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Abstract This paper is concerned with computation-
ally efficient nonlinearmodel predictive control (MPC)
of dynamic systems described by cascade Wiener–
Hammersteinmodels. TheWiener–Hammerstein struc-
ture consists of a nonlinear steady-state block sand-
wiched by two linear dynamic ones. Two nonlinear
MPC algorithms are discussed in details. In the first
case the model is successively linearised on-line for
the current operating conditions, whereas in the sec-
ond case the predicted output trajectory of the sys-
tem is linearised along the trajectory of the future con-
trol scenario. Linearisation makes it possible to obtain
quadratic optimisationMPCproblems. In order to illus-
trate efficiency of the discussed nonlinear MPC algo-
rithms, a heat exchanger represented by the Wiener–
Hammerstein model is considered in simulations. The
process is nonlinear, and a classical MPC strategy with
linear process description does not lead to good control
result. The discussedMPC algorithms with on-line lin-
earisation are compared in terms of control quality and
computational efficiency with the fully fledged nonlin-
earMPC approachwith on-line nonlinear optimisation.

Keywords Process control ·Model predictive control ·
Wiener–Hammerstein systems · Optimisation ·
Linearisation

M. Ławryńczuk (B)
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1 Introduction

The dynamic model of the controlled process is used
only during development of the classical controllers,
e.g. linear quadratic regulator (LQR). A conceptu-
ally different approach is a model predictive control
(MPC) algorithm, in which the model is used on-line
in order to predict the future behaviour of the process
and determine the optimal control policy [1]. Typi-
cally, the objective of MPC is to minimise the pre-
dicted deviations between the output (or state) tra-
jectory and the set-point trajectory. The MPC algo-
rithms have the unique ability to efficiently take into
account constraints imposed on process inputs (manip-
ulated variables) and outputs (controlled variables) or
state variables. Furthermore, they may be applied not
only to single-input single-output processes, but also to
complex multiple-input multiple-output systems with
strong cross-couplings. MPC algorithmsmake it possi-
ble to efficiently control nonminimumphase processes,
e.g. with long time delays. As a result, the MPC algo-
rithms are very frequently used in practice in different
areas, primarily in chemical, petrochemical, food and
paper industries [2]. Applications of MPC algorithms
include: manipulators [3], active steering systems in
cars [4], air conditioning systems [5], anti-lock brake
systems in cars [6], chemical reactors [7], distillation
columns [8], overhead cranes [9]. Examples of less typ-
ical applications ofMPCare: active queuemanagement
in TCP/IP networks [10] and drinking water networks
[11].
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The classical formulations of MPC algorithms, e.g.
dynamicmatrix control (DMC) and generalised predic-
tive control (GPC) [1], use for prediction linearmodels.
Although they are successful in many applications, a
large class of industrial processes are nonlinear and in
such cases the classical MPC algorithms usually can-
not give acceptable control quality. In nonlinear MPC
the basic question is the choice of the model structure,
which is next used on-line for prediction and optimisa-
tion of the future control policy. Although many imple-
mentations of MPC use black-box models, e.g. fuzzy
structures [5] or neural networks [12], a viable alter-
native is to use block-oriented cascade models which
are composed of linear dynamic parts and nonlinear
steady-state parts [13,14]. It is necessary to point out
that the cascade model representation is a straightfor-
ward choice in case of many dynamic processes.

The simplest two-block cascademodels are very fre-
quently used for control, especially for MPC. MPC
algorithms for the Hammerstein structure (a nonlinear
steady-state block followed by a linear dynamic one)
discussed in [15–17] use an inverse of the steady-state
part of the model to compensate for process nonlinear-
ity. It is also possible to find on-line a linear approx-
imation of the model for current operating conditions
and next use the linearised model in MPC [12,18] or
find directly a linear approximation of the predicted
trajectory [12]. MPC algorithms for the Wiener struc-
ture (a linear dynamic block followed by a nonlinear
steady-state one) with an inverse of the steady-state
part are discussed in [19–21], MPC approaches with
on-linemodel linearisation are discussed in [12,22,23],
and MPC approaches with on-line trajectory linearisa-
tion are discussed in [12,23]. In case of the three-block
cascade models of the Hammerstein–Wiener type (a
linear dynamic block sandwiched by two nonlinear
steady-state ones), MPC algorithms with an inverse
of the steady-state parts are detailed in [24,25], and
MPC with on-line trajectory linearisation is discussed
in [26]. In all the cited MPC algorithms application of
an inversemodel or on-line linearisationmakes it possi-
ble to obtain a computationally simple MPC quadratic
optimisation problems. MPC with transformation of
the nonlinearities into polytopic descriptions which
results in a convex optimisation task subject to linear
matrix inequalities is considered in [27].

