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Abstract: The need of distributed computation in math environments as Matlab
or Octave is nowadays unquestionable. A parallelisation package is presented that
gives the user possibility of distributed programming using common memory model
and synchronisation mechanisms, also while programming cross-platform Octave
and Matlab. Functionality and technical details of the package are described. Also,
a benchmarking test is done for comparison of this package and Matlab Distributed
Computing Toolbox efficiency. The test problem is Google PageRank algorithm.
The results of tests are promising, but the package still needs further maintenance
and development. Copyright c© 2007 IFAC.
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1. INTRODUCTION

Parallel processing is gaining a respected place
among functionalities offered by math environ-
ments. However, native support for parallelism
was denied any significant role — at least in
the case of Matlab. Only recently has the Dis-
tributed Processing Toolbox (DCT) provided rich
and efficient mechanisms for parallel processing.
However, nature abhors a vacuum and in the
meantime there sprang a number of third-party
parallel computation packages, responding to an
apparent demand for such functionality.

In this paper we are going to present yet another
package enabling parallel computations for math
environments. We also want to provide a rationale
behind making the package, especially when DCT
and dozen of other products exist. Originally,
reasons against native parallelism of Matlab, as

explained in (Moler, 1995), were threefold: mem-
ory model, granularity and business situation. The
memory model has changed since then in the sense
that there appeared computational problems so
big that their data do not fit into memory of a sin-
gle computer, and distributed processing becomes
a necessity, regardless of the assumed inferior
performance of parallelised tasks. Next, it is the
granularity that drives for parallel computation.
Bigger and bigger problems can be decomposed
into long-running tasks that exchange data be-
tween themselves rarely, if at all. The above two
factors improve at the same time the business
situation, finally making DCT a viable product.

The economic aspect is one of the main reasons
that third-party alternatives to DCT exist and
are in use. They simply provide a cheaper al-
ternative to do a numerical job, especially that
some of them allow cooperation of Matlab and Oc-



tave instances, too. Functionality offered by those
products is generally a subset of what DCT has.
Therefore, there is always some field or niche one
can target while writing a parallelisation package
like the one presented here.

Our package provides functionality of a virtual
shared memory, and synchronisation methods. Its
detailed description comes in Section 3, following
an overview of the existing solutions, given in Sec-
tion 2. Next, efficiencies of DCT and the presented
package are compared in Section 4, and closing
remarks are given in Section 5.

2. EXISTING PARALLELISATION
PACKAGES FOR MATLAB AND OCTAVE

There are three main ways (Choy and Edel-
man, 2005) to enrich non-parallel math environ-
ments (as Octave or older Matlab releases) with
support for parallel processing. The first one is
to transcribe the original program source (script)
to some language with support for parallelisation
(e.g. C++ plus PVM). In such case the original
math environment is used only for basic prototyp-
ing. The second way is to connect the environment
to some backend software that supports parallel
processing. In this case the original math environ-
ment is used as a terminal to the backend solver
(or solvers), and its functionality is limited to user
friendly handling, manipulation and presentation
of data.

The third way is to make a number of math
environment instances interact in order to solve
the problem jointly. This technique is the most
conservative in the sense that the biggest part
of the environment functionalities remains in use
during parallel job solving. It also means that
necessary changes and additions that make par-
allel processing possible can be really few and
easy to implement. That may be the reason the
third-party parallelisation packages of this kind
proliferate. Efficiency of such technique can be
high due to the fact that optimised native nu-
merical procedures are still in use. On the other
hand, synchronisation and data transmission are
the things math environment are not optimised
for. DCT and the presented new parallelisation
package fall in this category of techniques, so we
will focus further on them.

There are basically two ways a number of math en-
vironment instances can be put to work together.
For embarrassingly parallel (a.k.a. coarse-grained)
problems single instruction multiple data (SIMD)
approach is applied. This means in practice that
one math environment instance becomes the co-
ordinator and distributes the work across the re-
maining available instances that play the workers.

There is no interaction between algorithms pro-
cessing parts of the problem, and synchronisation
procedures are needed only while scattering initial
data and gathering results.

