
Neurocomputing 205 (2016) 311–328
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Tel.:
E-m
journal homepage: www.elsevier.com/locate/neucom
Modelling and predictive control of a neutralisation reactor
using sparse support vector machine Wiener models

Maciej Ławryńczuk n

Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland
a r t i c l e i n f o

Article history:
Received 19 November 2015
Received in revised form
5 February 2016
Accepted 17 March 2016

Communicated by Ngoc Thanh Nguyen

as the steady-state part. Although the LS-SVM has excellent approximation abilities and it may be found
Available online 10 May 2016

Keywords:
Process control
Neutralisation reactor control
Model Predictive Control
Wiener models
Least-Squares Support Vector Machines
x.doi.org/10.1016/j.neucom.2016.03.066
12/& 2016 Elsevier B.V. All rights reserved.

þ48 22 234 71 24; fax: þ48 22 825 37 19.
ail address: M.Lawrynczuk@ia.pw.edu.pl
a b s t r a c t

This paper has two objectives: (a) it describes the problem of finding a precise and uncomplicated model
of a neutralisation process, (b) it details development of a nonlinear Model Predictive Control (MPC)
algorithm for the plant. The model has a cascade Wiener structure, i.e. a linear dynamic part is followed
by a nonlinear steady-state one. A Least-Squares Support Vector Machine (LS-SVM) approximator is used

easily, it suffers from a huge number of parameters. Two pruning methods of the LS-SVM Wiener model
are described and compared with a classical pruning algorithm. The described pruning methods make it
possible to remove as much as 70% of support vectors without any significant deterioration of model
accuracy. Next, the pruned model is used in a computationally efficient MPC algorithm in which a linear
approximation of the predicted output trajectory is successively found on-line and used for prediction.
The control profile is calculated on-line from a quadratic optimisation problem. It is demonstrated that
the described MPC algorithmwith on-line linearisation based on the pruned LS-SVMWiener model gives
practically the same trajectories as those obtained in the computationally complex MPC approach based
on the full model with on-line nonlinear optimisation repeated at each sampling instant.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Good control of neutralisation processes is necessary in che-
mical engineering, biotechnology and waste-water treatment
industries [16]. Both steady-state and dynamic properties of the
neutralisation process are nonlinear, which means that it is diffi-
cult to control by the classical linear control methods (e.g. PID), in
particular when the set-point or other operating conditions
change significantly and fast. In addition to its industrial sig-
nificance, the neutralisation process is a classical benchmark used
for evaluation of different nonlinear model structures and control
methods. Due to nonlinearity of the process adaptive control
techniques may be used, in particular a model reference adaptive
neural network control strategy [23], an adaptive nonlinear output
feedback control scheme containing an input–output linearising
controller and a nonlinear observer [15], an adaptive nonlinear
Internal Model Controller (IMC) [22] and an adaptive backstepping
state feedback controller [47]. An alternative is to use multi-model
controllers, e.g. a multi-model PID controller based on a set of
simple linear dynamic models [5], a multi-model robust H1 con-
troller [11], or fuzzy structures, e.g. a fuzzy PI controller [10], a
fuzzy PID controller [19] and a fuzzy IMC structure [21]. An
adaptive fuzzy sliding mode controller is presented in [7], a non-
linear IMC structure is discussed in [30]. Another options are a
neural network linearising scheme cooperating with a PID con-
troller [23], a model-free learning controller using reinforcement
learning [41] and an approximate multi-parametric nonlinear MPC
controller [14].

Unlike the classical control approaches, such as PID, in which
the model of the process is used only during development of the
controller, in Model Predictive Control (MPC) algorithms [42] a
dynamic model of the controlled process is used directly on-line.
The model calculates predictions of the output (or state) variables,
which are next used during optimisation of the control sequence.
Prediction and optimisation are repeatedly performed on-line.
Optimisation makes it possible not only to find the best possible
control profile which results in excellent set-point tracking and
disturbance compensation, but also to take into account con-
straints imposed on process inputs (manipulated variables) and
outputs (controlled variables) or state variables in a natural and
efficient manner. Furthermore, the MPC approach is very universal
as it allows to control multiple-input multiple-output processes.
That is why the MPC algorithms have been successfully used for
years in numerous advanced applications. Example applications of
MPC include a mobile robot [1], an automotive engine [2], an
active queue management system in TCP/IP networks [4], a flexible

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
mailto:M.Lawrynczuk@ia.pw.edu.pl
http://dx.doi.org/10.1016/j.neucom.2016.03.066

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328312
manipulator [9], an electric vehicle [27], a cutting process [33], a
multi-tank water system [36], an unmanned aerial vehicle [38], a
distillation column [43], an air conditioning system [46].

The neutralisation process may be controlled by MPC algo-
rithms. A multiple-model control strategy based on a set of clas-
sical linear MPC controllers is described in [8,11]. A neural network
trained off-line to mimic the nonlinear MPC algorithm may be also
used [3]. A continuous-time MPC algorithm using a piecewise-
linear approximation, which simplifies implementation, is dis-
cussed in [31]. When a nonlinear model is used directly in MPC for
prediction, the MPC optimisation problem solved at each sampling
instant on-line is a nonlinear task. Applications of such nonlinear
MPC algorithms to the neutralisation process are reported in
[26,45]. On-line nonlinear optimisation is not only computation-
ally demanding, but also convergence problems are possible, the
obtained solution may be a local minimum, not the global ones. A
practical solution leading to reduction of computational burden is
to use for prediction not the full nonlinear model, but its local
linear approximation or an approximation of the predicted tra-
jectory [24]. Successive on-line linearisation makes it possible to
eliminate the necessity of solving on-line a nonlinear MPC opti-
misation problem as at each sampling instant an easy to solve
quadratic optimisation task is solved. Nonlinear MPC algorithms
with successive on-line model or trajectory linearisation applied to
the neutralisation process are described in [25]. An excellent
review of possible MPC approaches to the neutralisation process is
given in [16].

The basic issue to address during development of MPC algo-
rithms is the choice of the model. Although a number of black-box
model structures exist [28], e.g. polynomials, fuzzy systems, neural
networks, wavelets, etc., in case of the neutralisation reactor a
cascade block-oriented Wiener model may be efficiently used, e.g.
[23,26,30,45]. The Wiener structure consists of a linear dynamic
part and a nonlinear steady-state one connected in series [12,18].
As the steady-state part of the Wiener model a neural network
may be used [25]. Neural networks are excellent approximators,
but training (although performed off-line) is a quite demanding
nonlinear optimisation problem. In order to find a good neural
model a number of networks (with different initial weights and
different number of hidden nodes) are trained and the best one is
finally chosen for application. An interesting alternative is to use a
Support Vector Machine (SVM) approximator [37]. Although the
SVM model is nonlinear, its identification requires solving convex
optimisation problems, typically quadratic programming ones. An
extension of the SVM approximator is a Least Squares Support
Vector Machine (LS-SVM), whose identification is even simpler as
only least-squares problems are solved [39]. An important dis-
advantage of LS-SVM is lack of spareness, i.e. the number of sup-
port vectors is the same as the number of training samples. To
reduce the number of parameters some pruning algorithms may
be used, e.g. the approach discussed by the authors of the LS-SVM
approximator [40] which consists in eliminating the support vec-
tors with the smallest absolute value of spectrum. A more com-
plicated pruning algorithm is detailed in [20], the sequential
minimal optimisation (SMO) pruning method is introduced in [48].

This paper reports model identification and pruning of the
neutralisation reactor. Two pruning methods of the Wiener LS-
SVM model are compared with a classical pruning algorithm. Next,
the MPC algorithm with successive on-line trajectory linearisation
and quadratic optimisation is developed for the pruned model of
the process. The discussed MPC algorithm is compared with a
computationally complex MPC approach with on-line nonlinear
optimisation repeated at each sampling instant. The effect of
model pruning on its quality, control performance of MPC and its
computational complexity is discussed. Although both SVM and
LS-SVM approximators have been used in MPC, e.g. a multiple-
tank system process is considered in [17], a flight control problem
in [38] and an air-conditioning system in [46], in the cited works
computationally demanding on-line nonlinear optimisation is
used at each sampling instant.

This paper is organised as follows. Section 2 reminds the general
idea of MPC and Section 3 describes the structure of the LS-SVM
Wiener model. The main parts of the paper, given in Sections 4
and 5, discuss the MPC algorithm with on-line trajectory linear-
isation for the LS-SVM Wiener model, its identification and prun-
ing. Section 6 thoroughly discusses development of the model and
predictive control of the considered neutralisation reactor. Finally,
Section 7 concludes the paper.
2. Predictive control problem formulation

Let the input (the manipulated variable) of the considered
dynamic system be denoted by u and the output (the controlled
output) of the system be denoted by y. In MPC algorithms [42] at
each consecutive sampling instant k not only the current value u
(k) of the manipulated variable is calculated, but a set of future
increments

ΔuðkÞ ¼ ΔuðkjkÞ Δuðkþ1jkÞ…ΔuðkþNu�1jkÞ� �T ð1Þ
is found, where Nu is the control horizon and the increments are
defined as

ΔuðkþpjkÞ ¼
uðkjkÞ�uðk�1Þ if p¼ 0
uðkþpjkÞ�uðkþp�1jkÞ if pZ1

(

The symbol uðkþpjkÞ denotes the value of the input signal for the
future sampling instant kþp calculated at the current instant k. It
is assumed that ΔuðkþpjkÞ ¼ 0 for pZNu. The objective of the
MPC algorithm is to minimise differences between the set-point
trajectory and the corresponding predicted values of the output
signal over the prediction horizon, NZNu, and to penalise exces-
sive control increments. Hence, the future decision variables of
MPC (Eq. (1)) are determined from an optimisation procedure. The
cost-function is typically

