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To my children, young scientists





Foreword

And another new book . . .
Aren’t there already so many books about Model Predictive Control (MPC)?
Is not already everything explained in Wikipedia?
Maybe. The monograph written by professor Maciej Ławryńczuk goes a different

way than usual, does not repeat everything that has been written many times any-
where. Aiming at application to a large class of nonlinear SISO and MIMO systems
approximable by well-known Wiener models, professor Ławryńczuk presents his
approaches and procedures developed over the years, which are ideally suited for
modern, complex, nonlinear tasks in control and automation engineering.

For several decades, model predictive control has been one of the promising
mathematically-based but strongly algorithmic research branches of modern control
engineering. After and besides the phases of research with rigorous mathematics
research with the goal to solve control tasks of nonlinear systems and processes
by nonlinear control with final proof of stability, convergence, and error behavior,
also mathematical-based approaches for the same problem classes but with more
complex requirements e.g. concerning manipulated variable constraints, local model
approximations and optimization characterized by (programmable) algorithms have
been developed in the last decades. Besides the developments of the so-called model-
free control or model adaptive control, model predictive control is characterized by
a very high adaptability to temporal and physical local conditions of the system to
be controlled.

The development in the last years as well as the specificity of the approach regard-
ing the prediction of the controlled system behavior with simultaneous optimization
or search for the suitable local control strategy led to the development of more and
more complex MPCs with more and more complex algorithms. Accordingly, typical
fields of application are systems or processes with a related slow dynamics. The
complexity of the plant dynamics, the complexity of the MPC, the plant dynamics
as well as the available possibilities of the microprocessor or computer hardware
finally determine the technical feasibility. Consequently, in the last decades, the
development of computationally expensive algorithms dominates.
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viii Foreword

With this background as motivation and facing the goal to develop numeri-
cally efficient algorithms for nonlinear SISO and MIMO plants, professor Maciej
Ławryńczuk’s monograph addresses an alternative path. His detailed view for nu-
merical efficiency down to the equation level using online (nowadays also denoted
as data-driven) modeling and also trajectory linearization combined with parame-
terization of decision variables using the Laguerre functions reduces the complexity
of the MPC optimization task.

A few structures of Wiener models are discussed for input-output and state space
systems. The author prefers to use Wiener models with neural static part and is
able to show why. The author’s MPC algorithms based on underlying neural Wiener
models show better performance and robustness with respect to modeling errors and
disturbances than classical MPC approaches based on inverse static models. Based
on this in detail explained core, efficient algorithms as highly effective alternatives
are developed which finally leads to a textbook for both fundamental researchers and
implementation-oriented practitioners.

Besides parametrizing the approximating models for short, computationally ef-
ficient horizons, the author uses two complex application examples, presented and
developed in detail, to impressively demonstrate the presented MPC approaches and
setting parameters and resulting performance.

Yes, there are many books on MPC and its diverse manifestations but only a
few approaches that pursue the author’s addressed goals of computationally efficient
realization with the goal of applications to practical unknown nonlinear systems. The
author shares his knowledge fully and in detail, enabling the reader to follow (and
thus develop) the approaches in detail and apply them directly. Very impressive.
Highly recommended reading. Perhaps someone has to add this book with the
described potential to allow many new MPC realizations . . . also to Wikipedia as a
new standard.

Diusburg, May 2021 Dirk Söffker



Preface

Good control is necessary for economically efficient and safe operation of various
processes, including industrial plants, e.g. distillation columns, chemical reactors
or paper machines, and processes with embedded control systems, e.g. drones or
autonomous vehicles. The Model Predictive Control (MPC) methodology is a very
powerful tool which may be used to control complicated processes. MPC is an
advanced control method in which a dynamical model of the process is repeatedly
used on-line to predict its future behaviour and an optimisation procedure finds the
best control policy. Typically, MPC algorithms lead to much better control quality
than the classical Proportional-Integral-Derivative (PID) controller, particularly in
the case of Multiple-Input Multiple-Output (MIMO) processes with strong cross-
couplings, also with delays, and when some constraints must be imposed on process
variables. Numerous classical MPC algorithms for processes described by various
linear models have been developed over the years; they are widely used in practice.

