
SIMULATOR-OPTIMIZER APPROACH TO
PLANNING OF PLANT OPERATION; ILL-DEFINED

SIMULATOR CASE

Mariusz Kamola ∗ Krzysztof Malinowski ∗

∗ Institute of Control and Computation Engineering
Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: M.Kamola,K.Malinowski@ia.pw.edu.pl

Abstract: In this paper an optimization problem is considered in which for every
function evaluation a specialized simulation software must be run. This software
computes the values of implicit variables. All variables are subject to constraints;
additionally, for some trial points, the simulation fails to find corresponding implicit
variables values. Adaptations of standard algorithms for this problem are suggested.
Two hybrid algorithms are proposed. All the algorithms have been applied for steady
state optimization of an industrial power plant model.

Keywords: Genetic algorithms, Global optimization, Power station control, Random
searches, Simulation

1. INTRODUCTION

In many fields there exist needs to optimize design
or operation of complex systems. Examples of
such cases can be numerous, e.g. aeroplane wing
design, drainage structure design or power plant
operation planning, to mention some. To deal with
them one must take advantage of pre-existing
models that are the fruits of long-term experience
and effort of the specialists in a given domain.
These models are very often so complex that they
cannot be presented in analytical form but take
the shape of software codes that perform certain
simulations to derive all model parameter values
from a set of those specified by a designer.

To embed such a model in an optimization rou-
tine can become a demanding task. Spawning the
simulation process is usually the essential part
(also in terms of computational effort) of the
objective function calculation, and there is no
guarantee that it will be completed successfully. It
is because the simulator itself was initially devel-
oped for manual use only and, apart from minor

software interface incompatibilities, its behavior,
namely its casual crashes, was no wonder for an
expert and could be explained reasonably. On the
contrary for optimization routine designer: being
unable to compute either the function value or any
of model parameters that would give the idea how
far the considered decisions are from the domain
can become a true problem.

Let us describe the optimization problem formally.
We are to find the minimum of the objective
function

min
x

q (x, d) (1)

with respect to the set (vector) of independent
variables x. The function depends also on vector d
of implicit variables. The values of elements of d
are computed, given the values of x, by a simula-
tion routine. Let us introduce a function

f (x, d) = 0 (2)

which denotes this relationship. Additionally, let
us introduce simple constraints on all variables:

xi ∈ 〈li, ui〉 , i = 1..n, n = dim x, (3)

dj ∈ 〈lj , uj〉 , j = 1..m, m = dim d. (4)

Of course, constraints (4) projected on the search
space can turn into extra constraints of compli-
cated nature. Moreover, for a certain value of x
the simulation routine may not provide a solution
of equation 2, constraining the optimization do-
main even more.

Given a problem of the nature as above one has to
develop appropriate optimization approach based
on properly adapted, modified, existing routines.

2. ALGORITHMS USED

It seems that there is no single algorithm that
would suit the above optimization problem per-
fectly. All gradient routines can be fairly excluded
since the objective function gradient is unavail-
able. Several of non-gradient ones have been cho-
sen for tests. Let us present them shortly in their
original shape, before they become subject to
modifications to fit problem specific features.

2.1 CRS2 Algorithm

The abbreviation CRS2 comes from Controlled
Random Search, ver. 2; the method was presented
in (Price, 1987). It is a routine for global op-
timization that performs direct search, requires
minimum preparation of a problem, and is appli-
cable to constrained as well as to unconstrained
optimization. The algorithm is summarized below
(minimum of an objective function q is sought):

Step 1. Choose N points (N � n where
n is the problem dimension) at random over
the domain V ; evaluate value of the objective
function at each point. The points chosen
constitute the current point set.
Step 2. Find in the current point set a point
xl with the lowest value of q, and a point xh

with the highest value of q.
Step 3. Make a n + 1-dimensional sim-
plex using points from the current point set.
The simplex must contain xl; the remaining
points are chosen at random from the current
point set. Compute a trial point xt as the
result of reflection of xh, the reflection center
being the center of the simplex.
Step 4. If xt ∈ V then evaluate q (xt) and
go to step 5. Else go to step 3.
Step 5. If q (xt) < q (xh) then replace xh in
the current point set with xt and go to step 6.
Else go to step 3.
Step 6. Stop if the stopping criterion is
satisfied. Else go to step 2.

CRS2 routine is not perfectly suited for our prob-
lem because evaluation of q in step 5 implies a sim-
ulation which can turn out to be unsuccessful.
Also the case where (4) is not satisfied must be
treated properly. Thus, modifications for these
two cases have to be developed.