JðkÞ ¼
XN
p ¼ 1

ðyspðkþpjkÞ� ŷðkþpjkÞÞ2þ
XNu �1

p ¼ 0

λðΔuðkþpjkÞÞ2 ð2Þ

where the set-point for the sampling instant kþp known at the
current instant k is yspðkþpjkÞ (very frequently it is assumed that
yspðkþpjkÞ ¼ yspðkÞ for all p¼ 1;…;N), the future value of the
process output signal predicted for the instant kþp at the instant k
is denoted by ŷðkþpjkÞ, λ40 is a weighting coefficient (the bigger
the λ, the slower the algorithm). The problem of tuning MPC
algorithms, i.e. adjusting parameters λ, N, Nu, is discussed else-
where [42]. If it is necessary to take into account some constraints
imposed on the manipulated and controlled variables, the future
control increments (1) are found on-line at each sampling instant
from the following optimisation problem

min
Δuðkj kÞ;…;ΔuðkþNu �1j kÞ

JðkÞ� �
subject to uminruðkþpjkÞrumax; p¼ 0;…;Nu�1
�ΔumaxrΔuðkþpjkÞrΔumax; p¼ 0;…;Nu�1

yminr ŷðkþpjkÞrymax; p¼ 1;…;N ð3Þ
where umin, umax, Δumax, ymin, ymax define constraints imposed on
the magnitude of the input variable, on the increment of the input
variable and on the magnitude of the predicted output variable,
respectively. The MPC optimisation task (3) is solved on-line at
each sampling instant which gives the future control increments
(1), but only the first element of the determined sequence is
applied to the process, i.e. uðkÞ ¼ΔuðkjkÞþuðk�1Þ. At the next

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 313
sampling instant, kþ1, the prediction is shifted one step forward
and the whole procedure is repeated.
3. Wiener model with LS-SVM approximator

Predicted values of the output variable, ŷðkþpjkÞ, over the
prediction horizon (i.e. for p¼ 1;…;N) are calculated from a
dynamic model of the process. In this work for modelling the
cascade Wiener model [12,18] depicted in Fig. 1 is used. It consists
of a linear dynamic part connected in series with nonlinear
steady-state part, v(k) denotes an auxiliary signal between two
blocks of the model. The linear part of the Wiener model is
described by the equation

Aðq�1ÞvðkÞ ¼ Bðq�1ÞuðkÞ
where the polynomials are

Aðq�1Þ ¼ 1þa1q�1þ⋯þanAq
�nA

Bðq�1Þ ¼ bτq�τþ⋯þbnBq
�nB

The backward shift operator is denoted by q�1, the integers nA, nB,
τ define the order of dynamics, τrnB, the constant parameters of
the linear dynamic part are denoted by the real numbers aj
(j¼ 1;…;nA) and bj (j¼ τ;…;nB). The output of the linear part of
the model is

vðkÞ ¼
XnB

j ¼ τ

bjuðk� jÞ�
XnA
j ¼ 1

ajvðk� jÞ ð4Þ

The steady-state part of the model is described by the general
equation

yðkÞ ¼ gðvðkÞÞ
where the differentiable function g : R-R is realised by the LS-SVM
approximator [39]. It has one input, nsv support vectors and one
output. Assuming the exponential kernel function, its output is

yðkÞ ¼ βþ
Xnsv
i ¼ 1

αiexp �ðvðkÞ�vsv;iÞ2
σ2

 !
ð5Þ

where the quantities vsv;i define support vectors (since the model
has one input, the quantities vsv;i are scalars), αi and β are model
parameters determined during training, σ is a parameter of the
kernel. The output of the LS-SVM Wiener model can be explicitly
expressed as a function of the input signal of the process and the
auxiliary signal of the model at some previous sampling instant
taking into account Eqs. (4) and (5), which gives

yðkÞ ¼ βþ
Xnsv

i ¼ 1

αi exp �σ�2
XnB

j ¼ τ

bjuðk� jÞ�
XnA

j ¼ 1

ajvðk� jÞ�vsv;i

0
@

1
A

2
0
B@

1
CA
ð6Þ
4. MPC based on Wiener models with LS-SVM approximator

In MPC algorithms an explicit dynamic model is used in order to
predict future behaviour of the process, i.e. to calculate the pre-
dicted values of the output variable, ŷðkþpjkÞ, over the prediction
Fig. 1. The structure of the LS-SVM Wiener model.
horizon, i.e. for p¼ 1;…;N. The general prediction equation is

ŷðkþpjkÞ ¼ yðkþpjkÞþdðkÞ ð7Þ
where the quantities ŷðkþpjkÞ are the predicted output values
whereas the model output signal for the future sampling instant
kþp calculated at the current instant k is yðkþpjkÞ. In order to
compensate for the disturbances which affect the process and the
unavoidable mismatch between the process and its model, an
estimation of the unmeasured disturbances d(k) is used in Eq. (7).
The disturbance is assessed as the difference between the measured
value of the output signal and a corresponding value calculated
from the model using measurements up to the previous sampling
instant (k�1), i.e.

dðkÞ ¼ yðkÞ�yðkjk�1Þ ð8Þ
For the considered Wiener model with LS-SVM approximator, from
Eqs. (6) and (8) one has

dðkÞ ¼ yðkÞ�β�
Xnsv
i ¼ 1

αi exp �σ�2
XnB

j ¼ τ

bjuðk� jÞ
0
@

0
@

�
XnA

j ¼ 1

ajvðk� jÞ�vsv;i

1
A

21
A ð9Þ

From Eqs. (5) and (7) it is possible to calculate the predictions of the
output variable over the whole prediction horizon

ŷðkþpjkÞ ¼ βþ
Xnsv

i ¼ 1

αi exp �σ�2ðvðkþpjkÞ�vsv;iÞ2
� �

þdðkÞ ð10Þ

where the prediction of the auxiliary model variable v for the
sampling instant kþp at the current instant k is calculated using Eq.
(4) from

vðkþpjkÞ ¼
XIuf ðpÞ
j ¼ 1

bjuðk�τþ1� jþpjkÞþ
XIu

j ¼ Iuf ðpÞþ1

bjuðk�τþ1� jþpÞ

�
XIypðpÞ
j ¼ 1

ajvðk� jþpjkÞ�
XnA

j ¼ IypðpÞþ1

ajvðk� jþpÞ ð11Þ

Some additional integer numbers are Iuf ðpÞ ¼maxðminðp�τþ1;
IuÞ;0Þ, Iu ¼ nB�τþ1, IypðpÞ ¼minðp�1;nAÞ. It is straightforward to
notice that due to a nonlinear nature of the LS-SVM Wiener model
(more specifically, to its steady-state part), the future predictions of
the process output variable, ŷðkþpjkÞ, are nonlinear functions of
the repeatedly calculated on-line decision variables of the MPC
algorithm, i.e. the future control increments (1). A direct con-
sequence of this fact is that the MPC optimisation problem (3)
becomes a nonlinear task which must be solved at each sampling
instant on-line. Such an approach is referred to in this paper as the
MPC algorithmwith Nonlinear Optimisation (MPC-NO). Its apparent
disadvantage is the necessity of using a nonlinear solver and sig-
nificant computational burden of on-line calculations.

In this paper the MPC algorithm with Nonlinear Prediction and
Linearisation along the Predicted Trajectory (MPC-NPLPT) for the
Wiener system with the LS-SVM approximator is developed. A
detailed description of the algorithm, but for a different model
structure, is given in [24,25]. In short, at each sampling instant of
the MPC-NPLPT algorithm a linear approximation of the predicted
output trajectory is calculated on-line. As the approximated
trajectory is a linear function of the calculated future control
increments, it is possible to formulate an easy to solve quadratic
optimisation problem, nonlinear optimisation is not necessary. For
good approximation accuracy (which results in good control per-
formance), trajectory linearisation and optimisation of the control
increments are repeated a few times at each sampling instant in
internal iterations. The predicted nonlinear output trajectory

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328314
vector, defined for the prediction horizon N, in the internal itera-
tion t is

ŷ tðkÞ ¼ ŷtðkþ1jkÞ … ŷtðkþNjkÞ
h iT

ð12Þ

The predicted trajectory is linearised along some future control
trajectory, defined over the control horizon, Nu, found in the
previous internal iteration (t�1)

ut�1ðkÞ ¼ ut�1ðkjkÞ … ut�1ðkþNu�1jkÞ� �T ð13Þ
Using Taylor's series expansion method, a linear approximation of
the nonlinear output trajectory ŷ tðkÞ along the input trajectory
ut�1ðkÞ, i.e. linearisation of the function ŷ tðutðkÞÞ : RNu-RN is

ŷ tðkÞ ¼ ŷ t�1ðkÞþHtðkÞðutðkÞ�ut�1ðkÞÞ ð14Þ
The predicted output trajectory corresponding to the input tra-
jectory ut�1ðkÞ, which is calculated at the previous internal itera-
tion, is denoted by ŷ t�1ðkÞ. The future values of the process input
signal calculated at the current internal iteration t are denoted by
utðkÞ. The vectors ŷ t�1ðkÞ and ûtðkÞ are similar to the vectors ŷ tðkÞ
and ut�1ðkÞ (Eqs. (12) and (13)), respectively, i.e. ŷ t�1ðkÞ ¼ ŷt�1

h
ðkþ1jkÞ … ŷt�1ðkþNjkÞ�T, utðkÞ ¼ utðkjkÞ … utðkþNu�1jkÞ� �T.
The matrix of the derivatives of the predicted output trajectory
with respect of the future control signals is of dimensionality N �
Nu and it has the structure