The other type of interaction is accomplished
through message passing. This gives more flexibil-
ity for the programs to interact. In particular, the
programs may differ, and may address each other
directly by sending any data structure — the
message. Let us look at capabilities of packages
of both types.

2.1 Parallel Matlab

Packages designed for embarrassingly parallel
problems are often used (and sometimes written)
by researchers or engineers with little knowledge
about distributed programming. Therefore, their
most valued features are ease of configuration, use,
and portability. A short comparison is done on
a representative group of them in Table 1. All
they make it possible to run the same script on
many Matlab instances, and provide means for
data scattering/gathering. The problem can be
decomposed by hand or automatically, with load
balancing. To make the decomposition more intu-
itive, constructs like parfor are provided; alter-
natively the way the input data is arranged (e.g.
in a matrix with an extra dimension) determines
how the job will be distributed. The easiest and
most robust technology employed in the packages
is a common file system with standard features
like file locking or exclusive file creation. Other
implementations use TCP based communication,
either directly or through another packages. In
the course of their development, some packages
(Parmatlab, DistributePP) started to offer point-
to-point messaging.

Packages designed to solve problems using mes-
saging approach are summarised in Table 2. As
it turns out, many of them operate on common
filesystem, too. It means that the basic function-
ality of common filesystem is universal enough for
both message passing and scatter/gather pack-
ages. In fact, both kinds must have messaging
and synchronisation of a kind; their classifica-
tion depends mostly on what type of communi-
cation (high-level i.e. scatter/gather vs. low-level
i.e. send/recv) is given to the user. Naturally, us-
ing a message passing package requires far better
knowledge of parallel programming techniques —
and is preferred more by academia than industry.
If not the common filesystem, MPI or PVM are
the technologies chosen for interprocess communi-
cation. A remarkable fact is that there is only one
package (MATmarks) presenting shared memory
programming model, and it is quite an old one.



Table 1. Packages for solving embarrassingly parallel problems in Matlab

Package Release Communi- Remarks

Name Year cation via

MULTI 2000 nfsa Implemented purely using .m files. Product apparently discontinued.
Paralize 2006⋆b nfs Purely using .m files. Default distribution along 3rd matrix dimension.

A separate Matlab instance needed to run a kind of server. MEX used.c

PMI 1999⋆ engined

PLab 2002 TCPe MEX
Parmatlab 2001⋆ TCP Parallelisation up to 5 arbitrary dimensions. MEX. Many Matlab versions

and operating systems supported.
MPI 2005⋆ engine Successor of PMI.

DistributePP 2004⋆ nfs MEX
MULTICORE 2007⋆ nfs Purely using .m files.

a Network File System or any equivalent technique allowing computers to work on common file system. The communication

and synchronisation mechanisms are made using files.
b A star (⋆) means that the package is present in Matlab Central, www.mathworks.com/matlabcentral.
c MEX is Matlab Executable, a technology to make programs written in C language and Matlab scripts communicate.
d Matlab Engine is Matlab functionality for reading and writing data into workspace of remote Matlab instances.
e Communication accomplished by ordinary use of IP sockets.

Table 2. Packages for solving parallel problems in Matlab by message passing

Package Release Communi- Remarks

Name Year cation via

MultiMatlab 2005 MPIf Available high-level parallelisation commands. MEX+MPICH
CMTM 2006 MPI MEX+MPI/Pro

DP-Toolbox 2005 PVMg Available high-level parallelisation commands. MEX
MPITB/PVMTB 2000 PVM/MPI Gives access to PVM or MPI commands from Matlab.

MEX+MPI/LAM or PVM
MATmarks 1998 TCP Shared memory approach; synchronisation of local instances of Matlab

objects done occasionally. Based on TreadMarks package.
MatlabMPI 2004 nfs MPI functionality. Purely using .m files.

pMatlab 2005 nfs Uses MatlabMPI. Provides high-level parallelisation commands.
f Specific third-party Message Passing Interface (MPI) implementation is used for communication and synchronisation.
g Parallel Virtual Mode (PVM) mechanism used for message passing.

