
’attending’ by the user) are rather weakly correlated. The strongest corere-
lation occurs between interests and events.

Another interesting observation is the fact that a vast majority of users al-
lows 3rd party Facebook applications to indirectly access information about
their friends, events and interests. Indirectly because those users profiles are
accessed by the application through a single friend that used the application,
without ever explicitly asking for permission or informing those users that
data from their profiles is being accessed.

26



Table 1: Categories of interests fetched from the ’Music’ section

Category COUNT(*)
Musician/band 6161
Music 89
Musical genre 54
Album 54
Record label 41
Song 38
Community 23
Movie 13
Musical instrument 12
Artist 11
Arts/entertainment/nightlife 7
Interest 6
Playlist 6
Public figure 6
Music chart 4
Actor/director 4
Concert tour 3
Non-profit organization 3
Landmark 2
Internet/software 2
Radio station 2
Unknown 2
Personal blog 2
Music video 2
Teens/kids 1
Website 1
Dancer 1
Sport 1
Community organization 1
Author 1
Tv show 1
News/media 1
Book 1
Fictional character 1
Society/culture 1
Athlete 1
Entertainment 1
Producer 1
Media/news/publishing 1

27



Figure 8: Histogram of the number of friends

28



Figure 9: Histogram of the number of interests (decimal logarithmic scale)

29



Figure 10: Histogram of the number of events RSVP’d ’attending’ (decimal
logarithmic scale)

30



Figure 11: Scatter plot - friends count and interests count

31



Figure 12: Scatter plot - interests count and attending events count

32



Figure 13: Scatter plot - friends count and attending events count

33



4.3 Building the graph

Having fetched all the neccessary information from the FB graph, one can
analyze and modify that data in an offline environment, without the need to
query Facebook. To create a recommendation algorithm a graph was built,
where the vertices were artists and the weight of the edges defined the simi-
larity of the artists. Several assumptions had to be made in order to compute
the artist similarity graph. Finally two approaches were selected - a basic
implementation and a refined implementation. Only users that had more
than a single interest and at least one friend were taken into account while
analyzing the data.

Both mplementations of the algorithm needed to answer two important ques-
tions:

• how to determine the weight of the edges (artist similarity)

• how to determine the activity of users (’quality’ or ’strength’ of the
datasource)

Three basic parameters were selected to measure users activity:

• Number of interests

• Number of friends

• Number of events the user is attending in the near future

4.3.1 Basic implementation

Assumptions were made for both of the above questions questions.

- G(U,A,E) - initial bipartite graph of user interests, ui ∈ U, ai ∈ U
where ui represents a user and ai an artist

- ui = {fi, vi, zi} where fi - friends count, vi - events count, zi - interests
count

- B ¯̄U× ¯̄A : bij =

{
1 if (ui, aj) ∈ E
0 otherwise

B is an adjacency matrix of user interests.

34



Artist similarity can be measured by the amount of users that at the same
time like both artists. This count needs to be normalized so that the amount
of all users liking any of the two bands is taken into account - otherwise niche
artists with few fans could never achieve an edge weight similar to the most
popular artists. The final equasions are presented below.

- L(A,Q) - final graph of artists and the strength of the similarity be-
tween them.

- qij =

2
∑
k

s2(ai, aj, uk)∑
k

bki +
∑
k

bkj

For user ’strength’ or activity, an assumption was made that users who
attend many events and have a lot of friends, while having few interests, are
the best source of information - one could assume all that social activity is
focused on just those few interests. Thanks to the findings described earlier
in 4.2 - the exponential nature of those three values - they were normalized.
The final equasion is presented below:

s(ai, aj, uk) = bkibkj
log fk + log vk

log zk

4.3.2 Refined implementation

A slightly more complex algorithm was also proposed. Artist similarity was
again measured by the amount of users that at the same time like both
artists, but this time it was normalized to the count of the less known of the
two artists. What is more important, the ’strength’ value was now calculated
differently as well - average values for each of the three components (number
of friends, number of interests, number of events being attended) were taken
into consideration so that users that in general were above average would
have more ’strength’. The assumptions made were as presented below:

q̃ij =

∑
k bkibkj · log

∑
k s̃(ai, aj, uk)

min(
∑

k bki,
∑

k bkj)

s̃(ai, aj, uk) =
log(fk)

log(
∑
m

fm/
¯̄U)

+
log(vk)

log(
∑
m

vm/
¯̄U)

+
log(zk)

log(
∑
m

zm/
¯̄U)

35



4.4 Initial results

The first results could be quickly verified by simply subjectively browsing
through them and reviewing them manually.