HtðkÞ ¼ dŷðkÞ
duðkÞ

����
ŷ ðkÞ ¼ ŷ t � 1 ðkÞ
uðkÞ ¼ ut � 1 ðkÞ

¼ dŷ t�1ðkÞ
dut�1ðkÞ

¼
∂ŷt�1ðkþ1jkÞ
∂ut�1ðkjkÞ

⋯
∂ŷt�1ðkþ1jkÞ

∂ut�1ðkþNu�1jkÞ
⋮ ⋱ ⋮

∂ŷt�1ðkþNjkÞ
∂ut�1ðkjkÞ ⋯

∂ŷt�1ðkþNjkÞ
∂ut�1ðkþNu�1jkÞ

2
6666664

3
7777775

ð15Þ

The elements of the nonlinear predicted trajectory ŷ t�1ðkÞ are
calculated from the prediction equation corresponding to the
general MPC prediction method defined by Eq. (7), but the current
internal iteration of the MPC-NPLPT algorithm must be taken into
account, i.e. for p¼ 1;…;N one has

ŷt�1ðkþpjkÞ ¼ yt�1ðkþpjkÞþdðkÞ ð16Þ
where the model output signal calculated at the current instant k
for the future sampling instant kþp and for the future control
trajectory ut�1ðkÞ is yt�1ðkþpjkÞ. The disturbance estimation is
found from Eq. (9). The elements of the nonlinear output trajectory
predicted at the current sampling instant k and the internal
iteration t�1 for the instant kþp are calculated using Eqs. (5) and
(16), similar to Eq. (10), which gives

ŷt�1ðkþpjkÞ ¼ βþ
Xnsv
i ¼ 1

αiexp �σ�2ðvt�1ðkþpjkÞ�vsv;iÞ2
� �

þdðkÞ

ð17Þ
where from Eq. (4), similar to Eq. (11) the prediction of the aux-
iliary model variable v at the current instant k for the internal
iteration t�1 and the sampling instant kþp is calculated using
Eq. (4), which gives

vt�1ðkþpjkÞ ¼
XIuf ðpÞ
j ¼ 1

bju
t�1ðk�τþ1� jþpjkÞ

þ
XIu

j ¼ Iuf ðpÞþ1

bjuðk�τþ1� jþpÞ

�
XIypðpÞ
j ¼ 1

ajv
t�1ðk� jþpjkÞ�

XnA
j ¼ IypðpÞþ1

ajvðk� jþpÞ ð18Þ
The entries of the matrix (15), i.e. the derivatives of the predicted
output trajectory for the previous internal iteration with respect to
the future control scenario from the previous internal iteration, are
calculated by differentiating Eqs. (17), which lead to

∂yt�1ðkþpjkÞ
∂ut�1ðkþrjkÞ ¼ 2σ�2

Xnsv

i ¼ 1

αi exp �σ�2ðvt�1ðkþpjkÞ�vsv;iÞ2
� �

� vsv;i�vt�1ðkþpjkÞ	
∂vt�1ðkþpjkÞ
∂ut�1ðkþrjkÞ ð19Þ

The derivatives of the predicted value of the auxiliary signal v with
respect to the future control trajectory are calculated differ-
entiating Eq. (18) for all p¼ 1;…;N, r¼ 0;…;Nu�1, which gives

∂vt�1ðkþpjkÞ
∂ut�1ðkþrjkÞ ¼

XIuf ðpÞ
j ¼ 1

bj
∂ut�1ðk�τþ1� jþpjkÞ

∂ut�1ðkþrjkÞ

�
XIypðpÞ
j ¼ 1

aj
∂vt�1ðk� jþpjkÞ
∂ut�1ðkþrjkÞ ð20Þ

Because uðkþpjkÞ ¼ uðkþNu�1jkÞ for pZNu, the first partial
derivatives on the right side of Eq. (20) are

∂ut�1ðkþpjkÞ
∂ut�1ðkþrjkÞ ¼

1 if p¼ r; p4r and r¼Nu�1
0 otherwise

�
ð21Þ

Because utðkÞ ¼ JΔutðkÞþuðk�1Þ where the vector uðk�1Þ ¼
uðk�1Þ … uðk�1Þ� �T is of length Nu and the matrix J of dimen-
sionality Nu � Nu has the following structure

J ¼

1 0 0 … 0
1 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 … 1

2
6664

3
7775

the linear approximation of the nonlinear predicted output tra-
jectory (14) becomes

ŷ tðkÞ ¼HtðkÞJΔutðkÞþ ŷ t�1ðkÞþHtðkÞðuðk�1Þ�ut�1ðkÞÞ ð22Þ
Due to linearisation the predicted output trajectory calculated for
the current sampling instant k and at the current internal iteration
t, i.e. ŷ tðkÞ, is a linear function of the future control increments
ΔutðkÞ. Using the prediction equation (22), the general MPC opti-
misation problem (3) becomes the following quadratic program-
ming task

min
Δut ðkÞ

JyspðkÞ�HtðkÞJΔutðkÞ� ŷ t�1ðkÞ
n

�HtðkÞðuðk�1Þ�ut�1ðkÞÞJ2þ ΔutðkÞ
�� ��2

Λ

o
subject to uminr JΔutðkÞþuðk�1Þrumax

�ΔumaxrΔutðkÞrΔumax

yminrHtðkÞJΔutðkÞþ ŷ t�1ðkÞ
þHtðkÞðuðk�1Þ�ut�1ðkÞÞrymax ð23Þ
where the norm of a vector x is defined as JxJ2A ¼ xTAx, the set-
point trajectory

yspðkÞ ¼ yspðkþ1jkÞ … yspðkþNjkÞ� �T
is the vector of length N, the input constraint vectors
umin ¼ umin … umin

� �T
, umax ¼ umax … umax½ �T, Δumax ¼ Δumax …

�
Δumax�T are of length Nu, the output constraint vectors
ymin ¼ ymin … ymin

� �T
, ymax ¼ ymax … ymax½ �T are of length N, the

weighting matrix Λ¼ diagðλ;…; λÞ is of dimensionality Nu � Nu.
At each sampling instant k of the MPC-NPLPT algorithm for the

dynamic system described by the Wiener system with the LS-SVM
approximator the following steps are repeated:

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 315
1. The LS-SVM Wiener model is used to assess the unmeasured
disturbance d(k) from Eq. (9).

2. The first internal iteration (t¼1): the LS-SVM Wiener model is
used to find from Eqs. (16) to (18) the future output trajectory
ŷ0ðkÞ which corresponds to the initial input trajectory u0ðkÞ. The
initial input trajectory may be initialised using the last Nu�1
elements of the optimal control sequence calculated at the
previous sampling instant (k�1).

3. A linear approximation (22) of the output predicted trajectory
ŷ1ðkÞ along the input trajectory u0ðkÞ is found using the LS-SVM
Wiener model, i.e. the entries of the matrix H1ðkÞ defined by
Eq. (15) are obtained from Eqs. (19) to (21).

4. The MPC-NPLPT quadratic optimisation problem (23) is solved
to find the future control increments Δu1ðkÞ in the first internal
iteration.

5. If the process is far from the desired set-point, i.e. when

XN0

p ¼ 0

yspðk�pÞ�yðk�pÞ
�� ��2Zδy ð24Þ

the internal iterations are continued for t ¼ 2;…; tmax.
5.1. The LS-SVM Wiener model is used to calculate the
predicted output trajectory ŷ t�1ðkÞ corresponding to the
future input trajectory ut�1ðkÞ ¼ JΔut�1ðkÞþuðk�1Þ from
Eqs. (16) to (18).
5.2. A linear approximation (22) of the predicted output
trajectory ŷ tðkÞ along the input trajectory ut�1ðkÞ is found
using the LS-SVM Wiener model, i.e. the entries of the matrix
HtðkÞ defined by Eq. (15) are obtained from Eqs. (19) to (21).
5.3. The MPC-NPLPT quadratic optimisation problem (23) is
solved to find the future control increments ΔutðkÞ in the
current internal iteration t.
5.4. If the difference between future control increments cal-
culated in two consecutive internal iterations is small, i.e.
when

ΔutðkÞ�Δut�1ðkÞ
�� ��2oδu ð25Þ
or t4tmax, internal iterations are terminated. Otherwise, the
internal iteration index is increased (t≔tþ1), the algorithm
goes to step 5.1.

6. The first element of the determined sequence ΔutðkÞ is applied
to the process, i.e. uðkÞ ¼ΔutðkjkÞþuðk�1Þ.

7. At the next sampling instant (k≔kþ1) the algorithm starts from
step 1.

In addition to N, Nu and λ, the tuning parameters of the MPC-
NPLPT algorithm are N0, δu and δy.
5. Identification and pruning of Wiener models with LS-SVM
approximator

5.1. Model identification

It is assumed that the nonlinear LS-SVM steady-state part of
the Wiener model is determined using the given set of training
steady-state samples denoted by fvi; yigi ¼ 1;…;ns

, where v is its input
and y is the output. The objective is to find the relation between
the input and the output as an analytical function. Considering the
classical LS-SVM approximator [39], the following relation is used
in the so-called primal weight space

yiðviÞ ¼wTφðviÞþβ; i¼ 1;…;ns ð26Þ
where φð�Þ is a function which maps the input space into the so-
called higher dimensional (possibly infinite dimensional) feature
space, the weight vector w is of the same dimension as the feature
space, the bias is β. The approximation error for the training
sample i is defined as the difference between the data sample and
the model output, i.e. ei ¼ yi�ymod

i . In order to find the parameters
of the approximator, the following optimisation problem in primal
weight space is considered

min
w;β

Jðw; eÞ ¼ 1
2
wTwþ1

2
γ
Xns
i ¼ 1

e2i

()

subject to yi ¼wTφðviÞþβþei; i¼ 1;…;ns ð27Þ
The cost function J consists of the classical sum of squared model
errors ðPns

i ¼ 1 e
2
i Þ and a regularisation term wTw, which is a fre-

quent technique used in model training, e.g. neural networks. The
relative importance of these two terms is determined by the
positive real constant γ. In general, the weight vector w can be
infinite-dimensional, which makes solution of the optimisation
problem (27) impossible. That is why the model is calculated in
the dual space rather than in the primal space. For this purpose
the Lagrangian is defined as