2.2 Parallel Octave

There are not so many packages devoted explicitly
for parallelisation of Octave scripts. Three initia-
tives have to be mentioned, however:

• There exist a bunch of distributed program-
ming primitives maintained by Octave Forge
group. Those include commands like send
or receive; everything is based on IP socket
communications. This group of functions can
constitute a base for development of a com-
plete distributed programming package.

• Parallel-Octave — a package that allows in-
terfacing Octave scripts trough MPI/LAM.

• MPITB — a package of the same name and
by the same authors as for parallel Matlab
(cf. Table 2). Similarly, it allows calling MPI
functions from within Octave scripts.

Let us recall that a number of parallelisation pack-
ages for Matlab have been written in an orthodox
way, using only .m files and a common file system.
Considered high compatibility of Octave and Mat-
lab, it should be possible to use those packages
directly in Octave. However, this solution is not
advertised on Octave or Octave Forge websites.

As it turns out, there is a number of alterna-

tives for Matlab DCT, and there is a number of
parallel programming solutions for Octave. Many
of them are currently maintained, which means
that computations on machines with individual
Matlab licenses and a free parallelisation package
can be more appealing than the acquisition of
DCT. As regards Octave, it is planned to provide
Octave with DCT-equivalent capabilities (Eaton
and Rawlings, 2003).

As regards parallel computations performed by
a mixed Matlab/Octave cluster, the need for an
appropriate parallelisation package is not pro-
nounced widely. However, in our opinion the ra-
tionale for it is at least twofold:

(1) A single Matlab instance may act as a fron-
tend station for a cluster of Octaves. One can
take the advantage of superior Matlab data
presentation interface and ergonomics of its
workspace.

(2) Stations capable of running Matlab can take
care of tasks which cannot be done by Oc-
tave (e.g. running Simulink or sophisticated
toolboxes), while at the same time the rest
of stations in a cluster is running Octave in
order to perform auxiliary parallel operations
in the task (e.g. calculating products, per-
forming directional searches in optimisation).



These are two of many other reasons our paral-
lelisation package has been created.

3. NEW PACKAGE ARCHITECTURE AND
FUNCTIONALITY

The idea lying behind creation of yet another
parallelisation package was that it is natural to
program a distributed application with notion of
common memory, available to all processors. It
would be convenient for people with programming
background to have some mechanisms analogous
to interprocess communications (IPCS) while pro-
gramming on Matlab or Octave cluster. However,
providing a natural way of addressing common
memory objects is quite a tedious work, and we
appreciate the effort done by authors of MAT-
LAB*p, and the DCT itself. The drive for sim-
plicity led us to such solution: common objects are
maintained by a server, and up- or downloaded on
demand by Matlab and Octave instances. There-
fore, at the cost of performance (degraded by
unnecessary duplication of data) highly logical
model has been created. 1

3.1 Package operations

In our package all cluster nodes are treated equally
since the storage and synchronisation tasks are
pushed to the server. The stations can perform
the following main operations:

• matrix_conf(hostname,port) — specifies
the computer name and port number on
which the server is listening. This is the only
configuration command, issued before any
other commands.

• matrix_put(name,x) — store the local ma-
trix x in the common memory, under name
name. If an object of such name exist, its data
are overwritten with x.

• matrix_get(name) — get from the common
memory the object named name; return the
object.

• mutex_lock(name) — lock the mutex name.
If the mutex does not exist, it is created and
locked.

• mutex_unlock(name) — unlock the mutex
specified by name.

• mutex_trylock(name) — try to lock mutex
name. If it is already locked, error code is
returned; otherwise the mutex is locked.

• barrier(name,strength)— wait on barrier
named name until the number of waiting
processes reaches strength.

1 One can see an analogy in how the computer works: the
data stored in RAM has to be fetched to a CPU register
before performing an operation; similarly the result has to
be put back to RAM.