Many processes are inherently nonlinear. In such cases, the rudimentary MPC
algorithmswhich use linearmodels are likely to result in unacceptable control quality
or even do not work. This book aims to present a few computationally efficient
nonlinear MPC algorithms for processes described by input-output and state-space
Wiener models defined by a serial connection of a linear dynamic block followed by
a nonlinear static one. The considered class of models can approximate properties
of many processes very well using a limited number of parameters. Furthermore,
due to the Wiener models’ specialised structure, implementation of the presented
MPC algorithms is relatively uncomplicated. For two technological processes, i.e.
a neutralisation reactor and a proton exchange membrane fuel cell, effectiveness of
polynomial and neural Wiener models is thoroughly compared.

The key issue in this book is computational efficiency of MPC. When a nonlin-
ear model, including the Wiener model, is used for prediction in MPC, a nonlinear
constrained optimisation problem must be solved at each sampling instant on-line.
In order to reduce computational complexity and computation time, two concepts
are used. Firstly, a few approaches using on-line model or trajectory linearisation are
possible. As a result, relatively simple quadratic optimisation tasks are obtained (they
have only one global solution), nonlinear on-line optimisation is unnecessary. Sec-
ondly, parameterisation of the computed decision variables using Laguerre functions
is possible to reduce the number of actually optimised variables.
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x Preface

This book consists of nine chapters. It also includes the list of symbols and
acronyms used, the lists of references and the index.

Chapter 1 is an introduction to the field of MPC. Its basic idea and the rudi-
mentary MPC optimisation problems are defined, parameterisation of the decision
variables using Laguerre functions is described. A literature review on computa-
tional complexity issues of nonlinear MPC is given, many example applications of
MPC algorithms in different fields are reported.

Chapter 2 describes the considered structures of Wiener models: six input-output
configurations and three state-space ones. A short review of identificationmethods of
Wienermodels is given, possible internal structures of bothmodel parts are discussed
and example applications of Wiener models are reported. Alternative structures of
cascade models are mentioned.

Chapter 3 detailsMPC algorithms for processes described by input-outputWiener
models: the classical simpleMPCmethod based on the inverse static model, the rudi-
mentaryMPCalgorithmwith nonlinear optimisation, twoMPC schemeswith on-line
model linearisation and two MPC methods with advanced trajectory linearisation.
Variants of all algorithms with parameterisation using Laguerre functions are also
described.

Chapter 4 thoroughly discusses implementation details and simulation results of
the considered MPC algorithms applied to five input-output benchmark processes.
Different features of the algorithms are emphasised, including set-point tracking
ability and robustness when the process is affected by disturbances and modelling
errors. All algorithms are compared in terms of control quality and computational
time.

Chapters 5 and 6 compare effectiveness of different Wiener models’ configura-
tions to approximate properties of two simulated technological processes: a neutral-
isation reactor and a proton exchange membrane fuel cell. Polynomials and neural
networks are used in the nonlinear static block of the models. Properties of both
model classes are thoroughly discussed. Next, simulations of various MPC algo-
rithms are presented. A few variants of constraints imposed on the predicted value
of the controlled variable, including soft approaches, are considered for the neutral-
isation reactor.

Chapter 7 details variants of all MPC algorithms presented in Chapter 3 for
processes described by state-space Wiener models. The classical and an original,
very efficient prediction method, which allow for offset-free control, are presented.

Chapter 8 thoroughly discusses implementation details and simulation results of
the considered MPC algorithms applied to three state-space benchmark processes.
In particular, efficiency of different methods allowing for offset-free control is com-
pared.