Table 2: Top 10 results of the basic implementation

Artist 1 Artist 2 Similarity
Kings Of Leon Coldplay 6.42623
The Doors Pink Floyd 5.12121
Kanye West MGMT 4.96552
Red Hot Chili Peppers Coldplay 4.84
Radiohead Massive Attack 4.74074
Paktofonika Pezet 4.57143
The Beatles The Doors 4.56604
Róiśın Murphy MIA 4.43077
Lady Gaga Rihanna 4.37838
O.S.T.R. Pezet 4.35946
... ... ...

Table 3: Top 10 results of the refined implementation

Artist 1 Artist 2 Similarity
Mozart Haendel 1.1644
Children Of Bodom Megadeth 0.959369
Godsmack Disturbed 0.959369
Iron Maiden Judas Priest 0.959369
Kings Of Leon Coldplay 0.919527
The Doors Pink Floyd 0.919527
Muse Radiohead 0.894538
Czerwone Gitary Budka Suflera 0.894538
Michael Jackson The Beatles 0.874318
Bob Marley Pink Floyd 0.874318
... ... ...

A basic subjective review of the results of both algorithms, although each
provides different top results, suggests that each of them shows promise and
is worth further exploration. For example, the first results for the basic
implementation showcase, among other results, a diverse but accurate list:

36



• Kings Of Leon and Coldplay - two rock bands representing a similar
genre of alternative rock. Both bands have performed in Poland, which
explains a lot of interest expressed by the analyzed Facebook users,

• The Doors and Pink Floyd - two rock classics, representing similar
genres of psychedelic rock and blues rock. Both begun their careers in
mid 60’s and quickly became definitive icons of their era,

• Paktofonika and Pezet - two Polish hip-hop and rap artists,

• Lady Gaga and Rihanna - two very popular pop singers with a similar
music style, both known for their trend-setting passion for excentric
fashion.

The refined algorithm boosts scores gathered from heavy users which can
be seen in the first results list, yet the results are still accurate:

• Mozart and Haendel - two famous composers of classical music,

• Children of Bodom and Megadeath, Godsmack and Disturbed, Iron
Maiden and Judas Priest - all being iconic heavy metal bands. Those
three results are also very accurately paired with heavy metal subgenres
represented by each pair and even with years of musical presence,

• The Doors and Pink Floyd - a pair highly ranked by both algorithms,

• Czerwone Gitary and Budka Suflera - two classic Polish bands.

37



5 Cloudera Oryx

Cloudera, Inc. was founded in October 2008 in Palo Alto, California, with
the goal of creating an enterprise implementation of Apache Hadoop. Be-
fore analyzing the Oryx project, it is worth to briefly discuss Apache Hadoop.

Apache Hadoop is an open-source project that develops software for reli-
able, scalable, distributed computing [8]. Currently Apache Hadoop consists
of four subprojects:

• Hadoop Common - a set of libraries and utilities that are used in other
subprojects,

• Hadoop Distributed File System - a distributed file system. In 2003
Google published documentation describing the Google File System
(GFS)[9], but without any implementation details. Hadoop Distributed
File System (HDFS) is a Java-based implementation of GFS.

• Hadoop YARN (Yet Another Resource Negotiator) - resource manage-
ment technology for virtual environments.

• Hadoop MapReduce - a Java-based implementation of a distributed
computing paradigm, based on the model described by Google in 2004
[10].

Cloudera Oryx was released in November 2013 as continuation of the
Myrrix project - Myrrix was a complete, real-time, scalable recommender
system, evolved from Apache Mahout. In July 2013 it became a part of
Cloudera [11].