ℒðw;β; e;αÞ ¼ Jðw; eÞ�
Xns

i ¼ 1

αiðwTφðviÞþβþei�yiÞ

where the Lagrange multipliers αi are called support values. Taking
into account the optimality conditions (it is necessary to equal the
derivatives of the function L to zero), one may easily find that

0 1T

1 Ωþγ�1I

" #
β
α

" #
¼

0
y

" #
ð28Þ

where 1¼ 1 … 1½ �T, α¼ α1 … αns

� �T, y¼ y1 … yns

� �T are vectors of
length ns, I is an identity matrix of dimensionality ns � ns and the
entries of the matrix Ω are determined as Ωk;l ¼φTðvkÞφðvlÞ for
k; l¼ 1;…;ns. Taking into account the Mercer's condition [39], the
resulting LS-SVM model is

yðvÞ ¼
Xns

i ¼ 1

αiKðv; viÞþβ ð29Þ

where model parameters αi, for i¼ 1;…;ns, and β are obtained
from solving the set of linear equation (28). In this work the RBF
kernel is used, i.e. Kðvk; vlÞ ¼ expð� Jvk�vl J=σ2Þ. Because the input
of the approximator, v, is a scalar, one obtains the LS-SVM model

y¼ βþ
Xnsv

i ¼ 1

αi exp �ðv�vsv;iÞ2
σ2

 !
ð30Þ

where the number of support vectors is equal to the number of
samples, i.e. nsv ¼ ns. The model (30) is next used in the nonlinear
steady-state part of the Wiener model (Eq. (5)). For the calculated
LS-SVM steady-state part of the Wiener model, its linear dynamic
part is found using the prediction error method, i.e. the sum of
squared differences between model output and the training data is
minimised for a given dynamic training data set.

5.2. Model pruning

Although the LS-SVM approximator has two important advan-
tages, i.e. easiness of training (it is only necessary to solve the set of
linear equation (28)) and very good approximation accuracy, it also
has an important disadvantage as the number of support vectors is
exactly the same as the number of training patterns. Therefore, it is
desirable to prune the LS-SVM approximator to remove the least
important model parameters. In this study three pruning methods
are considered. In the first two approaches to pruning it is assumed
that the nonlinear steady-state part of the LS-SVM Wiener model is
found and pruned independently using the steady-state training
and validation data sets. Next, the linear dynamic part of the model
is found using the dynamic training and validation data sets for the

Fig. 2. The structure of the control system of the neutralisation reactor.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328316
obtained steady-state part. In the last approach the steady-state
data is still used for training the LS-SVM approximator, but accuracy
of the whole LS-SVM Wiener model is assessed using the
dynamic data.

The pruning algorithm 1 is discussed in [40]. In short, it may be
summarised as follows:

1. The LS-SVM approximator is trained using ns steady-state data
points.

2. A small amount of points (e.g. 5% of the set) with the smallest
values in the sorted spectrum jαi j is removed from the
training set.

3. The LS-SVM approximator is retrained using the reduced
steady-state training set.

4. The algorithm goes to step 2, unless the user-defined perfor-
mance index degrades considerably. If the performance
becomes worse, it is suggested to recalculate the approximator
for some modified values of γ and σ.

During training of the LS-SVM approximator the minimised cost-
function consists of two parts: the classical sum of squared errors
and a regularisation term (as in the optimisation problem (27)).
The performance index used in step 4 to assess the model is the
classical sum of squared errors of the steady-state part of the
Wiener model

SSEs ¼
Xns

i ¼ 1

ðyi�ymod
i ðviÞÞ2 ð31Þ

where yi denotes the training pattern and ymod
i ðviÞ is the model

output for the input vi. It is important to point out that the
approximator may be assessed not using the training data set, but
also (or only) an alternative data set, i.e. the validation set.

The pruning algorithm 2 of the LS-SVM approximator can be
summarised as follows:

1. The LS-SVM approximator is trained using ns steady-state data
points.

2. As many as ns�2 candidate LS-SVM approximators are trained
by removing one training pattern i from the training data set,
i¼ 2;…;ns�1. For each of the candidate approximators the SSEs

errors (Eq. (31)) for the original training (i.e. not reduced) and
validation data sets are calculated. The training pattern for
which the value of SSEs increases in the minimal way (or
decreases in the maximal way) (for the training or validation
set) is removed from the training data set.

3. The LS-SVM approximator is retrained using the reduced
steady-state training set.

4. The algorithm goes to step 2, unless the performance index SSEs

degrades considerably or the reduced steady-state training set
consists of 2 points.

It is necessary to notice that in contrast to pruning algorithm 1, in
the second approach to pruning the decision which training
patterns should be removed from the training data set is taken
not on the basis of the performance index used for training (as in
the optimisation task (27)), because for model assessment the
regularisation term is not necessary. Conversely, the model is
assessed on the basis of the squared sum of errors (31), which
directly described model accuracy. In Step 2 of the pruning
algorithm 2 it is impossible to remove the first and the last points
from the reduced training data set as they define the operation
domain (the same protection may be implemented in the pruning
algorithm 1).

In the pruning algorithm 3 the steady-state data is still used for
training the LS-SVM approximator, but the decision regarding its
pruning is made taken into account the error of the whole LS-SVM
Wiener model, i.e. the dynamic data is used for this purpose. In
such a case the sum of squared errors of the Wiener model is

SSEd ¼
Xnds

k ¼ 1

ðyðkÞ�ymodðkÞÞ2 ð32Þ

where y(k) denotes the training pattern and ymodðkÞ is the model
output for the sampling instant k, the number of samples in the
dynamic data set is nds. The pruning algorithm 3 can be sum-
marised as follows:

1. The LS-SVM approximator is trained using ns steady-state data
points.

2. As many as ns�2 candidate LS-SVM approximators are trained
by removing one training pattern i from the training data set,
i¼ 2;…;ns�1. For each of the candidate approximators the
SSEd errors (Eq. (32)) for the dynamic training and validation
data sets are calculated. The training pattern for which the value
of SSEd increases in the minimal way (or decreases in the
maximal way) (for the training or validation set) is removed
from the steady-state training data set.

3. The LS-SVM approximator is retrained using the reduced
steady-state training set.

4. The algorithm goes to step 2, unless the performance index SSEd
degrades considerably or the reduced steady-state training set
consists of 2 points.

Optionally, the third step of all discussed algorithms may be
followed by identification of the linear dynamic part of the Wiener
model for the pruned steady-state part.
6. Simulation results

6.1. Neutralisation process

The structure of the control system of the neutralisation reactor
[13] is depicted in Fig. 2. A base (NaOH) stream q1, a buffer
(NaHCO3) stream q2 and an acid (HNO3) stream q3 are mixed in a
constant volume tank. The value of pH is controlled by manip-
ulating the base flow rate q1 (ml/s). The continuous-time funda-
mental model of the process is composed of two nonlinear
ordinary differential equations

dWaðtÞ
dt

¼ q1ðtÞðWa1 �WaðtÞÞ
V

þq2ðtÞðWa2 �WaðtÞÞ
V

þq3ðtÞðWa3 �WaðtÞÞ
V

ð33Þ

dWbðtÞ
dt

¼ q1ðtÞðWb1
�WbðtÞÞ

V
þq2ðtÞðWb2

�WbðtÞÞ
V

þq3ðtÞðWb3
�WbðtÞÞ

V
ð34Þ

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 317
and one algebraic output equation

WaðtÞþ10pHðtÞ�14�10�pHðtÞ

þWbðtÞ
1þ2� 10pHðtÞ�K2

1þ10K1 �pHðtÞ þ10pHðtÞ�K2
¼ 0 ð35Þ

State variables Wa and Wb are reaction invariants. Initial operating
conditions of the process are q1¼15.55 ml/s, pH¼7,Wa ¼ �4:32�
10�4 mol , Wb ¼ 5:28� 10�4 mol. The buffer and acid streams are
assumed to be constant, q2¼0.55 ml/s, q3¼16.60 ml/s. All constant
parameters of the fundamental model are K1¼6.35, K2¼10.25,
V¼2900 ml, Wa1 ¼ �3:05� 10�3 mol, Wa2 ¼ �3� 10�2 mol,
Wa3 ¼ 3� 10�3 mol, Wb1

¼ 5� 10�5 mol, Wb2 ¼ 3� 10�2 mol,
Wb3 ¼ 0 mol.

The system of differential equations (33)–(34) is treated as the
process during simulations. The equations are solved by means of
the Runge–Kutta 45 method. For calculation of the value of pH for
simulation purposes, using Eq. (35), a fourth-order polynomial is
obtained

10�14�K2x4ðtÞþ WaðtÞ10�K2 þ10�14þ2WbðtÞ10�K2

� �
x3ðtÞ

þ WaðtÞþ10K1 �14�10�K2 þWbðtÞ
� �

x2ðtÞ

þ Wa10
K1 �1

� �
xðtÞ�10K1 ¼ 0 ð36Þ

where xðtÞ ¼ 10pHðtÞ. Eq. (36) is solved and next its positive solution
gives the actual value of pH from pHðtÞ ¼ log 10 xðtÞ. Additionally, it
is assumed that the value of pH is measured with a delay equal to
10 s.