Chapter 9 summarises the whole book; some future research ideas are also given.
This book is intended to be useful for everyone interested in advanced control,

particularly graduate and PhD students, researchers and practitioners who want to
implement nonlinear MPC solutions in practice.

Warsaw, May 2021 Maciej Ławryńczuk
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Notation

General notation

a, b, . . . variables or constants, scalars or vectors
A, B, . . . matrices
aT, AT transpose of the vector a and of the matrix A
diag(a1, . . . , an) the diagonal matrix with a1, . . . , an on the diagonal
dy(x)

dx

���
x=x̄

the derivative of the function y(x) at the point x̄
∂y(x)
∂xi

���
x=x̄

the fractional derivative of the function
y(x) = y(x1, . . . , xnx ) with respect to the scalar xi at the
point x̄

f (·), g(·), . . . scalar or vector functions
0m×n, Im×n zeros and identity matrices of dimensionality m × n
q−1 the discrete unit time-delay operator
‖x‖2A xTAx

Processes and models

ai , bi , am
i , bm,ni the parameters of the linear dynamic part of the input-

output Wiener model
ai, j , bi, j , ci, j the parameters of the linear dynamic part of the state-

space Wiener model
A(q−1), B(q−1) the polynomialmatrices that describe the linear dynamic

part of the input-output Wiener model
A, B, C the matrices that describe the linear dynamic part of the

state-space Wiener model
g(·), gm(·) the functions that describe the nonlinear static blocks of

the Wiener model
g̃(·), g̃m(·) the functions that describe the inverse models of the

nonlinear static blocks of the Wiener model
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xviii Notation

k the discrete time sampling instant (k = 0, 1, 2, . . .)
K the number of hidden nodes in a neural network, the

degree of a polynomial
nA, nB, nmA , nm,nB the constants that define the order of dynamics of the

linear dynamic part of the input-output Wiener model
nu the number of inputs (manipulated variables)
nv the number of outputs of the linear dynamic block of the

Wiener model
nx the number of state variables
ny the number of outputs (controlled variables)
u(k) the input vector at the sampling instant k
v(k) the vector of outputs of the linear dynamic block of the

Wiener model at the sampling instant k
x(k) the state vector at the sampling instant k
x̃(k) the estimated state vector at the sampling instant k
y(k) the output vector at the sampling instant k
4u(k + p|k) u(k + p|k) − u(k + p − 1|k)

MPC algorithms

d(k) the vector of unmeasured output disturbances at the sam-
pling instant k

G(k) the step-response matrix of the model linearised at the
sampling instant k

G the constant step-response matrix of the linear dynamic
part of the Wiener model

H(k), H t (k) the matrix of derivatives of the predicted output trajec-
tory with respect to the future input trajectory at the
sampling instant k

J(k) the cost-function minimised in MPC
K(k), Km(k), Km,n(k) the gains of the nonlinear static part of theWiener model

at the sampling instant k
N the prediction horizon
Nu the control horizon
sp(k), sm,np (k), Sp(k) the step-response coefficients and the step-response ma-

trix of the model linearised at the sampling instant k for
the sampling instant p

s̄p , s̄m,np , Sp the constant step-response coefficients and the constant
step-response matrix of the linear dynamic part of the
Wiener model for the sampling instant p

u(k + p|k) the process input vector calculated for the sampling in-
stant k + p at the sampling instant k

u(k) the process input vector calculated at the sampling in-
stant k over the control horizon



Notation xix

umin, umax the vectors of magnitude constraints imposed on process
inputs

umin, umax the vectors of magnitude constraints imposed on process
inputs over the control horizon

v(k + p|k) the output vector of the linear dynamic part of theWiener
model predicted for the sampling instant k + p at the
sampling instant k

v(k) the output vector of the linear dynamic part of theWiener
model predicted at the sampling instant k over the pre-
diction horizon

x(k), x̃(k) the vectors of measured and estimated state variables at
the sampling instant k

x0(k + p|k) the state free trajectory vector predicted for the sampling
instant k + p at the sampling instant k

x0(k) the state free trajectory vector predicted at the sampling
instant k over the prediction horizon

x̂(k + p|k) the state trajectory vector predicted for the sampling
instant k + p at the sampling instant k

x̂(k) the state trajectory vector predicted at the sampling in-
stant k over the prediction horizon

y0(k + p|k) the output free trajectory vector predicted for the sam-
pling instant k + p at the sampling instant k

y0(k) the output free trajectory vector predicted at the sam-
pling instant k over the prediction horizon