5.1 Oryx description

Cloudera Oryx is an open source project that aims to provide a real-time,
large-scale infrastructure for machine learning and predictive analytics. The
project comes with out of the box implementation of several popular algo-
rithms - for the purpose of this paper we will be focusing on the collaborative
filtering and recommendation capabilities of Oryx.

5.2 Oryx architecture

Oryx is divided into two layers - the Computation Layer and the Serving
Layer. The job of the first layer is to build machine learning models and the
job of the second layer is to serve models.

38



• Computation Layer - Java-based, long-running, offline, batch process.
The Computation Layer continuously builds out machine learning mod-
els based on a snapshot of input at a point in time. Both input and
output happen in HDFS with the use of PMML files, described in 5.4.
The Serving Layer monitors the appropriate directory and automati-
cally loads new models as they become available. The Computation
Layer can run in two modes:

– Distributed - the typical mode, based on Hadoop MapReduce.

– Local - simplified mode, running locally in-memory with input
and output being read and written to a local file system.

• Serving Layer - Java-based, long-running server process that exposes a
REST API.

Figure 14: Oryx architecture overview [ https://github.com/cloudera/oryx ]

39



5.3 Oryx Collaborative Filtering algorithm

Oryx recommender engine implementation uses a variant of the ’Alternating
Least Squares’ (ALS) algorithm - Alternating-Least-Squares with Weighted--
Regularization (ALS-WR)[12]. This very variant of ALS won the The Netflix
Prize Contest in 2009 - a open contest hosted by Netflix in which teams were
competing to create the best collaborative filtering algorithm that could pre-
dict user ratings for films, based on their previous ratings. In 2009 a team
consisting of engineers from Yahoo and ATT Labs managed to create an al-
gorithm that beat the original Netflix engine, and that algorithm is now used
in Oryx.

The basic problem ALS-WR is trying to solve is to estimate the missing
values in a user-movie matrix where each value represents a rating given by
a user to a movie. Each user and each movie is represented by a vector of
features and each rating should be based on those features. The problem
is described as minimalization of the loss between the rating and the scalar
product of the feature vectors - in case of this algorithm, a mean-square loss
function is used. Because the initial dataset is sparse - most of the users
ranked very few movies - there is a risk of overfitting. That is why additional
regularization is introduced. In order to solve this problem, the optimal user
and movie features vectors are needed. To find the features vectors alternat-
ing least squares is used as follows:

• Step 1: Initialize matrix M (movie features vector) by assigning the av-
erage rating for that movie as the first row, and small random numbers
for the remaining entries.

• Step 2: Fix M , Solve U (user features vector) by minimizing the ob-
jective function (the sum of squared errors);

• Step 3: Fix U , solve M by minimizing the objective function similarly;

• Step 4: Repeat Steps 2 and 3 until a stopping criterion is satisfied.

To solve U, each column of U is determined by solving a regularized linear
least squares problem involving the known ratings of the user, and the fea-
ture vectors of the movies that user has rated. Solving M is done in the same
manner.

The mentioned stopping criterion in this case is a satisfyingly low root-mean-
square deviation between iterations. Once the optimal user and movie fea-
tures vectors are found, they can be used to calculate the final ratings by
solving the original problem.

40



5.4 PMML documents

The Predictive Model Markup Language (PMML) is an XML-based language
that allows to define and describe data mining models and statistical models.
PMML is vendor-independent which allows users to develop models in one
application and then use other applications to analyze, visualize and work
with the models in a straightforward and standarized matter.

Figure 15: PMML Components

5.5 Apache Mahout

Apache Oryx (originally Myrrix) was built out heavily based on Apache
Mahout[16]. The goal of the Apache Mahout project is to build a scalable
machine learning library. It is used for recommendations, ad targeting and
predictions by some of the current biggest names in technology - Foursquare,

41



AOL, LinkedIn, Twitter and many others [17].