The considered neutralisation reactor is a significantly non-
linear system. Firstly, its steady-state characteristics shown in
Fig. 3 is nonlinear. It is an interesting fact that the steady-state gain
of the process changes from 0.0350 to 2.9416, more than 84 times.
Secondly, dynamic properties of the process are also nonlinear.
Fig. 4 depicts example step-responses of the process caused by
increasing and decreasing the base flow rate q1 by 1, 5 and 10 ml/s,
respectively. Time constants depend on the step value, for positive
and negative changes of the manipulated variable the responses
have different amplitude and shape. That is why the classical lin-
ear control strategies are inefficient for the neutralisation process,
e.g. the linear MPC algorithm as discussed in [25].

6.2. Modelling of neutralisation process and model pruning

Taking into account the identification and pruning procedure of
the LS-SVMWiener model described in Section 5, it is necessary to
generate steady-state and dynamic data. The dynamic data
Fig. 3. The steady-state characteristics of the neutralisation r
(random step changes in the input variable q1 and corresponding
responses of the output variable pH) is generated directly from the
fundamental model defined by Eqs. (33), (34) and (36). The sam-
pling time (for identification of the dynamic part of the model and
for controller design) is 10 s. The dynamic training and validation
data sets are depicted in Fig. 5. Both sets have 2000 samples.
Additionally, the output signal contains small measurement noise.

From the dynamic fundamental model one may easily obtain
the steady-state fundamental description of the process. In the
steady-state conditions, from the differential equations (33)–(34),
it follows that

Wa ¼
q1Wa1 þq2Wa2 þq3Wa3

q1þq2þq3
ð37Þ

Wb ¼
q1Wb1

þq2Wb2
þq3Wb3

q1þq2þq3
ð38Þ

whereas from the algebraic output equation (36)

10�14�K2x4þ Wa10
�K2 þ10�14þ2Wb10

�K2

� �
x3

þ Waþ10K1 �14�10�K2 þWb

� �
x2þ Wa10

K1 �1
� �

x�10K1 ¼ 0

ð39Þ
and the value of pH is calculated as pH¼ log 10 x. From the fun-
damental stead-state model defined by Eqs. (37)–(39) the steady-
state training and validation data sets are generated. They consist
of 100 and 70 equidistant data patterns, respectively, in the whole
operating domain determined by q1 ¼ 0;…;30 ml=s.

Both steady-state and dynamic data sets are scaled:
u¼ q1�q1;0, y¼ pH�pH0, where in the nominal operating point
q1;0 ¼ 15:5 and pH0 ¼ 7.

Before identification, the LS-SVM approximator needs values of
two tuning parameters: the regularisation factor γ, which deter-
mines the trade-off between the training error minimisation and
smoothness (the optimisation task (27)) and the parameter σ of
the kernel (Eqs. (5), (30)). After a series of experiments the reg-
ularisation parameter is set to γ ¼ 1000 (for small values of γ the
approximation suffers from the lack of smoothness). Next, the
influence of the kernel parameter σ on the possible approximation
accuracy is analysed. For this purpose three LS-SVM approx-
imators of the steady-state nonlinear part of the Wiener model are
trained using the complete training data set. The model is not
pruned, it contains nsv ¼ 100 support vectors. Fig. 6 compares the
steady-state validation data set and model output, model errors
are also given. It may be noticed that the bigger the parameter σ,
the bigger the errors, in particular in the central part of the steady-
state characteristics. The model error SSEs (Eqs. (31)) is
eactor (left panel) and its steady-state gain (right panel).

Fig. 4. Step-responses of the reactor (the value of pH) caused by increasing (solid line) and decreasing (dashed line) the base flow rate q1 by 1 ml/s (left panel), 5 ml/s (middle
panel) and 10 ml/s (right panel) at k¼1.

Fig. 5. The dynamic training data set (left panels) and the validation data set (right panels).

Fig. 6. The steady-state validation data set vs. the output of the LS-SVM approximator and model errors for σ ¼ 0:5 (left panels), σ ¼ 2:5 (middle panels), σ ¼ 10 (right panels);
nsv ¼ 100.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328318
2:5679� 10�3, 2:3819� 10�2 and 7:7876� 10�2 for σ ¼ 0:5, σ ¼
2:5 and σ ¼ 10, respectively. As shown in Fig. 7, the support vec-
tors are located in a equidistant way in the domain of q1, which is
enforced by the steady-state training data set.

In step 2 of all three pruning algorithms of the LS-SVM
approximator only one training pattern is removed from the
training data set. Such an approach makes it possible to precisely
compare three pruning algorithms. They are compared in terms of
the error of the steady-state part of the Wiener model SSEs
(Eqs. (31)) and the error of the whole Wiener model SSEd
(Eqs. (32)). Fig. 8 compares the influence of the number of support
vectors on the error of the steady-state part of the Wiener model
SSEs in three considered pruning algorithms. In order to demon-
strate generalisation abilities of the models, the errors for the

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 319
validation data set are given. Since in the third pruning algorithm
pruning is carried out taking into account the error of the com-
plete dynamic Wiener model, its linear dynamic part must be
found before pruning. The second-order of dynamics is used as in
Fig. 7. The location of the support vectors of the full model (nsv ¼ 100).

Fig. 8. The influence of the number of support vectors nsv on the error SSEs of the st
compared pruning algorithms.
[25], hence the dynamic part (4) becomes

vðkÞ ¼ b1uðk�1Þþb2uðk�2Þ�a1vðk�1Þ�a2vðk�2Þ
For identification the prediction error identification method is
used. For the full LS-SVM steady-state nonlinear part, the para-
meters of the dynamic linear one are a1 ¼ �6:6833� 10�1,
a2 ¼ �2:0995� 10�1, b1 ¼ 3:4400� 10�2, b2 ¼ 9:1237� 10�2.
Taking into account Fig. 8, it may be observed that in general the
parameter σ influences the model error and its pruning possibility.
The lower the value of σ, the more precise the LS-SVM approx-
imation, but it needs more support vectors. It is also important to
notice that in general for the same number of support vectors the
second pruning algorithm gives the best result, much better than
the first one, the third algorithm is somehow worse than the
second one. In different words, the LS-SVM approximator with a
fixed number of support vectors is most precise when pruned
using the second method. For example, the LS-SVM Wiener model
with σ ¼ 5 and 30 support vectors is characterised by the SSEs

error 1:0422� 100, 8:9491� 10�2 and 6:1411� 10�1 when
pruned by the algorithms 1, 2 and 3, respectively. For 20 support
vectors the SSEs error in the first algorithm increases to
2:6694� 102, whereas the algorithms 2 and 3 give very moderate
values 5:4809� 10�1 and 6:5663� 10�1, respectively. Figs. 9 and
10 show the steady-state validation data set vs. the output of the
pruned LS-SVM approximators and location of support vectors for
σ ¼ 0:5 in two cases: when nsv ¼ 30 and nsv ¼ 50. For such a small
value of σ 30 support vectors are insufficient, but the models with
eady-state part of the LS-SVM Wiener model for the validation data set in three

Fig. 9. The steady-state validation data set vs. the output of the pruned LS-SVM approximators (top panels) and location of support vectors (bottom panels) obtained by three
pruning algorithms; σ ¼ 0:5, nsv ¼ 30.

Fig. 10. The steady-state validation data set vs. the output of the pruned LS-SVM approximators (top panels) and location of support vectors (bottom panels) obtained by three
pruning algorithms; σ ¼ 0:5, nsv ¼ 50.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328320
50 vectors are also not perfect. The first pruning method unne-
cessarily reduces the support vectors in the central part of the
steady-state characteristics.When σ ¼ 5 the second and the third
pruning algorithms give quite good models with only 20 support
vectors as depicted in Fig. 11, the first algorithm gives big errors.
For σ ¼ 5 the models with 30 support vectors obtained by the
pruning algorithms 2 and 3 are very good as shown in Fig. 12 (the
second algorithm in fact gives better approximation), the algo-
rithm 1 still needs more support vectors. Too big values of the
parameter σ are rather disadvantageous, because the model
accuracy deteriorates as shown in Fig. 13 for the LS-SVM approx-
imator with σ ¼ 10 and 30 support vectors.

Next, the complete Wiener models with the pruned LS-SVM
steady-state approximators are assessed using the dynamic vali-
dation data set shown in Fig. 5. Fig. 14 compares the influence of
the number of support vectors on the error SSEd of the LS-SVM
Wiener model for the validation data set in three considered
pruning algorithms. Relation between the number of support
vectors and model error SSEd and effectiveness of three pruning
algorithms is quite similar to the case when the error SSEs of the
steady-state part is only considered (Fig. 8). In general, the second

Fig. 11. The steady-state validation data set vs. the output of the pruned LS-SVM approximators (top panels) and location of support vectors (bottom panels) obtained by three
pruning algorithms; σ ¼ 5, nsv ¼ 20.

Fig. 12. The steady-state validation data set vs. the output of the pruned LS-SVM approximators (top panels) and location of support vectors (bottom panels) obtained by three
pruning algorithms; σ ¼ 5, nsv ¼ 30.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 321
pruning algorithm gives the best results, the third one is a little bit
worse whereas the first one generates very imprecise approx-
imators. For example, the LS-SVM Wiener model with σ ¼ 5 and
30 support vectors is characterised by the SSEd error 9:0679� 101,
6:7043� 101 and 7:5833� 101 when pruned by the algorithms 1,
2 and 3, respectively. For 20 support vectors the SSEd error in the
first algorithm increases to 7:5584� 103, whereas the algorithms
2 and 3 give very moderate values 7:6340� 101 and 7:6824� 101,
respectively. The role of the parameter σ is the same when only
the steady-state part of the model is analysed.
As a good compromise between accuracy of the steady-state
part, its smoothness, accuracy of the full LS-SVM Wiener model
and model complexity determined by the number of support
vectors, the models with σ ¼ 5 are chosen. Finally, it is interesting
to compare the dynamic validation data set and the output of the
pruned models when pruned by means of pruning algorithms
1 and 2 (the algorithm 3 gives comparable results to algorithm 2).
When the number of support vectors is 20 the first pruning
algorithm gives a model which is unable to follow the output
signal of the process whereas the model obtained by the second
pruning algorithm performs quite well as depicted in Fig. 15. For

Fig. 13. The steady-state validation data set vs. the output of the pruned LS-SVM approximators (top panels) and location of support vectors (bottom panels) obtained by three
pruning algorithms; σ ¼ 10, nsv ¼ 30.