2.2 Evolutionary Algorithm

Various evolutionary algorithms stem from prin-
ciples of evolution, from the idea of maintaining
a population of individuals and letting them to
evolve so that their “fitness” to a certain environ-
ment increases. A summary of experience in the
field can be found in (Bäck et al., 1997); it gives an
outline for a specific routine as below (minimum
of q is sought):

Step 1. Choose N points (N > n, n is
the problem dimension) at random over the
domain V . The points chosen constitute the
initial population Pn, for the first time n = 0.
Evaluate value of q (xk) for every xk ∈ Pn.
Step 2. Find the best point in Pn and
record the best point found so far. Check
stop criterion, i.e. improvement of objective
function value for best points found in several
last steps.
Step 3. Create new population Pn+1. Each
point is either the winner of a tourna-
ment (with probability p) or the result of
a crossover of t tournament winners.

Tournament. Choose at random xa, xb

from Pn. Put in Pn+1 the one that has
better objective function value.
Crossover. Perform tournament t times
to obtain a set of crossover partici-
pants. Perform floating-point crossover,
i.e. compute centroid of tournament win-
ners. Put the centroid into Pn+1.

Step 4. For every point x in Pn+1 perform
mutation, i.e. perturb each element of x with
random variable ξi of Cauchy distribution;
probability density function for ξi is

1
π

σ

σ2 + (x − xi)2 .

Step 5. Assign Pn := Pn+1 and go to step 2.

Evolutionary algorithms (EA) and CRS2 have
some common features in the context of our prob-
lem. Little knowledge of q is needed, nevertheless
some amendments must be done to support ob-
jective function calculation failures and violations
of constraints (4).

2.3 COMPLEX Algorithm

This method (called originally Constrained Sim-
plex) is an important upgrade of the standard sim-

plex search algorithm. It eliminates the problem of
maintaining simplex regularity as well as supports
convex search domains. The generic algorithm,
taken from (Box, 1965), is as follows:

Step 1. Given an initial feasible point x0,
create a set C (referred to as complex) of k
points, k ≥ n + 1. This is done by a series of
k augmentations. Calculate the value of q for
every complex element.

Augmentation. Calculate the center of C.
Choose at random a trial point xt from
the space constrained by (3). Move xt

halfway towards C center so many times
that (4) is satisfied. Then set C := C ∩
{xt}.

Step 2. Stop if the stop criterion is satisfied.
Else go to step 3.
Step 3. Mark the worst (in terms of q value)
element of the current complex C as xh.
Calculate the center xc of C \{xh}. Compute
a trial point xt = xc + α (xc − xh). Set all
elements of x that violate (3) on appropriate
bounds.
Step 4. Check if xt satisfies (4). If not, set
xt := 0.5 (xc + xt) and repeat this step; else
go to step 5.
Step 5. If q (xt) < q (xh) then replace xh

in C with xt and go to step 2. Else set
xt := 0.5 (xc + xt) and go to step 4.

The above scheme, unlike the previous ones, takes
into account the existence of implicit variables
and related constraints (the stage of computing d,
given x, in order to evaluate q has not been shown
in the routines). However, feasibility requirement
for an initial point x0 can be sometimes hard to
fulfill. Also the assumption for domain convexity
is much too strict for our problem. Unlike in the
case of CRS2 and EA, q calculation failures can
be considered in step 4 simply as the violations of
constraints (4), and treated respectively.

3. ALGORITHMS ADAPTATIONS TO THE
PROBLEM SPECIFICS

The real problem that had to be originally solved
was a steady-state optimal working point com-
putation for a model of a boiler-turbine system
(Skowroński and Bujalski, 1999).

The model diagram is presented on figure 1. Two
boilers supply common steam collector. The steam
can be then distributed to the steam receptions
via two three-stage turbines as well as through
the set of reducing valves. Steam parameters (tem-
perature, pressure, flow) at the steam reception
points are well defined since the steam is directed
from there for further use in factory installations.
The goal is to find values for process variables so
that the operation costs are minimal.

.83

boiler 2boiler 1

steam collector

water collector

turbine 1 turbine 2

.75 .75 .75

.93

.7 .7 .7

genera-
tor 1

genera-
tor 2

reducing
valves

x x xx

x

xx

x

x

12 3 45 6

7 8

9

d d1 2

d d3 4

heat exchangers steam receptions

Fig. 1. Industrial power unit diagram

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
−3

1.6472

1.6472

1.6473

1.6473

1.6474

1.6474

1.6475

1.6475

1.6476

1.6476

deviation in sample direction

q(
x,

d)

Fig. 2. Sample graph of q (x, d) for small changes
of x

The software dedicated for a class of simulation
problems like this has been developed in The
Institute of Heat Engineering, Warsaw University
of Technology. The user is to select the set of inde-
pendent variables and to determine their values.
(In our case all explicit (decision) variables are
flows at points marked with crosses.) The simu-
lator computes all the remaining flows, entalpies,
pressures, powers etc. (Those influencing running-
costs are marked with triangles). The simulation
software operates on a set of algebraic equations,
some of them being highly nonlinear. Given the
values of x it tries to eliminate by simple sub-
stitution as many implicit variables as possible.
However, should nonlinear equations remain, they
are solved iteratively.