Therefore, a simple program calculating prod-
uct c of matrices a and b might look like that:

matrix_conf(’localhost’,7575);

a=matrix_get(’a’);

b=matrix_get(’b’);

ci=a(i,:)*b;

mutex_lock(’lock’);

c=matrix_get(’c’);

c(i,:)=ci;

matrix_put(’c’,c);

mutex_unlock(’lock’)

In the example, i denotes the row index the clus-
ter node is responsible for. Matrices a, b and c

pre-exist in the common memory. One row of the
product a*b is computed by each node; after that
the solution c in the common memory is updated
with partial results calculated by a node.

3.2 Package architecture

For each operation, the operation code and any
arguments are serialised and sent over freshly
opened socket to the server, where they are pro-
cessed. The result is sent back the same way,
deserialised and returned to the caller. The oper-
ation call is blocking, so it depends on the server
whether the caller will hang, which is important
for accomplishing synchronisation. The communi-
cation procedures are written in C++ language
and interfaced with Matlab (via MEX) or Octave
(via MEX equivalent). The client code is therefore
a dynamically loaded library. No multithreading
or forking is done on the client side.

The server has been implemented in Java, as it has
good support for synchronisation and networking.
For each incoming request, a new thread is cre-
ated. Next, the thread carries out the submitted
operation request. Implementation of synchroni-
sation between threads is particularly clear and
stable this way.

3.3 Discussion

If the package being presented was to be classified
according to criteria in Section 2, it should be
considered (by negative selection) as a message
passing one, although there is no explicit mas-
saging. Instead, we have a commonly available
repository of data and a number of synchronisa-
tion routines capable together of providing func-
tionality equivalent to that offered by packages
from Table 2. Conceptually, our package is close
to MATmarks and the DCT itself, but uses far
simpler handling of data: just copying. As regards
communication technologies, it is close to PLab
and MATmarks again (by the use of plain TCP)
and also to Paralize (by running a central server).



Major advantages of our package are the com-
mon memory programming model, i.e. the one
any programming novice learns, and autonomous
repository and synchronisation server. The fact
that the server is implemented in Java guarantees
portability and opens up possibilities of linking
the cluster controlled this way with any other
service present in the network. Also the fact that
the data is stored outside Matlab or Octave mech-
anisms guarantees interoperability of Matlab and
Octave interacting through this package.

The disadvantages are also a few, especially that
the package is not mature nor maintained and
developed regularly. Another one is that whole
objects must be transmitted, and not their parts
(as in Paralize or Parmatlab). Also, basic data
types are now supported: the real and the com-
plex. This diminishes appeal of the package, par-
ticularly that object oriented programming is in
fashion — and must be fixed quickly. Finally, there
is some potential in code optimisation; especially
in the way the data connections are maintained.
Probably keeping one socket connection to the
server open all the time would increase the speed
(connection establishment and adequate sizing
of the transmission window usually takes much
time), but at the cost of lesser robustness and
more complicated code.

4. BENCHMARKING

Performance of our package has been compared in
a series of tests to that of DCT. The testing envi-
ronment was a cluster of PCs with Intel Pentium4
processors operating at 3GHz, with 2GB RAM
each, and 1Gbps network cards. The operating
system was Linux.

4.1 Test problem and test plans

The algorithm selected for the benchmark was
PageRank routine used by Google (Page et al.,
1998) for assigning ranks to web pages. In fact,
the process of following links pointing to other
web pages can be modelled by a Markov process
with states corresponding to web pages. State
transition probabilities between n web pages are
stored in a n-by-n matrix A. Page ranks are just
the elements of an eigenvector x, i.e. x = Ax.

The structure of A guarantees that the solution
can be found by a simple iteration procedure
with step i: x

(i) = Ax
(i−1). It must be noted,

however, that A is not sparse, although the matrix
of incidencies for graph of web pages (nodes)
and links between them (edges) is sparse. This is
because the action of going to any location address
typed in the location bar in the browser must be

300 1000 3000 10000 30000

10
−1

10
0

10
1

10
2

problem dimension

ex
ec

ut
io

n 
tim

e

no parallelisation
4  workers, DCT
4  workers, author
10 workers, DCT
10 workers, author
20 workers, DCT
20 workers, author

Fig. 1. Average execution times of the test prob-
lem for various mechanisms, problem dimen-
sion and number of CPUs used.

modelled by nonzero probabilities where normally
zeros should be. Therefore we are facing dense
matrix multiplication problem of size in the order
of billions.