Fig. 14. The influence of the number of support vectors nsv on the error SSEd of the LS-SVM Wiener model for the validation data set in three compared pruning algorithms.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328322

Fig. 15. The dynamic validation data set (solid line) vs. the output of the pruned models obtained by pruning algorithms 1 and 2 (dashed line); σ ¼ 5, nsv ¼ 20.

Fig. 16. The dynamic validation data set (solid line) vs. the output of the pruned models obtained by pruning algorithms 1 and 2 (dashed line); σ ¼ 5, nsv ¼ 30.

Fig. 17. The dynamic validation data set (solid line) vs. the output of the full model,
nsv ¼ 100 (dashed line); σ ¼ 5.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 323
30 support vectors the model obtained by the first pruning
method gives acceptable prediction, but the model pruned by the
second method is almost as good as in case of the full (not pruned)
model with 100 support vectors as shown in Figs. 16 and 17,
respectively. It is an interesting question whether or not it is
desirable to recalculate the parameters of the linear dynamic part
of the Wiener model after pruning. Taking into account the most
efficient second pruning algorithm, for σ ¼ 2:5, σ ¼ 5 and σ ¼ 10
differences between the model with the recalculated linear part
and a constant one in terms of the SSEd error are very small (below
0.1%). Some differences are observed for small values of the
parameter σ. For example, for 30 support vectors such a difference
in the SSEd error is 3.4% and 0.7% for σ ¼ 1 and σ ¼ 0:5,
respectively.

6.3. Predictive control of neutralisation process

In this section predictive control of the neutralisation reactor is
discussed. At first it is interesting to compare efficiency of the
“ideal”MPC-NO algorithmwith nonlinear optimisation repeated at
each sampling instant. Three models of the process are used for
prediction: the full (not pruned) LS-SVM Wiener model with 100
support vectors as well as the pruned models with 20 and 30
support vectors. Pruning is carried out by the most efficient second
method, the models trained for σ ¼ 5 are used. Fig. 18 compares
the trajectories obtained when the full model and the model with
20 support vectors are used. Because the pruned model performs
quite well for steady-state and dynamic data (Figs. 11 and 15,

Fig. 18. Simulation results of the MPC-NO algorithm based on: the full LS-SVM Wiener model with nsv ¼ 100 support vectors (solid line) and the model with nsv ¼ 20 vectors
pruned by the algorithm 2 (dashed line); σ ¼ 5.

Fig. 19. Simulation results of the MPC-NO algorithm based on: the full LS-SVM Wiener model with nsv ¼ 100 support vectors (solid line) and the model with nsv ¼ 30 vectors
pruned by the algorithm 2 (dashed line); σ ¼ 5.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328324
respectively), the differences between the “ideal” trajectories
(corresponding to the full model) are very small. The LS-SVM
Wiener model with 30 support vectors has excellent approxima-
tion abilities (Figs. 12 and 16) and when it is used in MPC it makes
it possible to obtain practically the same trajectories as in the case
of the full model which is illustrated in Fig. 19. That is why for
further application in MPC the LS-SVM model with 30 support
vectors obtained for σ ¼ 5 and pruned by means of the second
algorithm is chosen.

Next, two MPC algorithms are compared: the discussed MPC-
NPLPT algorithm with on-line trajectory linearisation and quad-
ratic optimisation and the MPC-NO algorithm with on-line non-
linear optimisation. For optimisation the active set method is used
in the first case and the Sequential Quadratic Programming (SQP)
algorithm is used in the second case [29]. Both MPC algorithms use
on-line the same nonlinear LS-SVM Wiener model with 30 sup-
port vectors pruned by the second algorithms. Tuning parameters
of all algorithms are the same and the same set-point trajectories
are considered. All simulations are carried out in Matlab. The
common parameters of both algorithms are the same: N¼10,
Nu ¼ 3, λ¼ 0:05, the constraints imposed on the manipulated
variable are qmin

1 ¼ 0 ml=s, qmax
1 ¼ 30 ml=s, the additional para-

meters of the MPC-NPLPT algorithm are tmax ¼ 5, N0 ¼ 3 and in
order to demonstrate the role of internal iterations as many as
5 different values of the parameters δu ¼ δy are assumed: 10, 1, 0.1,
0.01, 0.001. The same set-point trajectory as in [25] is used. The
obtained simulation results are depicted in Figs. 20, 21 and 22 for
the tuning parameters δu ¼ δy equal to 10, 1 and 0.1, respectively.
The MPC-NPLPT algorithm with δu ¼ δy ¼ 10 gives quite sig-
nificantly different trajectories than the “ideal” MPC-NO one
because the overshoot is bigger. Reducing the tuning parameters
to 1 leads to decreasing the discrepancy between the trajectories
of the compared algorithms. Finally, for δu ¼ δy ¼ 0:1 the MPC-
NPLPT algorithm gives practically the same trajectories as the
MPC-NO one. Although taking into account accuracy of the MPC-
NPLPT algorithm it is desirable to use small values of the addi-
tional tuning parameters δu and δy, the smaller their values, the
more internal iterations are necessary. For δu ¼ δy ¼ 10 the algo-
rithm needs 80 iterations (for the whole simulation horizon), for
δu ¼ δy ¼ 1 it needs 96 iterations and for δu ¼ δy ¼ 0:1 as many as
114 ones. The number of internal iterations in the consecutive
sampling instants of the MPC-NPLPT algorithm for different values
of δu ¼ δy is shown in Fig. 23 (one internal iteration is in fact the
main task of the algorithm).

Fig. 20. Simulation results: the MPC-NO algorithm (solid line) vs. the MPC-NPLPT algorithm with δu ¼ δy ¼ 10 (dashed line); both algorithms use the same LS-SVM Wiener
model with σ ¼ 5, nsv ¼ 30, pruned by the algorithm 2.

Fig. 21. Simulation results: the MPC-NO algorithm (solid line) vs. the MPC-NPLPT algorithm with δu ¼ δy ¼ 1 (dashed line); both algorithms use the same LS-SVM Wiener
model with σ ¼ 5, nsv ¼ 30, pruned by the algorithm 2.

Fig. 22. Simulation results: the MPC-NO algorithm (solid line) vs. the MPC-NPLPT algorithm with δu ¼ δy ¼ 0:1 (dashed line); both algorithms use the same LS-SVM Wiener
model with σ ¼ 5, nsv ¼ 30, pruned by the algorithm 2.

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 325

Fig. 23. The number of internal iterations NII in the consecutive sampling instants
of the MPC-NPLPT algorithm for different values of δu ¼ δy; all algorithms use the
same LS-SVM Wiener model with σ ¼ 5, nsv ¼ 30, pruned by the algorithm 2.

Table 1
Accuracy criterion D1 ¼D2 obtained in the MPC-NPLPT and MPC-NO algorithms; all
algorithms use the same full LS-SVM Wiener model with σ ¼ 5, nsv ¼ 100.

Algorithm δu ¼ δu Internal iterations D1 ¼D2

MPC-NPLPT 10 80 3:5784� 10�1

MPC-NPLPT 1 95 1:4752� 10�2

MPC-NPLPT 0.1 114 4:7970� 10�3

MPC-NPLPT 0.01 136 1:5414� 10�3

MPC-NPLPT 0.001 148 1:3430� 10�3

MPC-NO – – 0

Table 2
Accuracy criteria D1 and D2 obtained in the MPC-NPLPT and MPC-NO algorithms;
all algorithms use the same LS-SVM Wiener model with σ ¼ 5, nsv ¼ 30, pruned by
the algorithm 2.

Algorithm δu ¼ δu Internal iterations D1 D2

MPC-NPLPT 10 80 3:5331� 10�1 3:5687� 10�1

MPC-NPLPT 1 96 1:4289� 10�2 1:4345� 10�2

MPC-NPLPT 0.1 114 4:8176� 10�3 4:7275� 10�3

MPC-NPLPT 0.01 136 1:2389� 10�3 1:5024� 10�3

MPC-NPLPT 0.001 151 1:1176� 10�3 1:4259� 10�3

MPC-NO – – 0 3:8537� 10�4

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328326
In order to further analyse accuracy of the MPC-NPLPT algo-
rithm the following accuracy criterion is defined

D1 ¼
X75
k ¼ 1

ðpHMPC�NOðkÞ�pHMPC�NPLPTðkÞÞ2 ð40Þ

which describes the discrepancy between the trajectories obtained
in the MPC-NO algorithm (pHMPC�NO) and the MPC-NPLPT one
(pHMPC�NPLPT). Both algorithms use the same model (full or
pruned). The second criterion

D2 ¼
X75
k ¼ 1

ðpHnsv ¼ 100
MPC�NO ðkÞ�pHnsv r100

MPC�NPLPTðkÞÞ2 ð41Þ

measures the discrepancy between the trajectories obtained in the
MPC-NO algorithm based on the full model (pHnsv ¼ 100

MPC�NO) and the
MPC-NPLPT algorithm based on a pruned model (pHnsv r100

MPC�NPLPT).
When nsv ¼ 100, D1 ¼D2. At first, in Table 1, the values of D1 are
given for MPC-NO and MPC-NPLPT algorithms based on the same
full LS-SVM Wiener model with σ ¼ 5 and 100 support vectors.
The smaller the values of δu and δy, the smaller the discrepancy,
but more internal iterations are necessary. Table 2 gives the values
of D1 and D2 when the LS-SVMWiener model pruned by algorithm
2 with only 30 support vectors is used. One can easily notice that
for the consecutive values of δu and δy the MPC-NPLPT algorithm
makes it possible to achieve very good control accuracy when it
uses the pruned model, comparable to that obtained when the full
model is used.