Apache Mahout implements several Collaborative Filtering algorithms:

• User-Based Collaborative Filtering

• Item-Based Collaborative Filtering

• Matrix Factorization with Alternating Least Squares

5.6 Oryx initial test

Running a simple, local test with Oryx is rather straightforward. Latest re-
leases of both the computation and serving layer can be downloaded as a .jar
archive from GitHub1. Both layers share a single configuration file.

The simplest version of the config that will allow to perform a local test
is listed below:

model=${a l s−model}
model . in s tance−d i r=/Users / oryx / l o c a l
se rv ing−l a y e r . ap i . port =8091
computation−l a y e r . ap i . port =8092
model . l o c a l−computation=true
model . l o c a l−data=true

Listing 2: oryx.conf

Oryx will automatically load any .csv input dataset files that are placed
in the model instance directory (set with the model.instance-dir parameter in
the configuration file), within the generation/inbound directory, where gen-
eration is an index - generations start from 00000, with each directory con-
taining the input (inbound) dataset snapshot and, once the computing layer
is finished, output files containing the model that can be then consumed by
the serving layer. Both serving and computing layers detect changes within
those directories automatically and directories for new generations are also
created automatically.
The inbound data must be formatted in a structured matter: user,item,weight
(where weight is optional, by default it is 1.0). User and item are strings.
For the purpose of this test a dump from Audioscrobbler from 2005 (before
it was acquired by Last.fm) was used as input data. Audioscrobbler was a
set of plugins for popular music players that aggregated information about

1https://github.com/cloudera/oryx/releases

42



what music was listened to and in return offered top charts and recommen-
dations. The .csv file is structured as follows: user identifier, artist, count
(how many times any track of the artist was listened to by the user). The
csv file contains 656620 records.

A sample listing for one of the users is presented below:

. . .
1000067 , ” A l i c e in Chains” ,107
1000067 , ”The Beach Boys” ,129
1000067 , ”Aretha Frankl in ” ,148
1000067 , ”Jamie Cullum” ,105
1000067 , ” Katie Melua” ,197
1000067 , ”Red Hot C h i l i Peppers ” ,184
1000067 , ”R.E.M. ” ,149
1000067 , ”Manic S t r e e t Preachers ” ,252
1000067 , ” P i x i e s ” ,218
1000067 , ”Weezer” ,330
1000067 , ” Pear l Jam” ,159
1000067 , ”Nina Simone” ,180
1000067 , ”Green Day” ,110
1000067 , ”Norah Jones ” ,389
1000067 , ” Otis Redding” ,131
. . .

Listing 3: audioscrobbler.csv

The test was performed on a 2.26GHz Intel Core 2 Duo MacBook Pro
With 8GB DDR3 RAM memory, running on OS X Mavericks (10.9.2) with
Oryx release version 0.5.1.

Starting the long-running computation layer process is as easy as performing
a single command:

java −Dconf ig . f i l e=oryx . conf −j a r oryx−computation
−0 . 5 . 1 . j a r

The computation process started the (included within the jar) servlet
container (Tomcat), started the main servlet and noticed no available gen-
erations, which immediately forced to start generating the models from the
00000/inbound/audioscrobbler.csv input file. The computation layer ran 30
iterations of the ALS algorithm and wrote all the necessary output files. The
whole process took approximately 5 minutes with about 10 seconds needed

43



for each iteration of ALS.

While the computation layer was working the serving layer was started, also
with a single command:

java −Dconf ig . f i l e=oryx . conf −j a r oryx−se rv ing −0 . 5 . 1 .
j a r

Once the web servlet was running, a web interface of the serving layer was
exposed:

INFO: Serv ing Layer conso l e a v a i l a b l e at h t tp :
//192 . 168 . 0 . 105 :8091

It took the serving layer a couple of seconds to notice the files generated by
the computation layer. The latest model was loaded instantly:

INFO: Al l model e lements loaded , 73458 us e r s and 47065
items

Using the web interface it was now possible to fetch suggestions. For example,
running a GET request for similarity/Pink Floyd returned:

Led Zeppel in , 0 . 9319506
The Beat les , 0 . 7827824
The Doors , 0 . 74322164
Soulcracker , 0 . 69468755
Captain Bogg & Salty , 0 . 6938288
Poul Diss ing , 0 . 6567173
Domenico S c a r l a t t i , 0 . 6377974
The Ro l l i ng Stones , 0 . 6323819

This basic test shows how simple it is to work with Oryx, even without
understanding the underlying algorithms and technology Oryx can be a great
addition to existing platforms where a recommendation solution is required.
The split into two layers is also worth highlighting - thanks to the serving
layer the end user has constant access to the latest available information with
a asynchronous, pleasant user experience, while the computation layer can
be constantly updating the models and serving them to the serving layer only
when they are ready.

5.7 FB Graph data with Oryx

Preparing an input CSV file from the data gathered as described in subsec-
tion 4.1 was a rather straightforward task. The file is very similar to the

44



Audioscrobbler example, but this time the last parameter, weight, is omitted
so that it defaults to 1.0.

A sample listing for one of the users is presented below:

. . .
1138818755 ,UKF Dubstep
1138818755 , Gooral
1138818755 , Pro jekt WARSZAWIAK
1138818755 , Sparks And Fuel
1138818755 , Sovinsky
1138818755 , koVValsky
1138818755 ,donGURALesko
1138818755 , Snoop Dogg
1138818755 , Arc t i c Monkeys
1138818755 ,MIKA
1138818755 , Lenny Kravitz
1138818755 , Johnny Cash
1138818755 , David Guetta
1138818755 ,Kanye West
1138818755 ,Amy Winehouse
1138818755 ,Queen
1138818755 , Pink Floyd
1138818755 ,Red Hot C h i l i Peppers
1138818755 , Coldplay
. . .

Listing 4: graph.csv

The test was performed on the same hardware as for the example Au-
dioscrobbler data-set and with the same version and configuration of Oryx.
Using the similarity endpoint of the Oryx serving layer, a similarity graph
was built, with a structure very similar to the original graph described in
subsection 4.3. An example of the results is presented in the table below.

45



Table 4: Oryx graph for FB Social Graph interests

Artist 1 Artist 2 Strength
... ... ...
Handel Bach 1.0
Handel Igor Stravinsky 0.97780216
Handel Prokofiev Sergei 0.97455966
Handel Wo losi & Lasoniowie 0.97455966
Handel Henryk Wieniawski 0.97455966
Handel Daniil Trifonov 0.97455966
Handel Ingolf Wunder 0.91570157
Handel AGA ZARYAN 0.85863763
Handel Czes law Mozil 0.83407235
... ... ...
Coldplay Kings Of Leon 0.60366696
Coldplay Red Hot Chili Peppers 0.50101006
Coldplay NERO 0.42829087
Coldplay Kelis 0.42829087
Coldplay U2 0.42186016
Coldplay Kanye West 0.41922408
Coldplay Hans Zimmer 0.39399052
Coldplay Adele 0.38684645
Coldplay Lenny Kravitz 0.3814772
... ... ...

46



6 Results verification

It was of essential importance to find a proper way of verifying the results of
the proposed algorithms. Recommender systems, though extremely popular
in recent years, operate in a subjective realm, making it difficult to indis-
putably rank their effectiveness. Two data sources have been explored to
rank the results:

• Amazon.com Customers Who Bought This Product Also Bought... - a
popular Amazon.com feature that displays information about products
often bought together, which implies their similarity.

• Last.fm Similar Artists - one of the basic features of Last.fm, with data
gathered from its 50 million users.

6.1 Verification with Amazon recommendations

Amazon.com Customers Who Bought This Product Also Bought... feature
was selected as a good verification mechanism because purchases imply a
strong connection to a given item - if albums of two artists are often bought
together, they should be returned as a recommendation. Also, the Amazon
product collection is huge which gives promise of results for most of the en-
tities in the artists graph.

