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Abstract
This paper focuses on two problems of modelling used
for objective index computation in optimisation. First
is the optimisation domain formed by disjoined sets.
Such domain can be the result of implicit constraints
imposed on some model variables. Second is the prob-
lem of modelling randomness of human decision, es-
pecially if the information as to the nature of this
randomness is incomplete. The model of a commer-
cial simulator of the market of networking products is
considered as an example. The conclusions are that
more accurate modelling of the randomness can mit-
igate difficulties presented by the optimisation, and
that some universal hybrid optimisation framework for
the problems containing inaccurate models should be
developed.

INTRODUCTION
The task of designing a market model, i.e. the for-

mulas modelling sales of particular goods, is usually
a difficult one, due to a number of reasons. Probably
the most demanding of them is the detection of the
actual factors that influence customer behaviour, as-
sessing them quantitatively, and finding the way they
interact so that purchase decision is made. This is
followed closely by another one, the inherent uncer-
tainty of a human decision. When many customers
are considered, their decisions average to some mean,
but still that mean alone is often not enough to model
the dependent economic parameters, as income or cost,
correctly. Once the modelling formulas are chosen,
there is still the problem of setting their parameters
that should be based on the past (or comparable in
some sense) sales data. Usually, scarcity of those data
and limitations of parameter tuning procedures de-
mand those formulas to remain simple. In such con-
ditions, only a number of well-known general-purpose
modelling functions are in use (cf. e.g. [7, 9]).

This task is even mode demanding when the sys-
tem to be modelled is a market of network services.
In such case one often faces the problem that some
data for model identification come in great abundance,
while others are dramatically few. The former can be
e.g. network usage log files, unveiling such subtleties
of data flow as the exact time, source, destination and
type of each packet transmitted. The latter can be e.g.
the number of long-term contracts made by an Inter-
net Solution Provider (ISP) with large customers —
usually such contracts are tailored (w.r.t. both their
structure and pricing) to customer’s particular needs
— and are, in some sense, unique. Therefore, model
accuracy must match the amount of available real-life
data.

Market model construction, tuning and utilisation
for optimal pricing of services — in conditions as those
described above — was one of the major objectives
of Quality of Service and Pricing Differentiation for
IP Services (QOSIPS) project. Authors’ participation
in the project is the main source of observations on
the nature of optimisation problems market models
can create, and those observations will be presented in
this paper. First, market model developed in QOSIPS
will be introduced. Then it will be used to produce
some examples of optimal pricing problems with un-
connected domains. (Unconnected domains consist of
disjoined sets, and present difficulties to most optimi-
sation routines.) It will be shown that the existence of
such domains remains in close relation to the way an
uncertainty is modelled. The paper closes with con-
clusions as to the procedure that could be applied to
treat such difficult optimisation problems in a uniform
way.

MARKET MODEL
The main goal of market modelling in QOSIPS

was to reflect properly the complexity of ISP prod-
ucts, the market segmentation, sales, network utilisa-
tion and the resulting Quality of Service (QoS) expe-
rienced by the customers. Appropriately constructed
and initialised market model can be then embedded



in an optimisation routine that finds prices satisfying
ISP’s goals, which are mainly short-term and long-
term profits. One can also consider using such model
as a tool supporting pricing of new products being in-
troduced to the market.

On one hand, the design of the developed model
is flexible enough to be applicable in similar branches
of economy (e.g. in cellular telephony); this is made
possible by hierarchically organised product structure
and by the ability to influence every modelled value by
any number of other internal model values, indicated
freely by the user. On the other hand, it is focused on
QoS-related issues, as multiple QoS metrics, which are
usually specified by Service Level Agreements (SLA’s).
Their detailed presentation has been made in [1,2]. Let
us occupy here with only those model features which
are relevant to the subject of the paper.