The objective function is defined as follows:

6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x4

x3

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

x1

x4

Fig. 3. Sample 2-dimensional sections through the
domain

q (x, d) = 0.3 (d1 + d2) − 5.555 · 10−5 (d3 + d4)
(5)

where d1, d2 — coal flows [kg/s]; d3, d4 — power
levels of generators [kW]. The coefficients repre-
sent coal and electricity prices, respectively. The
fact that function q (being itself rather a simple
one) takes as arguments variables computed by
simulation process has serious consequences. Let
us look at figure 2. It represents changes of q while
moving x in a sample direction. The decreasing
trend is distorted by apparent random peaks of
both signs; they are symptoms of simulation inac-
curacies. Moreover, sudden steps can be revealed,
like that one at −0.87 on abscissa. These, in turn,
are results of simulator internal function switch-
ing.

Another difficulty raises from the fact that equa-
tion 2 cannot be solved for some x that satisfies
(3). This imposes extra implicit constraints on
the optimization domain. Figure 3 presents two
sample sections of the domain. (Points that caused
the simulator to fail are blackened.)

Therefore, the problem specifics require from opti-
mization routines to handle two additional cases:
equation 2 solving failure (i.e. simulation finishes
abnormally) and violation of (4). The latter case
has been already solved in COMPLEX. In CRS2
and in EA it can be treated in common way,
namely by introducing the penalty function:

5.549

0

5.55
x1

5.55

0

5.55
x2

8.5

0

8.5
x3

8.5

0

8.5
x4

54.05

50

60
x5

50.95

50

60
x6

5

0

5
x7

5

0

5
x8

48
48

80
x9

Fig. 5. Values of x in a sample solution

qp (x, d) = q (x, d) +
mX

j=1

pi (dj)

pj (dj) =

8<
:

M (lj − dj) when dj < lj
M (dj − uj) when dj > uj

0 else

(6)

It is possible to introduce in both CRS2 and EA
the same measures to handle simulation failure at
x:

• to assume that q (x) = ∞, or
• to try computing another trial point x, until

simulation succeeds.

Two main disadvantages of COMPLEX algorithm
are the requirement for initial feasible point x0,
and the assumption that xc is always feasible.
As for the initial point, it must be delivered by
an expert or by some preliminary less demanding
algorithm (like CRS2 or EA). The second draw-
back can be overcome by an extra augmentation
performed when xc is infeasible. This solution was
proposed in (Findeisen et al., 1980), but in prac-
tice, however, it can turn out to be insufficient:
gradual approaching an infeasible complex center
does not guarantee that any feasible point will be
found. One of possible improvements is to move
artificially “complex center” (let us keep its name)
halfway towards the best point in the complex.
Eventually, one will be able to find a point xt that
satisfies (4).

The same rule can be applied when the reflection
subroutine does not yield any q (xt) better than
q (xh) or even reveals subsequent infeasible xt.

4. RESULTS OBTAINED

Each of the optimization algorithms with the pro-
posed improvements was implemented and ap-
plied for the problem of optimal working point
computation. Attempts were made to find the
exact solution by running CRS2 or EA algo-
rithms, although they were perceived rather as
tools for coarse, preliminary optimization. Nev-
ertheless, their simplicity as well as necessity to
detect correct algorithm parameter values justify
the approach.

CRS2 finds solutions that for experts seem to
be satisfactory, but a single optimization requires

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

q(
x,

d)

CRS2−>COMPLEX

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

q(
x,

d)

EA−>COMPLEX

1st feasible 500 1000 2000 4000 8000 16000
0

0.5

1

1.5

2
x 10

4

switch criterion

of

 fu
nc

tio
n

ev
al

s

1st feasible 500 1000 2000 4000 8000 16000
0

0.5

1

1.5

2
x 10

4

switch criterion

of

 fu
nc

tio
n

ev
al

s

Fig. 4. Values of q at optimization milestones and number of q evaluations for various switch criteria

over 100,000 function evaluations — such a num-
ber is certainly inadmissible, since a single simu-
lation takes 0.2 sec. on average. Nevertheless, the
function value decreases from about 2.1 at the first
feasible solution found to 1.646 at the minimum.
The solution does not conflict with the common
sense (see fig. 1 where efficiencies are printed in
grey, see also fig. 5 where x values are put on
rulers): x9 is kept low, x5 > x6 which means
that the total steam flow though the more efficient
turbine is bigger. Zero flows through the reducing
valves (not shown) indicate that all the steam,
before it reaches steam reception points, is utilized
for electricity generation. An extra note must be
made on x5 vs. x6 — no further reduction of x6 in
favor of x5 can be done due to implicit constraints
violation.