The cascade Wiener–Hammerstein structure con-
sists of a nonlinear steady-state block sandwiched by
two linear dynamic ones. It may be used to describe dif-

ferent dynamic processes, e.g. a superheater–
desuperheater [28], an RF amplifier [29], a paral-
ysed muscle under electrical stimulation [13], a heat
exchanger [30], a DC–DC converter [31], an equaliser
for optical communication [32], an electronic circuit
[33]. Although control of dynamic systems represented
by Wiener–Hammerstein models is discussed in the
literature, e.g. extremum seeking control is described
in [34], MPC of such systems has not been consid-
ered so far. This paper details two computationally
efficient nonlinear MPC algorithms based on Wiener–
Hammerstein models. In the first case the model is suc-
cessively linearised on-line for the current operating
conditions, whereas in the second case the predicted
output trajectory of the system is linearised along the
trajectory of the future control scenario. In both MPC
approaches on-line linearisation makes it possible to
obtain quadratic optimisation problems, which may
be efficiently solved using the available solvers [35].
In order to illustrate efficiency of the discussed non-
linear MPC algorithms, a heat exchanger represented
by the Wiener–Hammerstein model is considered in
simulations. The process is nonlinear, and a classi-
cal MPC strategy in which a linear process descrip-
tion is used does not lead to good control. The dis-
cussed MPC algorithms with on-line linearisation are
compared in terms of control quality and computa-
tional efficiency with the fully fledged nonlinear MPC
approach with on-line nonlinear optimisation. This
work extends the algorithms developed for Hammer-
stein, Wiener and Hammerstein–Wiener systems dis-
cussed in [12,23,26].

This paper is structured as follows. Section 2
reminds the idea of MPC, and Sect. 3 defines the
structure of the Wiener–Hammerstein–Wiener model.
Section 4 details the nonlinear MPC algorithms for
Wiener–Hammerstein systems. Section 5 presents sim-
ulation results and their comparisons for a benchmark
heat exchanger system. Finally, Sect. 6 concludes the
paper.

2 Model predictive control problem formulation

Let u denote the input (manipulated) variable of the
process and y denote the output (controlled) variable.
In contrast to the classical control schemes, e.g. PID,
in MPC algorithms [1] at each consecutive sampling
instant k not only the current value of the manipulated
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variable, u(k), but a control policy defined for a control
horizon Nu is calculated. Typically, control increments

�u(k) = [�u(k|k) �u(k + 1|k) . . . �u(k + Nu − 1|k)]T
(1)

rather than values of themanipulated variable are deter-
mined, and the increments are defined as �u(k|k) =
u(k|k)−u(k−1), �u(k+ p|k) = u(k+ p|k)−u(k+
p − 1|k) for p = 1, . . . , Nu − 1. It is assumed that
�u(k + p|k) = 0 for p ≥ Nu, i.e. u(k + p|k) =
u(k + Nu − 1|k) for p ≥ Nu. The decision variables
(1) of the MPC algorithm are calculated at each sam-
pling instant from an optimisation problem in which
the predicted control errors are minimised. They are
defined as the differences between the set-point tra-
jectory ysp(k + p|k) and the predicted values of the
process output, i.e. ŷ(k+ p|k), over the prediction hori-
zon N ≥ Nu, i.e. for p = 1, . . . , N . A dynamic model
of the controlled process is used for prediction on-line.
The MPC cost function is usually