Finally, computational complexity of the MPC-NPLPT and MPC-
NO algorithms is compared (it is assessed using the cputime
command in Matlab). Table 3 gives scaled computational burden
for the MPC algorithms which use the same full LS-SVM Wiener
model with 100 support vectors, whereas Table 4 shows scaled
computational burden for MPC algorithms in which the same
model with only 30 support vectors are used, pruned by the
algorithm 2. In both cases σ ¼ 5. The following lengths of the
control horizon are considered: 1, 2, 3, 4, 5 and 10 as it has a
predominant influence on computational complexity, N¼10. All
results are scaled in such a way that computational burden for the
MPC-NO algorithm based on the full LS-SVM Wiener model and
with Nu ¼ 10 is 100%. Taking into account the obtained numerical
values, two conclusions may be drawn. Firstly, the MPC-NPLPT
algorithm with quadratic optimisation is many times less com-
putationally demanding than the MPC-NO one. For example, for
Nu ¼ 3 and δu ¼ δy ¼ 0:1 some 6 times, for longer control horizons
that comparison is even better for the MPC-NPLPT algorithm.
Secondly, for the same set of parameters the MPC-NPLPT algo-
rithm based on the pruned model is some 3 times less demanding
than the same algorithm based on the full model. Finally, it may be
observed that the mentioned factors of computational complexity
of the MPC-NPLPT algorithm and the use of a reduced model are
approximately the same for different control horizons and values
of δu, δy, the only difference is when the longest control horizon is
considered.
7. Conclusions

This paper describes a computationally efficient nonlinear MPC
algorithm for the neutralisation process based on a pruned LS-
SVM Wiener model.

Firstly, since the classical LS-SVM approximator is usually
characterised by an excessive number of parameters, the model
containing as many as 100 support vectors (105 parameters) is
pruned using three different methods. In particular, the introduced
pruning methods, in which the support vectors are removed tak-
ing into account directly the error of the model, not the error
minimised during training the LS-SVM approximator, turn out to
give very good models in terms of accuracy and sparseness. It is
possible to remove as much as 70% of support vectors without any
significant deterioration of model accuracy.

Secondly, the LS-SVM Wiener model is used in an MPC algo-
rithm with on-line successive linearisation of the predicted
trajectory. Such an approach makes it possible to find at each

Table 3
Scaled computational burden of the MPC-NPLPT and MPC-NO algorithms; all algorithms use the same full LS-SVM Wiener model with σ ¼ 5, nsv ¼ 100.

Algorithm δu ¼ δy Nu ¼ 1 Nu ¼ 2 Nu ¼ 3 Nu ¼ 4 Nu ¼ 5 Nu ¼ 10

MPC-NPLPT 10 0.67% 1.09% 1.46% 1.84% 2.17% 3.42%
MPC-NPLPT 1 0.84% 1.29% 1.74% 2.13% 2.57% 4.04%
MPC-NPLPT 0.1 0.99% 1.46% 2.08% 2.56% 3.05% 4.75%
MPC-NPLPT 0.01 1.19% 1.86% 2.55% 3.19% 3.74% 5.87%
MPC-NPLPT 0.001 1.39% 2.16% 2.91% 3.62% 4.38% 6.74%
MPC-NO – 3.44% 6.87% 12.23% 18.05% 27.72% 100.00%

Table 4
Scaled computational burden of the MPC-NPLPT and MPC-NO algorithms; all algorithms use the same LS-SVMWiener model with σ ¼ 5, nsv ¼ 30, pruned by the algorithm 2.

Algorithm δu ¼ δy Nu ¼ 1 Nu ¼ 2 Nu ¼ 3 Nu ¼ 4 Nu ¼ 5 Nu ¼ 10

MPC-NPLPT 10 0.22% 0.36% 0.49% 0.64% 0.78% 1.53%
MPC-NPLPT 1 0.27% 0.42% 0.59% 0.75% 0.92% 1.81%
MPC-NPLPT 0.1 0.33% 0.48% 0.70% 0.88% 1.09% 2.09%
MPC-NPLPT 0.01 0.39% 0.62% 0.86% 1.11% 1.35% 2.61%
MPC-NPLPT 0.001 0.45% 0.72% 0.98% 1.25% 1.54% 2.98%
MPC-NO – 1.18% 2.52% 4.29% 6.61% 10.37% 40.92%

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328 327
sampling instant the future control scenario from a series of easy
to solve quadratic optimisation problems. Unlike many MPC
schemes for Wiener systems, e.g. [6,13,32], the inverse model of
the steady-state part is not used. It is shown that the trajectories of
the discussed MPC algorithm with on-line linearisation are prac-
tically the same as those possible in the MPC strategy with non-
linear optimisation repeated at each sampling instant on-line. For
the chosen tuning parameters of MPC and the set-point scenario,
the discussed MPC algorithm is approximately 6 times less com-
putationally demanding than the “ideal” MPC with nonlinear
optimisation. Furthermore, model pruning does not lead to any
significant negative effect on quality of control, i.e. MPC algorithms
based on the pruned model give almost the same performance as
the algorithms in which the full LS-SVM Wiener model with as
many as 100 support vectors is used. Model pruning makes it
possible to further reduce computational effort some 3 times.

Finally, it is necessary to emphasise the fact that the described
model pruning technique and the MPC algorithm may be applied
to many other dynamic systems represented by the LS-SVM
Wiener model. The cascade Wiener structure is very universal, it
may be successfully used to describe numerous processes, e.g.
chemical reactors, distillation columns, separation processes,
gasifiers, hydraulic systems and even biomedical systems (the
relaxation process during anaesthesia), an excellent review is
given in [18]. Furthermore, the LS-SVM approximator may be
efficiently used as a steady-state nonlinear part of the Wiener
model since it has excellent approximation abilities and it may be
found easily. It is important to notice that application of the LS-
SVM approximator makes on-line trajectory linearisation possible,
which may be not true for other model structures. Extension of the
presented pruning and MPC algorithms for multiple-input multi-
ple-output processes is straightforward. The described computa-
tionally efficient MPC algorithm based on the optimised LS-SVM
model may be used in the multilayer control system structure and
in networked industrial process control [42,44]. Moreover, it is
possible to use the described pruning algorithm to optimise the
number of parameters in alternative model structures, e.g. in a
fuzzy dynamic model [35] and also in a fuzzy dynamic model of a
distributed parameter system [34]. The mentioned issues may be
considered during the future works.
Acknowledgement

The work presented in this paper was supported by the Polish
national budget funds for science.
References

[1] A.S. Al-Araji, M.F. Abbod, H.S. Al-Raweshidy, Applying posture identifier in
designing an adaptive nonlinear predictive controller for nonholonomic
mobile robot, Neurocomputing 99 (2013) 543–554.

[2] N.L. Azad, A. Mozaffari, J.K. Hedrick, A hybrid switching predictive controller
based on bi-level kernel-based ELM and online trajectory builder for auto-
motive coldstart emissions reduction, Neurocomputing 173 (2016) 1124–1141.

[3] B.M. Åkesson, H.T. Toivonen, J.B. Waller, R.H. Nyström, Neural network
approximation of a nonlinear model predictive controller applied to a pH
neutralization process, Comput. Chem. Eng. 29 (2005) 323–335.

[4] N. Bigdeli, M. Haeri, Predictive functional control for active queue manage-
ment in congested TCP/IP networks, ISA Trans. 48 (2009) 107–121.

[5] J.M. Böling, D.E. Seborg, J.P. Hespanha, Multi-model adaptive control of a
simulated pH neutralization process, Control Eng. Pract. 15 (2007) 663–672.

[6] A.L. Cervantes, O.E. Agamennoni, J.L. Figueroa, A nonlinear model predictive
control based on Wiener piecewise linear models, J. Process Control 13 (2003)
655–666.

[7] J. Chen, Y. Peng, W. Han, M. Guo, Adaptive fuzzy sliding mode control in PH
neutralization process, Procedia Eng. 15 (2011) 954–958.

[8] D. Dougherty, D. Cooper, A practical multiple model adaptive strategy for
single-loop MPC, Control Eng. Pract. 11 (2003) 141–159.

[9] R. Dubay, M. Hassan, C. Li, M. Charest, Finite element based model predictive
control for active vibration suppression of a one-link flexible manipulator, ISA
Trans. 53 (2014) 1609–1619.

[10] M.J. Fuente, C. Robles, O. Casado, S. Syafiie, F. Tadeo, Fuzzy control of a neu-
tralization process, Eng. Appl. Artif. Intell. 19 (2006) 905–914.

[11] O. Galán, J.A. Romagnoli, A. Palazoglu, Real-time implementation of multi-
linear model-based control strategies-an application to a bench-scale pH
neutralization reactor, J. Process Control 14 (2004) 571–579.

[12] F. Giri, E.W. Bai (Eds.), Block-oriented Nonlinear System Identification, Lecture
Notes in Control and Information Sciences, vol. 404, Springer, Berlin, 2010.

[13] J.C. Gómez, A. Jutan, E. Baeyens, Wiener model identification and predictive
control of a pH neutralisation process, Proc. IEE, Part D, Control Theory Appl.
151 (2004) 329–338.