Model Dynamics
The market is perceived in QOSIPS as a dynamic

system with the number of customers currently sub-
scribed to an ISP as the state variable x. (Actu-
ally, since ISP offer can consist of several products,
x is a vector of state variables x1, x2, . . . , for subse-
quent products.) Market modelling means describing
behaviour of that dynamic system over some period,
given the initial conditions: number of customers x(0)
and the quality of service q(0) experienced by them
prior to simulation start time. The main model pa-
rameter is the vector of prices p for the corresponding
products. Simulation is performed in discrete time. In
each step, the following are calculated:

• number of new subscribers:

xin
i (t + 1) = αin

i qi(t)

dim x�
k=1

p
βin

ik

i , (1)

• number of churning subscribers:

xout
i (t + 1) = αout

i (1 − qi(t))

dim x�
k=1

p
βout

ik

i , (2)

which make the current number of subscribers as

x(t + 1) = x(t) + xin(t + 1) − xout(t + 1) . (3)

The coefficients αin, βin, αout, βout, appearing in (1)
and (2), are the scaling ratios and elasticities, and the
formulas are modified Cobb-Douglas modelling func-
tions. The modifications make Cobb-Douglas formu-
las take into account not only the influence of ISP own
prices on the client behaviour, but also on the QoS they
experienced in the previous step (usually, the previous
month).

Modelling Usage of Resources and QoS
Next, in each step the system output is calculated:

• product (e.g. link, application, service — de-
pending on the context) utilisation

ui = αusage
i p

β
usage

i

i , (4)

• quality of service coefficient

qi(t + 1) =

�� � 1 if ci > 1
0 if ci < 0
ci otherwise

,

ci = ai + � dim x

k=1 bikxi(t)ui ,

(5)

• profit

Ji(t + 1) = J income
i (t + 1) − Jcost

i (t + 1) , (6)

J income and Jcost being certain nonlinear func-
tions of xi(t), xin

i (t + 1), xout
i (t + 1), ui and

qi(t + 1).

In (4), to calculate the utilisation, the Cobb-Douglas
formula is used again. In (5), the quality coefficient
(representing the fraction of data or time for which
SLA was not met) is modelled by a linear function
of weighed total usage of all products. This is, cer-
tainly, rather simplified way of representing unloaded,
partially loaded and congested states of network infras-
tructure, but it is done without resorting to complex
modelling tools as ns2 (see [5]).

IMPLICIT CONSTRAINTS IN OPTIMISA-
TION

Typically, ISP is interested in adjusting p to max-
imise its performance index over a given period. ISP
initialises model parameters (utilising historical data
or expert knowledge), and then can compute market
response for any p set by hand, or to start an optimi-
sation routine computing p which maximises the per-
formance function (usually, the profit). Depending on
model parameters, the shape of the performance func-
tion surface can vary from a very simple to contain-
ing multiple optima, due to repeated switching in (5).
(See [1] for more details.)

The constraints imposed on the vector of decision
(price) variables can be twofold:

• explicit
pi ∈ [pmin

i , pmax
i ] , (7)

forming a hypercube of the search domain;

• implicit, restricting the number of customers in
each month not to fall below a certain limit

dim x�
k=1

xk(t, p) ≥ xmin, t = 0, 1, . . . , (8)



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

15

p
1

va
lu

e 
of

 e
xp

re
ss

io
n 

(1
0)

Fig. 1: Graph of expression (10) for β = 2, βusage
1 =

−0.3 and a1 = −1.5 for p1 ∈ [0.4, 2]

mapping to the space of decision variables in
a complex way, often computable only numeri-
cally.

Optimisation in Steady State
In this case the objective is to maximize profit

when all transient effects caused by the change of price
are already negligible. Therefore, the optimisation prob-
lem is to find

arg max
p∈D

dim x�
k=1

Jk(t) , (9)

i.e. to find prices that maximise profit from all own
products for a given month t, sufficiently late after the
price change. D is the domain determined by (7) and
(8).