J (k) =
N∑

p=1

(
ysp(k + p|k) − ŷ(k + p|k))2

+ λ

Nu−1∑

p=0

(�u(k + p|k))2

where λ > 0 is a weighting coefficient which makes it
possible not only to influence the speed of the algo-
rithm, but also to assure good computational prop-
erties for an optimisation solver (tuning of MPC is
discussed elsewhere [1]). Additionally, the optimisa-
tion algorithm may take into account some constraints
imposedon themanipulated variable,which result from
the physical limits of actuators, and on the predicted
values of the controlled variable, which are usually
enforced by some technological reasons. Typically, the
MPC optimisation problem has the following form

min�u(k|k),...,�u(k+Nu−1|k)
{J (k)}

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

− �umax ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N (2)

where umin, umax,�umax, ymin, ymax define constraints
imposed on: the magnitude of the manipulated (input)

variable, the increment of the input variable and the
magnitude of the controlled (output) variable, respec-
tively. If the output constraints are necessary, the MPC
optimisation task (2) may be infeasible. A simple, but
efficientmethod to solve the problem is to relax the out-
put constraints by the so-called soft constraints, which
may be temporarily relaxed [1]. Although in MPC at
each sampling instant the whole sequence of control
increments (1), of length Nu, is calculated, only the
first element of that sequence is actually applied to the
process, i.e. u(k) = �u(k|k) + u(k − 1). At the next
sampling instant, k + 1, the prediction is shifted one
step forward and the whole procedure is repeated.

3 Hammerstein–Wiener model of the process

The structure of the Wiener–Hammerstein model is
depicted in Fig. 1. It consists of three separate blocks:
two linear dynamic ones and a nonlinear steady-state
one, which are connected in series in such a way that
the nonlinear block is between the linear ones. The
auxiliary signal between the input linear dynamic part
and the nonlinear steady-state one is denoted by v, and
the auxiliary signal between the nonlinear steady-state
part and the output linear dynamic one is denoted by
x . The first (input) linear dynamic part of the model is
described by

A1(q−1)v(k) = B1(q−1)u(k) (3)

where the polynomials in the backward shift operator
(q−1) are

A1(q−1) = 1 + a11q
−1 + . . . + a1nA1

q−nA1 (4)

B1(q−1) = b11q
−1 + . . . + b1nB1

q−nB1 (5)

The order of dynamics of the first block is defined by
the integers nA1 and nB1 . The nonlinear steady-state
block is characterised by

x(k) = f (v(k)) (6)

where it is assumed that the function f : R → R is
differentiable. The second (output) linear dynamic part
of the model is defined by

A2(q−1)y(k) = B2(q−1)x(k) (7)
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Fig. 1 The structure of the Wiener–Hammerstein model

where the polynomials are

A2(q−1) = 1 + a21q
−1 + . . . + a2nA2

q−nA2 (8)

B2(q−1) = b21q
−1 + . . . + b2nB2

q−nB2 (9)

and the order of dynamics of the second dynamic block
is defined by the integers nA2 and nB2 .

From Eqs. (7)–(9), the output of the model is

y(k) =
nB2∑

i=1

b2i x(k − i) −
nA2∑

i=1

a2i y(k − i) (10)

where fromEq. (6) the auxiliary signal x at the previous
sampling instants is

x(k − i) = f (v(k − i)) (11)

for i = 1, . . . , nB2 . From Eqs. (3)–(5), the auxiliary
signal v for the current sampling instant k is

v(k) =
nB1∑

j=1

b1j u(k − j) −
nA1∑

j=1

a1jv(k − j) (12)

From Eqs. (10) and (11), one has

y(k) =
nB2∑

i=1

b2i f (v(k − i)) −
nA2∑

i=1

a2i y(k − i) (13)

where from Eq. (12)

v(k−i) =
nB1∑

j=1

b1j u(k− j−i)−
nA1∑

j=1

a1jv(k− j−i) (14)

for i = 1, . . . , nB2 . Taking into account Eqs. (11), (13)
and (14), it is possible to express the output of themodel
for the current sampling instant k as a function of: the
model input variable u, the auxiliary variable v and the
output variable y at the sameprevious sampling instants

y(k) =
nB2∑

i=1

b2i f

⎛

⎝
nB1∑

j=1

b1j u(k − j − i) −
nA1∑

j=1

a1jv(k − j − i)

⎞

⎠

−
nA2∑

i=1

a2i y(k − i) (15)