From a technical point of view accessing this information proved to be chal-
lenging. The only API that exposes that data - indirectly - can be accessed
through the Amazon Associates Program for Amazon.com, which is typically
used when one would like to offer Amazon products on their website. For
example, an owner of an online blog featuring movie reviews could link to
Amazon product pages for movie DVDs. For each movie sold on Amazon
that was referenced through his website, the owner of the blog would earn
a commision. In such a scenario the owner of the blog can also include a
Customers Who Bought This Product Also Bought... section on his website
- the API can be consumed with the use of a mostly undocumented PHP
SDK. The API returns the results in subsets of 5 results with random order,
which meant that for every artist the request had to be performed several
times. The amount of results was different for each artist so every time a
new artist was detected in the results, the requests counter for each artist was
reset - this meant that at least several API responses were received with no
new artists. Additionally the API returned results after several seconds and
errored-out when too many requests were made. A simple watchdog script

47



was introduced that would verify the results are gathered correctly. When
any error was detected a rollback was performed up to the point of the last
fully analyzed artist, and the script would be paused (sleep) for a while. Al-
though the whole process took a lot of time, all artists were automatically
sent to the Amazon API and the returned values were stored. The end result
was a graph of similar artists, with an example listing for the first two artists
provided below in Table 5.

Table 5: Amazon Customers Who Bought This Product Also Bought... graph

ID Artist 1 Artist 2
1 Kings Of Leon Mumford & Sons
2 Kings Of Leon Florence + the Machine
3 Kings Of Leon Foster the People
4 Kings Of Leon The Black Keys
5 Coldplay The Fray
6 Coldplay John Mayer
7 Coldplay Radiohead
8 Coldplay The Killers
9 Coldplay Keane
10 Coldplay U2
11 Coldplay Death Cab for Cutie
12 Coldplay Adele
13 Coldplay Onerepublic
14 Coldplay Snow Patrol
... ... ...

6.2 Verification with Last.fm recommendations

To further enhance the verification mechanism, a second datasource was in-
troduced. Last.fm directly exposes an API that returns recommendations for
a given artist and even offers a auto-correct feature, which performs a fuzzy
search on the artists name. The recommendations are built based on ’audio
scrobbles’ - as mentioned in section 3.2.2, Last.fm offers a set of plugins for
popular music players that automatically gather information about what mu-
sic was listened to. In return Last.fm users can expect a more personalized
experience.

From a technical point of view working with the Last.fm API proved to
be much easier than the Amazon Associates Program for Amazon.com API.

48



A well-documented PHP SDK is available and fetching the results is straight-
forward. Similarly to Amazon, the Last.fm API does not allow for requests
that happen too often so a similar watchdog was introduced. Because the
results are returned quickly, the automated mechanism was also randomly
paused (sleep) for several seconds. The end result was a graph very similar
to the one built with the Amazon API but with significantly more results,
partially listed below in Table 6.

Table 6: Last.fm recommendations graph

ID Artist 1 Artist 2
1 Kings Of Leon The Black Keys
2 Kings Of Leon Coldplay
3 Kings Of Leon Foo Fighters
4 Kings Of Leon Kasabian
5 Kings Of Leon The Killers
6 Kings Of Leon White Lies
7 Kings Of Leon The Kooks
8 Kings Of Leon Arctic Monkeys
9 Kings Of Leon Band of Horses
10 Kings Of Leon Mumford & Sons
11 Kings Of Leon Cage the Elephant
12 Kings Of Leon Editors
... ... ...
123 Kings Of Leon Empire of the Sun
124 Coldplay OneRepublic
... ... ...

6.3 Amazon and Last.fm results comparison

The final numbers prove the two selected sources for verification were a good
choice:

• The original artists database consisted of 1119 entries,

• Amazon API returned results (recognized the artist) for 365 artists,

• Amazon API returned on average 5.4771 results per artist

• Last.fm API returned results (recognized the artist) for 871 artists,

• Last.fm API returned on average 95.0526 results per artist

49



6.4 Verification results

The final, verified results are promising:

• Basic implementation - the final graph contains 157922 edges. On the
other hand Last.fm found matches just for 1250 edges. This suggests
that most of the edges are just noise that should not be taken into
account. The similarity metric described in subsection 4.3.1 is of expo-
nential nature which further proves this observation. After computing
the natural logarithm of that metric, a edge case value of 1.0 was se-
lected. For edges with the metric greater than or equal to 1.0 Last.fm
matched positively 1050 pairs, whereas only 200 pairs were matched
with a metric of less than 1.0. Amazon matched only 300 edges, but
240 of those had the metric greater than or equal to 1.0. Both verifica-
tion sources prove that the basic implementation performs well, with a
false acceptance rate at roughly 15%.