As an example, consider still more simple model
with just one product offered. Also, assume αin

1 , αout
1

and αusage
1 to be 1, and β

df
= βout

1 = −βin
1 . In the steady

state xin(t) = xout(t), and this, along with (4), gives

x1 =

p
−β
1

p
−β
1 +p

β
1

− a1

b11p
β

usage

1

1

.

The part of ∂x1/∂p1 that determines its sign is

−2β+(2a1−1)βusage
1 +(a1−1)βusage

1 p−2β
1 +a1βusage

1 p2β .
(10)

One can easily indicate the parameters that make
(10) take both positive and negative values. An ex-
ample graph of (10) is shown in Fig. 1. Such a shape
implies that the set of prices satisfying (8) can be un-
connected for certain xmin. A situation of this kind is
illustrated in Fig. 2.
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Fig. 2: Graph of the number of users x1 in the steady
state vs. some constraint (8), and the resulting search
domain D. Here, xmin = 19

Therefore, applying widely recognised modelling
formulas, one can get involved in price optimisation
with troublesome search domain even with a simple
model as presented above. It is worth noticing that the
curvature of the graph in Fig. 2 has its source rather in

the three power terms (p−β
1 , pβ

1 , p
β

usage

1

1 ) that dominate
for varying p1 than in the model internal switching.
For the whole range of p1, the quality coefficient q1

never reaches neither 0 nor 1.

Optimisation in Transient State
Optimisation of prices for short-term profit max-

imisation is an alternative for the steady state optimi-
sation. Here, one is interested in profit in relatively
short period (3 to 6 months) after changing of prices.
Such strategy is not uncommon on the market of new
technologies. Merciless exploiting of current customers
takes place, with hope to allure them (or others), af-
ter several months with completely new products of
technological advance.

Minor modifications of the exemplary model given
above provide a profile of the minimum number of cus-
tomers w.r.t. price as the one drawn in Fig. 3 with thick
line. Again, the domain D determined by (8) can be
not connected for certain xmin. This time it is the
result of model switching executed when q1 reaches
the value of 1. The decrease of the number of cus-
tomers w.r.t. the initial value happens for the follow-
ing reasons. In the central and right part of the graph
(i.e. for p1 > 0.39) q1 is less than 1, and ISP expe-
riences fewer customers in initial months because of
small number of new subscribers (when p1 is high),
and in final months because of high churn rate (when
p1 is low, which causes q1 to grow). In the left part
of the graph (for p1 < 0.37), q1 = 1 for all the time
considered, and the initial number of customers, aug-
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Fig. 3: Graphs of the number of users x1 in the first
5 months w.r.t. the changed price. The minimum
number of users, mint∈{1,..,5} x1(t) is represented by
a thick gray line. Model settings are: x1(0) = 20,
q1(0) = 0.89, βin

11 = −1, βout
11 = 2, βusage

1 = −0.2,
a1 = −1, b11 = 0.082. The initial value of p1 was 0.5

mented with those attracted in the first month by low

prices, is dropping steadily with the rate p
βout

1

1 , forming
a slope.

In the examples presented so far, the search do-
main generated by the implicit constraints on x con-
sisted of two separated intervals. However, for more
complex product structures, D is likely to consist of
a greater number of unconnected sets. As an example,
one can consider two products twin to that described
in Fig. 3, offered simultaneously by an ISP to the mar-
ket. Then, the contour plot of

min
t∈{1,..,5}

(x1(t) + x2(t))

looks as in Fig. 4 — four separate feasible sets of p can
be generated.