4 Nonlinear MPC algorithms of
Hammerstein–Wiener systems

The Wiener–Hammerstein model is used in MPC for
prediction, i.e. to calculate the predicted values of the
output variable for the consecutive sampling instants,
i.e. ŷ(k + 1|k), . . . , ŷ(k + N |k). The prediction for
a sampling instant k + p is calculated at the current
instant k as a sum of the model output supplemented
by an estimation of the unmeasured disturbance, d(k),
[1]. From Eq. (10), one obtains

ŷ(k + p|k) =
Ixf (p)∑

i=1

b2i x(k − i + p|k)

+
nB2∑

i=Ixf (p)+1

b2i x(k − i + p)

−
Iyf (p)∑

i=1

a2i ŷ(k − i + p|k)

−
nA2∑

i=Iyf (p)+1

a2i y(k − i + p) + d(k)

(16)

for p = 1, . . . , N , where Ixf(p) = min(p, nB2),
Iyf(p) = min(p−1, nA2). The symbols x(k−1), x(k−
2), . . . denote the past values of the auxiliary signal
between the nonlinear steady-state part and the output
linear dynamic part of the model, and their future pre-
dicted values are denoted by x(k|k), x(k + 1|k), . . ..
Similarly, the symbols y(k), y(k − 1), . . . denote the
past values of the output signal (their measurements
are available). Using the introduced notation, from Eq.
(6) it is obvious that

x(k − i + p|k) = f (v(k − i + p|k)) for p − i ≥ 0
(17a)

x(k − i + p) = f (v(k − i + p)) for p − i < 0
(17b)
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The prediction equation (16) introduces the integral
action into the MPC algorithm which is necessary to
compensate for disturbances which affects the process
and for themismatch between the process and itsmodel
[1]. It is possible because during prediction calculation
not only the model, but also an estimate of the unmea-
sured disturbance d(k) acting on the process output
is used. The disturbance is assessed as the difference
between the real value of the process output variable
measured at the current sampling instant, i.e. y(k), and
the model output. From Eq. (15), one has

d(k) =y(k) −
nB2∑

i=1

b2i f

( nB1∑

j=1

b1j u(k − j − i)

−
nA1∑

j=1

a1jv(k − j − i)

)

+
nA2∑

i=1

a2i y(k − i) (18)

From Eq. (14) one may find the values of the predicted
values of the auxiliary signal between the input linear
dynamic part and the steady-state nonlinear part. If p−
i ≥ 0, one has

v(k − i + p|k) =
Iuf (i,p)∑

j=1

b1j u(k − j − i + p|k)

+
nB1∑

j=Iuf (i,p)+1

b1j u(k − j − i + p)

−
Ivf (i,p)∑

j=1

a1jv(k − j − i + p|k)

−
nA1∑

j=Ivf (i,p)+1

a1jv(k − j − i + p)

(19)

where Iuf(i, p) = min(p − i, nB1) and Ivf(i, p) =
min(p − i, nA1), while when p − i < 0, one obtains

v(k − i + p) =
nB1∑

j=1

b1j u(k − j − i + p)

−
nA1∑

j=1

a1jv(k − j − i + p) (20)

The symbols u(k − 1), u(k − 2), . . . denote the past
values of the manipulated variable (i.e. applied to
the process), and their future predicted values (calcu-
lated on-line by the MPC algorithm) are denoted by
u(k|k), u(k + 1|k), . . .. Similarly, the symbols v(k −
1), v(k − 2), . . . denote the past values of the auxiliary
signal between the input linear dynamic part and the
nonlinear steady-state one, and their predicted values
are denoted by v(k|k), v(k + 1|k), . . ..