• Refined implementation - this implementation is based on the same
graph so again it contains almost 160 thousand edges. False acceptance
rate and false rejection rate based on Last.fm verification in dependence
of the cut-off value of the refined metric are presented in Figure 16.
Using the FRR and FAR values, for this metric an edge case cut-off
value of 0.25 was selected. For edges with the metric greater than or
equal to 0.25 Last.fm matched positively 1160 pairs, whereas only 90
pairs were matched with a metric of less than 0.25. Out of the 300
edges verified by Amazon, 250 had the metric greater than or equal to
0.25. Both verification sources prove that the refined implementation
performs slightly better than the basic implementation, with a false
acceptance rate at roughly 10%.

• Oryx - the final graph built by Oryx contains much less noise with
just 8450 edges, which is understandable given that it was built by
requesting similar artists. Last.fm found 1510 matches for those edges.
Oryx returns similarity in the range of 0.0 - 1.0. FAR and FRR based
on Last.fm verification in dependence of the cut-off value of the Oryx
result metric are presented in Figure 17. For this metric an edge case
value of 0.5 was selected. For edges with the metric greater than or
equal to 0.5 Last.fm matched positively 1420 pairs, whereas only 90
pairs were matched with a metric of less than 0.5. Amazon verified 210
edges, out of which 180 had the metric greater than or equal to 0.5.
This means that for Oryx the false acceptance rate is proportionally
roughly the same as for the proposed refined algorithm.

50



Figure 16: Refined implementation - FAR and FRR (based on Last.fm)

Figure 17: Oryx - FAR and FRR (based on Last.fm)

51



6.5 Conclusion

The tests and comparisons performed on the developed algorithms and Oryx
prove that in the world of Web 2.0 social networks are an interesting and
innovative data source for Recommendation Systems. Both algorithms cre-
ated, although simple in their nature, provide good results, comparable with
a much more sophisticated Oryx. The verification mechanisms created, al-
though not perfect, provide valuable insight about the developed algorithms.

Recommendation Systems are already being successfully utilized in a variety
of use cases. Using data from social networks allows for new and additional
usage, for example suggestions for a group of users, be that a casual group of
friends or a group of colleagues at work. Traditional Collaborative Filtering
Recommendation Systems try to look for patterns and similarites between
users - however, in a social network users are already connected together in
a variety of ways and this information can be used to enhance recommen-
dation results. Another big issue with current Recommendation Systems is
that users interests and taste changes with time - and social networks are
the first and most active location for that to be noticed. For example, the
proposed algorithm took into account the number of events a user was at-
tending. Furthermore current Recommendation Systems are limited to the
realm they operate in - for example, an e-commerce platform can base the
recommendations only on purchases made by users or products browsed by
users. On the other hand currently developers have at their disposal data
from a huge palette of social networks and the data acquired from those
networks can complement each other, creating a very precise and very up
to date profile of the user that can be used to suggest various content - the
same versatile Recommendation System could be used for ads, fast moving
consumer goods, culture, travel, suggesting other users and many other use
cases. Finally, current Recommendation Systems very often face the prob-
lem of very sparse data sets - for example, an e-commerce platform has a big
catalog of products but few purchases. Especially recommending anything to
a new user is virtually impossible. The use of data gathered through social
networks solves this problem as the user profile is already detailed.

52



7 Summary

The aim of this paper was to analyze the currently known and used content
suggestion mechanisms and then create a new one based on data gathered
from Facebook, in particular suggesting music bands and musicians based
on user interests. Additionally, because of the suggestive nature of such
suggestions, a verification method had to be introduced. All of these were
accomplished.