The problem can be decomposed across k nodes:
each station m computes its own part of the
solution, (x1+m∗n/k, . . . , x(m+1)∗n/k) using some
(probably outdated) approximation of the solu-
tion stored in a shared memory. The stations
maintain that commonly available approximation
of the solution; they upload their part of the so-
lution approximation periodically (alternatively,
they broadcast their solutions to the others every
so often.)

The test plan covers comparison of computation
times achieved by original (single-station) and dis-
tributed (DCT) algorithms. Also, the frequency
of synchronisation between stations will be ex-
amined. Next, DCT will be compared with our
package in terms of efficiency.

4.2 Test results

A series of tests have been performed in various
configurations, taking as sole performance metrics
the total execution time, i.e. the time until all
local solutions converge. The termination criterion

used was maxj=1,...,n |x
(i)
j − x

(i−1)
j | < ε. All the

major quantitative results have been presented
synthetically in Fig. 1.

Quite expectedly, this problem shows in practice
its numerical complexity of order O(n2), repre-
sented by ‘no parallelisation’ graph, until RAM
resources are exhausted (n = 10000) and intense
swapping takes place. Decomposition of the prob-
lem and parallel solving using DCT gave results
indicated by thin black lines of patterns getting



dense as the number of processor grows (dotted,
dashed and solid lines). As it turns out, paral-
lel processing introduces substantial overhead so
that parallelisation pays off only in case when
the problem was not processing power but RAM
storage, which is consistent with what was stated
by (Moler, 1995) a dozen of years ago. Results ob-
tained with four workers are particularly discour-
aging because DCT always performed an order
of magnitude worse than single-station computa-
tions.

There were attempts to improve things by up-
dating the common solution approximation every
3, 10, 30 or 100 steps, instead of every single
step x

(i) = Ax
(i−1). This was done in hope that

reduced network I/O operations will give more
time for calculations and finally compensate the
fact that synchronisation is not done so often.
However, things have not changed much in any
of the tested cases.

The results of running the author’s parallelisation
package (presented in Fig. 1 with thick grey lines)
proved to be quite interesting. For the problem
dimension n growing, the package initially im-
poses an overhead similar to DCT, only to surpass
single-station performance for as small n as 1000.
A peculiar phenomenon is that the computation
times have their minima not for the smallest n

but for problems that are bigger, i.e. of size corre-
lated with the number of workers used. Such be-
haviour is difficult to explain; it may be caused by
scheduler or TCP operation for extremely small
portions of data. In any case, the package seems
to be useful for problems of size reaching 30000
— where DCT hangs or reports communication
errors, and single-station processing is impossible
due to memory limits. Another positive observa-
tion is that computation time for k = 20 and
n = 3000 ÷ 30000 grows an almost constant rate
(on log-log graph).

The test problem was also solved using single-
station Octave. The execution times were about
three times longer than in Matlab, which means
in particular that coupling Octaves with the par-
allelisation package still gives results quicker than
computations by a single Matlab instance.

5. CLOSING REMARKS

The parallelisation package presented here can
complement the already existing similar solutions
for Matlab and Octave. Providing an imitation of
common memory can be appealing for those with
programming experience, especially at universi-
ties. For the considered test problem the package
performs definitely better than DCT when used in
pmode. Unfortunately, only one problem has been

tested so far, and the results given in Section 4
have to be considered tentative.

Also, there is much to be done: the current version
does not have support for sparse matrices; neither
it offers accessing a slice of matrix stored in com-
mon memory. These and other ways of develop-
ment are open for the public and supported by
the author since the package is publicly available.

From the economic perspective, the package can
be attractive alternative for institutions already
possessing a number of Matlab licenses. Other-
wise, one has to raise some EUR 2,300 for a decent
cluster configuration (one DCT license plus eight
distributed computing engine licenses). The pack-
age can address especially those not interested
in full DCT functionality. Once again, academic
institutions where Matlab licenses stay idle when
there are no labs can perform computationally
demanding jobs off the hours.
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