ŷ(k + p|k) the output trajectory vector predicted for the sampling
instant k + p at the sampling instant k

ŷ(k) the output trajectory vector predicted at the sampling
instant k over the prediction horizon

ymin, ymax the vectors of magnitude constraints imposed on pre-
dicted output variables

ymin, ymax the vectors of magnitude constraints imposed on pre-
dicted output variables over the prediction horizon

ysp(k + p|k) the output set-point trajectory vector for the sampling
instant k + p known at the sampling instant k

ysp(k) the output set-point trajectory vector at the sampling
instant k over the prediction horizon

4u(k + p|k) the vector of input increments calculated for the sam-
pling instant k + p at the sampling instant k

4u(k) the vector of input increments calculated for the sam-
pling instant k over the control horizon (the vector of
decision variables calculated in MPC)

4umin, 4umax the vectors of constraints imposed on increments of the
input variables

4umax the vectors of constraints imposed on increments of the
input variables over the control horizon
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εmin(k), εmax(k) the vectors that define the degree of hard output con-
straints’ violation constant over the prediction horizon

εmin(k + p), εmax(k + p) the vectors that define the degree of hard output con-
straints’ violation varying over the prediction horizon

εmin(k), εmin(k) the vectors that define the degree of hard output con-
straints’ violation over the prediction horizon

λ, λn,p , Λ, Λp the weighting coefficients and the weighting matrices
related to control increments

µm,p , M , Mp the weighting coefficient and the weighting matrices
related to the predicted output control errors

ν(k) the vector of unmeasured state disturbances at the sam-
pling instant k

ρmin, ρmax the weighting coefficients of the penalties related to vi-
olation of hard output constraints

Acronyms

DMC Dynamic Matrix Control
GPC Generalized Predictive Control
IMC Internal Model Control
LMPC MPC algorithm based on a linear model
LS-SVM Least Squares Support Vector Machine
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MLP Multi-Layer Perceptron feedforward neural network
MPC Model Predictive Control
MPC-NO MPC algorithm with Nonlinear Optimisation
MPC-NO-P MPC-NO algorithm with Parameterisation
MPC-NPLPT MPC algorithm with Nonlinear Prediction and Lineari-

sation along the Predicted Trajectory
MPC-NPLPT-P MPC-NPLPT algorithm with Parameterisation
MPC-NPLT MPC algorithm with Nonlinear Prediction and Lineari-

sation along the Trajectory
MPC-NPLT1 MPC-NPLT algorithm with linearisation along the tra-

jectory defined by the input signals applied at the previ-
ous sampling instant

MPC-NPLT2 MPC-NPLT algorithm with linearisation along the tra-
jectory defined by the optimal input signals calculated
at the previous sampling instant

MPC-NPLT-P MPC-NPLT algorithm with Parameterisation
MPC-NPSL MPC algorithm with Nonlinear Prediction and Simpli-

fied model Linearisation for the current operating point
MPC-NPSL-P MPC-NPSL algorithm with Parameterisation
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MPC-SSL MPC algorithm with Simplified Successive model Lin-
earisation for the current operating point

MPC-SSL-P MPC-SSL algorithm with Parameterisation
MPC-inv MPC algorithm based on the inverse model of the non-

linear static part of the Wiener system
PID Proportional-Integral-Derivative controller
RBF Radial Basis Function feedforward neural network
SISO Single-Input Single-Output
SQP Sequential Quadratic Programming
SVM Support Vector Machine