[14] A. Grancharova, J. Kocijan, T.A. Johansen, Explicit output-feedback nonlinear
predictive control based on black-box models, Eng. Appl. Artif. Intell. 24 (2011)
388–397.

[15] M. Henson, D. Seborg, Adaptive nonlinear control of a pH neutralization
process, IEEE Trans. Control Syst. Technol. 2 (1994) 169–182.

[16] A.W. Hermansson, S. Syafiie, Model predictive control of pH neutralization
processes: a review, Control Eng. Pract. 45 (2015) 98–109.

[17] S. Iplikci, A support vector machine based control application to the experi-
mental three-tank system, Neurocomputing 49 (2010) 376–386.

[18] A. Janczak, Identification of Nonlinear Systems Using Neural Networks and
Polynomial Models, A Block-Oriented Approach, Lecture Notes in Control and
Information Sciences, vol. 310, Springer, Berlin, 2004.

http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref1
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref1
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref1
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref1
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref2
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref2
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref2
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref2
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref3
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref3
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref3
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref3
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref4
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref4
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref4
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref5
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref5
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref5
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref6
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref6
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref6
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref6
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref7
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref7
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref7
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref8
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref8
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref8
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref9
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref9
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref9
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref9
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref10
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref10
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref10
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref11
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref11
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref11
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref11
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref13
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref13
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref13
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref13
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref14
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref14
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref14
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref14
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref15
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref15
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref15
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref16
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref16
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref16
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref17
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref17
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref17

M. Ławryńczuk / Neurocomputing 205 (2016) 311–328328
[19] O. Karasakal, M. Guzelkaya, I. Eksin, E. Yesil, T. Kumbasar, Online tuning of
fuzzy PID controllers via rule weighing based on normalized acceleration, Eng.
Appl. Artif. Intell. 26 (2013) 184–197.

[20] B.J. de Kruif, T.J.A. de Vries, Pruning error minimization in least-squares sup-
port vector machines, IEEE Trans. Neural Netw. 14 (2003) 696–702.

[21] T. Kumbasar, I. Eksin, M. Guzelkaya, E. Yesil, Type-2 fuzzy model based con-
troller design for neutralization processes, ISA Trans. 51 (2014) 277–287.

[22] N.R. Lakshmi Narayanan, P.R. Krishnaswamy, G.P. Rangaiah, An adaptive
internal model control strategy for pH neutralization, Chem. Eng. Sci. 52
(1997) 3067–3074.

[23] A.P. Loh, K.O. Looi, K.F. Fong, Neural network modeling and control strategies
for a pH process, J. Process Control 5 (1995) 355–362.

[24] M. Ławryńczuk, Computationally Efficient Model Predictive Control Algo-
rithms: A Neural Network Approach, Studies in Systems, Decision and Control,
vol. 3, Springer, Heidelberg, 2014.

[25] M. Ławryńczuk, Practical nonlinear predictive control algorithms for neural
Wiener models, J. Process Control 23 (2013) 696–714.

[26] S. Mahmoodi, J. Poshtan, M.R. Jahed-Motlagh, A. Montazeri, Nonlinear model
predictive control of a pH neutralization process based on Wiener–Laguerre
model, Chem. Eng. J. 146 (2009) 328–337.

[27] A. Mozaffari, M. Vajedi, N.L. Azad, A robust safety-oriented autonomous cruise
control scheme for electric vehicles based on model predictive control and
online sequential extreme learning machine with a hyper-level fault
tolerance-based supervisor, Neurocomputing 151 (2015) 845–856.

[28] O. Nelles, Nonlinear System Identification, From Classical Approaches to
Neural Networks and Fuzzy Models, Springer, Berlin, 2001.

[29] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, Berlin, 2006.
[30] S.J. Norquay, A. Palazoğlu, J.A. Romagnoli, Model predictive control based on

Wiener models, Chem. Eng. Sci. 53 (1998) 75–84.
[31] S. Oblak, I. Škrjanc, Continuous-time Wiener-model predictive control of a pH

process based on a PWL approximation, Chem. Eng. Sci. 65 (2010) 1720–1728.
[32] J. Peng, R. Dubay, J.M. Hernandez, M. Abu-Ayyad, A Wiener neural network-

based identification and adaptive Generalized Predictive Control for nonlinear
SISO systems, Ind. Eng. Chem. Res. 50 (2011) 7388–7397.

[33] P. Potočnik, I. Grabec, Nonlinear model predictive control of a cutting process,
Neurocomputing 43 (2002) 107–126.

[34] J. Qiu, S. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feed-
back H1 control of nonlinear hyperbolic PDE systems, IEEE Trans. Fuzzy Syst.
24 (2016) 388–400.

[35] J. Qiu, G. Feng, H. Gao, Static-output-feedback H1 control of continuous-time
T-S fuzzy affine systems via piecewise Lyapunov functions, IEEE Trans. Fuzzy
Syst. 21 (2013) 245–261.

[36] M. Sarailoo, Z. Rahmani, B. Rezaie, A novel model predictive control scheme
based on bees algorithm in a class of nonlinear systems: application to a three
tank system, Neurocomputing 152 (2015) 294–304.

[37] B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT, Cambridge, 2001.
[38] J. Shin, H. Jin Kim, S. Park, Y. Kim, Model predictive flight control using
adaptive support vector regression, Neurocomputing 73 (2010) 1031–1037.

[39] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least
Squares Support Vector Machines, World Scientific, Singapore, 2002.

[40] J.A.K. Suykens, J.D. Brabanter, L. Lukas, J. Vandewalle, Weighted least squares
support vector machines: robustness and sparse approximation, Neuro-
computing 48 (2002) 85–105.

[41] S. Syafiie, F. Tadeo, E. Martinez, Model-free learning control of neutralization
processes using reinforcement learning, Eng. Appl. Artif. Intell. 20 (2007)
767–782.

[42] P. Tatjewski, Advanced Control of Industrial Processes, Structures and Algo-
rithms, Springer, London, 2007.

[43] X. Tian, G. Chen, S. Chen, A data-based approach for multivariate model pre-
dictive control performance monitoring, Neurocomputing 74 (2011) 588–597.

[44] T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear
model predictive control for multirate networked industrial process control,
IEEE Trans. Neural Netw. Learn. Syst. 27 (2016) 416–425.

[45] Q.C. Wang, J.Z. Zhang, Wiener model identification and nonlinear model
predictive control of a pH neutralization process based on Laguerre filters and
least squares support vector machines, J. Zhejiang Univ.-Sci. C (Comput.
Electron.) 12 (2011) 25–35.

[46] X.-C. Xi, A.-N. Poo, S.-K. Chou, Support vector regression model predictive
control on a HVAC plant, Control Eng. Pract. 15 (2007) 897–908.

[47] S.S. Yoon, T.W. Yoon, D.R. Yang, T.S. Kang, Indirect adaptive nonlinear control of
a pH process, Comput. Chem. Eng. 26 (2002) 1223–1230.

[48] X.Y. Zeng, X.W. Chen, SMO-based pruning methods for sparse least-squares
support vector machines, IEEE Trans. Neural Netw. 16 (2005) 1541–1546.
Maciej Ławryn
0
czuk was born in Warsaw, Poland, in

1972. He obtained his M.Sc. in 1998, Ph.D. in 2003, D.Sc.
in 2013, in automatic control, from Warsaw University
of Technology, Faculty of Electronics and Information
Technology. Since 2003 he has been employed at the
same university at the Institute of Control and Com-
putation Engineering: in 2003–2004 as a teaching
assistant, in 2004–2015 as an assistant professor, since
2015 as an associate professor. He is the author or a co-
author of 6 books and more than 100 other publica-
tions, including 30 journal articles. His research inter-
ests include advanced control algorithms, in particular

MPC algorithms, set-point optimisation algorithms, soft

computing methods, in particular neural networks, modelling and simulation.

http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref19
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref19
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref19
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref19
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref20
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref20
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref20
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref21
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref21
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref21
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref22
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref22
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref22
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref22
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref23
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref23
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref23
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref24
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref24
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref24
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref25
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref25
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref25
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref26
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref26
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref26
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref26
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref27
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref27
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref27
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref27
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref27
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref29
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref741
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref741
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref741
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref31
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref31
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref31
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref32
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref32
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref32
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref32
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref33
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref33
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref33
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref33
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref33
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref742
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref742
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref742
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref742
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref742
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref35
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref35
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref35
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref35
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref35
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref36
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref36
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref36
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref36
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref37
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref37
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref38
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref38
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref38
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref39
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref39
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref40
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref40
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref40
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref40
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref41
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref41
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref41
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref41
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref42
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref42
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref43
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref43
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref43
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref44
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref44
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref44
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref44
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref45
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref45
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref45
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref45
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref45
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref46
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref46
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref46
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref47
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref47
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref47
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref48
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref48
http://refhub.elsevier.com/S0925-2312(16)30299-5/sbref48

	Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models
	Introduction
	Predictive control problem formulation
	Wiener model with LS-SVM approximator
	MPC based on Wiener models with LS-SVM approximator
	Identification and pruning of Wiener models with LS-SVM approximator
	Model identification
	Model pruning

	Simulation results
	Neutralisation process
	Modelling of neutralisation process and model pruning
	Predictive control of neutralisation process

	Conclusions
	Acknowledgement
	References