Applied Optimisation Algorithms
The practical market model that QOSIPS dealt

with did not present such problems like the uncon-
nected domain shown in Fig. 4. Nevertheless, some
of QOSIPS optimisation routines have been adopted
to cope with problems of this type. They are CRS
and COMPLEX. Both are direct search methods that
maintain a pool of trial points, which is updated, to
some extent randomly, with new trial solutions. The
detailed rules for this random update distinguish CRS
from COMPLEX and from a number of similar rou-
tines working in this fashion. CRS, in comparison to
COMPLEX, is more exploratory, but its convergence
rate decreases in the optimum proximity. Therefore, it
is suitable for preliminary optimisation. On the other
hand, COMPLEX often gets stuck in local extrema,

Fig. 4: Contour plots of the minimum number of the
total of users an ISP had in the first 5 months. Lighter
areas denote higher number of users. The solid line
encloses the search domain, which will be used for the
optimisation experiments. The dashed and the dot-
ted lines represent alternative shapes of D for different
xmin

but it has far better support for implicit constraints.
(See [8] and [4] for the generic versions of CRS and
COMPLEX).

The third routine developed, or rather adopted,
for QOSIPS was a local, gradient-based deterministic
algorithm that in each step computes the solution of
the linearised original problem, and takes the new so-
lution approximation to lie on the line between the LP
solution and the solution computed in the former step.
This is why it is named SLR, Sequential Linearisation
with Relaxation.

CRS, COMPLEX and SLR support implicit con-
straints and unconnected domains either by the appli-
cation of penalty functions for infeasible solutions, or
by direct modifications of their code, allowing to skip
over infeasible regions. They have been run for the sys-
tem with twin products, with the purpose to maximise
profit that was constituted mostly by usage-based in-
come. The contour lines of the profit are presented
in Fig. 5. The same figure illustrates solutions found
by the three solvers. CRS and COMPLEX were al-
ways starting from the corner opposite to the solution.
CRS approached the optimal point in all cases, but
COMPLEX usually got closer to it, if only managed to
get out of the three unpromising regions. Such results
comply with the common opinion on the two methods.

SLR has never performed that good. It is suited
to handle numerous nonlinear explicit constraints and
in this case it exhausted computation budget without
significant improvements. It was started 4 times, for
p1, p2 ∈ {0.3, .5}, and its solutions are marked in Fig. 5
with circles that form a square. The fifth circle, much
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Fig. 5: Contour plots of the revenue function with do-
main borders indicated (brighter areas denote higher
revenue). The optimal point, lying on the upper right
border, is indicated by a transparent square. Exem-
plary CRS solutions are marked with dots; COMPLEX
solutions are marked with crosses.

closer to the optimum, was the result of SLR run with
much bigger budget (i.e. the number of function eval-
uations) allowed.

The results are generally satisfactory. However,
one instant conclusion appears that performing the ini-
tial phase of optimisation with CRS, and then switch-
ing to COMPLEX would be the best strategy in this
case. Utilisation of other optimisation algorithms was
also considered in QOSIPS project. Methods based on
the evolutionary strategies seemed good substitutes for
the direct search routines, and a suite of gradient-based
algorithms also existed that could compete with SLR
routine. However, the chosen methods were previously
widely and successfully applied by the authors and/or
they did not require any extra work on the model, like
expressing implicit constraints explicitly. The assump-
tion was made that simulation is an impenetrable pro-
cess, and the optimisation routines must do with what
is available on the simulation output. This approach
allows to apply the same optimisation routines to var-
ious problems and various simulators but excludes ap-
plication of Constraint Logic Programming.

UNCERTAINTY MODELLING
In the preceding description of market models the

stress has been put on the shape of the optimisation
domain, and the uncertainty of the modelled values
was apparently suppressed by treating them as crisp,
instead of random, variables. However, constructing
the model in terms of mean values only is delusive.
Consider, for example, the number of customers x and
the QoS coefficient q influenced by x. Had the rela-
tion of x and q been linear, it would not matter if x

were deterministic or stochastic. However, q saturates
at 0 and 1 and, strictly saying, treating x as a mean
and forgetting its distribution, can be misleading. The
same could be said e.g. of computation of an income
based on usage u. The formula for calculating the
usage-based income from a single customer is

jincome
i = fi(ui) . (11)

If f(·) in (11) is linear then everything is fine — other-
wise the mapping changes the type of ui distribution.