Facebook user data was gathered through the official API, based on Face-
book Graph and FQL (Facebook Query Language). This data was then
used to create an interest graph that became the foundation of a suggestion
mechanism. To verify the results, two highly popular data sources were used
for comparison - Amazon.com Customers Who Bought This Product Also
Bought... and Last.fm Similar Artists. Additionally, the developed system
was tested against a popular open source solution, Oryx. The results are
promising and suggest that social data can be a valuable source of informa-
tion when suggesting content.

The unstoppable propagation and growth of the Internet and new social
networks emerging constantly indicate that this area of data exploration and
analysis is worth further research.

53



8 Bibliography

[1] Rory Cellan-Jones, Technology correspondent, BBC News Hackers and
hippies: The origins of social networking (http://www.bbc.co.uk/
news/technology-12224588), 2011 [downloaded: 30.09.2014]

[2] Ben Mezrich The Accidental Billionaires: The Founding of Facebook, A
Tale of Sex, Money, Genius, and Betrayal, 2009

[3] Daniel Lemire, Anna Maclachlan Slope One Predictors for On-
line Rating-Based Collaborative Filtering (http://lemire.me/fr/
documents/publications/lemiremaclachlan_sdm05.pdf), 2005
[downloaded: 30.09.2014]

[4] Facebook Newsroom - Key Facts (http://newsroom.fb.com/
Key-Facts) [downloaded: 30.09.2014]

[5] Francesco Ricci, Lior Rokach and Bracha Shapira Introduc-
tion to Recommender Systems Handbook (http://www.inf.unibz.
it/ricci/papers/intro-rec-sys-handbook.pdf), 2011 [downloaded:
30.09.2014]

[6] Greg Linden, Brent Smith, and Jeremy York, Amazon.com Amazon.com
Recommendations: Item-to-Item Collaborative Filtering (http://dl.
acm.org/citation.cfm?id=642471), 2003 [downloaded: 30.09.2014]

[7] Facebook Query Lanuage (FQL) Reference (https://developers.
facebook.com/docs/reference/fql/) [downloaded: 30.09.2014]

[8] What is Apache Hadoop? (http://hadoop.apache.org) [downloaded:
30.09.2014]

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung The
Google File System (http://research.google.com/archive/gfs.
html), 2003 [downloaded: 30.09.2014]

[10] Jeffrey Dean and Sanjay Ghemawat MapReduce: Simplified Data Pro-
cessing on Large Clusters (http://research.google.com/archive/
mapreduce.html), 2004 [downloaded: 30.09.2014]

54



[11] Sean Owen Myrrix Joins Cloudera to Bring ”Big Learn-
ing” to Hadoop (http://blog.cloudera.com/blog/2013/07/
myrrix-joins-cloudera-to-bring-big-learning-to-hadoop/),
2013 [downloaded: 30.09.2014]

[12] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber and Rong Pan
Large-scale Parallel Collaborative Filtering for the Netflix Prize
(http://www.hpl.hp.com/personal/Robert_Schreiber/papers/
2008AAIMNetflix/netflix_aaim08(submitted).pdf), 2008 [down-
loaded: 30.09.2014]

[13] Yifan Hu, Yehuda Koren and Chris Volinsky Collaborative Filter-
ing for Implicit Feedback Datasets (http://labs.yahoo.com/files/
HuKorenVolinsky-ICDM08.pdf), 2008 [downloaded: 30.09.2014]

[14] Jelena Grujic Movies Recommendation Networks as Bipartite Graphs
(http://www.scl.rs/papers/2008-LNCS5102-576.pdf), 2008 [down-
loaded: 30.09.2014]

[15] Douglas Hebenthal, Cesare Saretto, Kathleen Mulcahy,James Allard
Following online social behavior to enhance search experience (http:
//appft.uspto.gov/), 2012 [downloaded: 30.09.2014]

[16] What is Apache Mahout? (http://mahout.apache.org) [downloaded:
30.09.2014]

[17] Powered by Mahout (http://mahout.apache.org/general/
powered-by-mahout.html) [downloaded: 30.09.2014]

55