The experiments have shown that setting N = 8n
for CRS2 was a reasonable compromise between
algorithm speed and search profundity.

EA has turned out to be more efficient — about
40,000 evaluations of q are needed to achieve
the value of 1.66 which is slightly worse than
in case of CRS2. The tests against σ value
in Cauchy distribution have shown that set-
ting “the tail” either too fat or too thin badly
influences EA convergence. (Taking σ so that
P {”mutated x satisfies (3)”} = 0.95 turned out
to be a good choice.) The value of σ should be
modified during the algorithm execution, if EA
were to be the target algorithm for our problem.

In general, both CRS2 and EA behaved better
if for a simulation failure it was assumed that
q (x) = ∞.

Since COMPLEX requires an initial feasible point
x0, it has been provided as one of intermediate
points found in CRS2 operation. The tests were
run to find out whether COMPLEX could be
applied for refining CRS2 or EA results, therefore
x0 was chosen so that q (x0) = 1.6473. In fact,
the routine was able to improve the result easily,
although the ultimate values of q varied from
program run to run. (This conclusion conforms
to those made in (Box, 1965).) The best value for
k was the doubled problem dimension.

It can be observed that the nature of COMPLEX
makes it an ideal algorithm in the final stage of op-
timization, a complement for either CRS2 or EA.
Series of tests were run to discover characteristics
of such hybrid algorithms for various switching
criteria. The results are illustrated on figure 4.

Seven criteria have been tested: “1st feasible”
means that COMPLEX is initiated immediately
as CRS2 (or EA) finds the first feasible point.
(This point becomes x0 for COMPLEX.) The
other ones, i.e. “500”, “1000” and so on, limit the
maximum number of function evaluations done by
CRS2 (or EA) to 500, 1000,..., respectively. Then
COMPLEX is run with x0 set to the best point
found so far.

Embedded bars on the figure indicate average
value of q for the 1st feasible solution (white),
for the solution at which switching to COMPLEX
is done (light grey), and for the optimal solution
(dark grey). The average was calculated for 90
algorithm runs. The deepest embedded, black, bar
shows the best solution found in a series. The
lower graphs show the mean of total function calls
for each criterion. White parts of bars stand for

the number of function calls done by COMPLEX
algorithm.

It can be observed that the average quality of solu-
tions found by COMPLEX depends clearly on the
quality of the start point. The trend is particularly
distinct for the first three situations, i.e. where the
start point is relatively poor, although the best
solutions (black bars) seem to not depend on the
switching criterion.

This fact implies that start points for COMPLEX
should be computed effectively. In this field EA
wins over CRS2, which in turn seems to improve
its solutions very slowly as the limit of function
calls increases.

5. CONCLUSION

The values obtained from series of simulations can
be interpreted in terms of mean results, and in
terms of extreme results. The user is limited to
the first approach when none computation can
be done in parallel. In this case EA/COMPLEX
sequence is recommended, especially when consid-
erable number of function evaluations is allowed.
EA is much more prone than CRS2 to converge
steadily.

If a multiprocessing environment is available, then
it is best to spawn multitude of COMPLEX al-
gorithms from various available points x0. As one
can observe in figure 4, the best final solution over
a series of simulations virtually does not depend
on the x0 quality. Sad but true, for problems like
this sheer force is as for now the best approach: to
start many algorithms in parallel, and to choose,
at the end, the best among the solutions found.

No matter how unrefined this approach may seem,
it is able to solve the problem, eventually. More-
over, unlike stated in (Skowroński and Bujal-
ski, 1999), reducing computation time to about
2000 sec. makes EA/COMPLEX sequence appli-
cable on-line, since forecasts of steam demands are
available an hour in advance.

It is hoped that this approach will be applied in
practice as soon as parameters of a real power
plant being the object of interest are precisely
identified.

6. REFERENCES

Bäck, T., Fogel, D. B. and Michalewicz, Z., Eds.)
(1997). Handbook of Evolutionary Computa-
tion. Institute of Physics Publishing and Ox-
ford University Press.

Box, M. J. (1965). A new method of constrained
optimization and a comparison with other
methods. The Computer Journal 8(1), 42–52.
www3.oup.co.uk.

Findeisen, W., J. Szymanowski and A. Wierzbicki
(1980). Teoria i metody obliczeniowe optymal-
izacji. Państwowe Wydawnictwo Naukowe. In
polish.

Price, W. L. (1987). Global optimization al-
gorithms for a CAD workstation. Journal
of Optimization Theory and Applications
55(1), 133–146.

Skowroński, P. and W. Bujalski (1999). A method
for automatic generation of linearized math-
emetical model of energy and technological
systems. Archiwum energetyki XXVIII(3-
4), 19–31. In polish (english abstract avail-
able).