The conclusion can be made that treating the mod-
elled variables deterministically is incorrect. If so, then
where to take the distributions from? All one has is the
output from Cobb-Douglas-like formulas that contains
no additional data as to the modelled variable distri-
bution. Those data can be estimated from historical
records, if they are available. As for model parameter
tuning, in the branch of networking solutions one can
collect many usage-related and few sales-related data.
Therefore, it is easier to deduce the distribution of u
than of x.

The modelling rules in QOSIPS have been the
result of some compromise between the demand for
modelling accuracy and the amount of data available.
Therefore, for the computation of usage-based income,
u is assumed to be a random variable with some known
distribution. All the other model variables have been
assumed to be crisp. Unfortunately, no real-life us-
age data were available at the time of designing the
model, and the design team had to assume some dis-
tribution of u, preferably in analytic form, to speed
up the calculations. In such conditions the principle
of maximum entropy was applied that proposes distri-
bution maximising the uncertainty about the missing
information. This rule leads to the usage of exponen-
tial distribution.

Supporting the model with as much information
as possible has always a good effect. In the case of
usage-based costs, the performance function is based
on expected values of profit, is much smoother, and
is better supported by profit optimisation algorithms.
On the contrary, depriving the model of information
causes problems. QOSIPS team experienced this in
case when there was pressure to deprive the number of
customers of its fractional part, for presentation pur-
poses. What the graphs of the total number of cus-
tomers would look like is presented in Fig. 6. No one
would dare to perform price optimisation in such con-
ditions. Neither there would be any sense to do so
because such model is severely crippled.

At the point when QOSIPS ended, capabilities of
its market modelling were as presented above. How-
ever, the research on modelling improvement is still in
progress. It seems that when it is impossible to in-
fer about variable distribution from the past data (be-
cause there are none), then the principle of maximum
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Fig. 6: Graph (a) of the minimum number of customers in the first 5 months (analogously to Fig. 4) and the
corresponding search domain (b), for the model with customer number rounding switched on

entropy should be applied — as for u. In case of u, this
emerging indeterminism did not propagate within the
model, but in general the whole modelling will become
stochastic. There are many routines suitable for solv-
ing this kind of problems — for their overview, see [6]
and references therein. What differs such model from
others is that it is simultaneously stochastic and has
unconnected search domain.

CONCLUSIONS
This paper focused on two problems that even

a relatively simple market model can cause: uncon-
nected search domain due to implicit constraints and

indeterminism of modelled variables. The observation
can be made that the two problems are likely to appear
together, thus creating difficult optimisation problem,
rarely addressed in the literature. Most authors sug-
gest to build an explicit model so that the optimisation
domain is connected (and, preferably, convex). Un-
fortunately, there are cases when such modification is
impossible, for example due to inaccessibility of mod-
elling algorithm details or model internal variables.

The proposed approach to such problems is to de-
velop an optimisation environment capable of dealing
with unconnectedness of domain and with indetermin-
ism simultaneously. Such environment is the goal of
the authors’ current research. It seems that it ought
to contain several generic algorithms already suitable
for stochastic problems (e.g. based on evolutionary
strategies scheme, controlled random search, and more
effective local optimisation routines), adapted for op-
eration on unconnected domains. The crucial part of
such environment would be a routine for proper choos-
ing of the sequence of algorithms to attack the prob-
lem, and for passing the solution from one algorithm as
a starting point for the next algorithm in the sequence.

The basic condition for such environment is to de-
velop a standard of the interface between the model
(i.e. the simulator) and the optimisation solver. Firstly,
such interface would allow the model to communicate
its characteristics and the intermediate simulation val-
ues to the solver. Secondly, the solver would be able
to intervene and cut unworthy simulations. Such re-
quests for the interface have been already expressed by
others in [3].
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