From the prediction equations (16)–(17a) and (19)
it is clear that if the Wiener–Hammerstein model
is directly used in MPC for prediction calculation,
the obtained predicted values of the output variable
over the prediction horizon, i.e. the signals ŷ(k +
1|k), . . . , ŷ(k + N |k), are nonlinear functions of the
decision variables of MPC, i.e. the calculated on-line
future control increments�u(k|k), . . . ,�u(k+Nu|k).
A direct consequence of this fact is that the MPC opti-
misation problem (2) becomes a constrained nonlinear
task whichmust be solved on-line in real time. It means
that a nonlinear solver must be used, and the optimisa-
tion problem is likely to be computationally demand-
ing. Such a truly nonlinear MPC strategy is named
theMPC algorithmwith nonlinear optimisation (MPC-
NO). In the following part of the article two nonlinear
MPC algorithms with on-line linearisation (performed
by means of different methods) are detailed which do
not require solving nonlinear optimisation problems in
real time, and relatively computationally not demand-
ing quadratic optimisation is used. Provided thatλ > 0,
the resulting quadratic optimisation tasks have only one
global solution.

4.1 Nonlinear MPC algorithm with on-line simplified
model linearisation

The simplest approach to nonlinear MPC of dynamic
systems representedby theWiener–Hammersteinmodel
is to use for prediction a linear time-varying model
obtained by linearisation of the nonlinear steady-state
part of the model. For this purpose the specific serial
structure of themodel shown in Fig. 1 is exploited. Tak-
ing into account Eq. (6), the gain of the nonlinear block
for the current operating point is

K (k) = dx(k)

dv(k)
= d f (v(k))

dv(k)
(21)
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The output signal of the nonlinear steady-state part can
be simply calculated for the current operating point
from x(k) = K (k)v(k). Hence, from Eq. (7), the non-
linear steady-state part and the output linear dynamic
part of the model may be described by

A2(q−1)y(k) = B2(q−1)K (k)v(k)

Next, taking into account the input linear dynamic part
defined by Eq. (3), the linearised model becomes

A1(q−1)A2(q−1)y(k) = B1(q−1)B2(q−1)K (k)u(k)

The linearised model may be compactly defined by

A(q−1)y(k) = K (k)B(q−1)u(k) (22)

where the polynomials in the backward shift operator
are

A(q−1) = A1(q−1)A2(q−1)

= 1 + a1q
−1 + . . . + anA1q

−nA

B(q−1) = B1(q−1)B2(q−1)

= b1q
−1 + . . . + bnB1q

−nB

the order of dynamics is defined by nA = nA1 + nA2 ,
nB = nB1 + nB2 and the coefficients are

a1 = a21 + a11

a2 = a22 + a11a
2
1 + a12

a3 = a23 + a11a
2
2 + a12a

2
1 + a13

a4 = a24 + a11a
2
3 + a12a

2
2 + a13a

2
1 + a14

a5 = a25 + a11a
2
4 + a12a

2
3 + a13a

2
2 + a14a

2
1 + a15

...

b2 = b11b
2
1

b3 = b11b
2
2 + b12b

2
1

b4 = b11b
2
3 + b12b

2
2 + b13b

2
1

b5 = b11b
2
4 + b12b

2
3 + b13b

2
2 + b14b

2
1

...

which can be shortly expressed by

ai = a1i + a2i +
i−1∑

j=1

a1j a
2
i− j , i = 1, . . . , nA

bi =
i−1∑

j=1

b1j b
2
i− j , i = 1, . . . , nB (23)

Because the nonlinear Wiener–Hammerstein system is
approximated for the current sampling instant k by the
linear time-varyingmodel (22), the predicted trajectory
of the output variable over the prediction horizon

ŷ(k) = [
ŷ(k + 1|k) . . . ŷ(k + N |k)]T (24)

is a linear function of the decision variables of MPC,
i.e. the calculated control increments (1), as derived in
[12,18]. The prediction equation in the vector-matrix
notation is

ŷ(k) = G(k)�u(k) + y0(k) (25)

where the matrix G(k), of dimensionality N × Nu,
contains step-response coefficients of the local linear
approximation of the nonlinear model. Using Eq. (22),
it follows that

G(k) = K (k)G (26)

where the constant matrix

G =

⎡

⎢⎢⎢⎣

s1 0 . . . 0
s2 s1 . . . 0
...

...
. . .

...

sN sN−1 . . . sN−Nu+1

⎤

⎥⎥⎥⎦

consists of step-response coefficients of two linear
dynamic parts of theWiener–Hammerstein model con-
nected in series, i.e. the dynamic system described by
A(q−1)y(k) = B(q−1)u(k). Such step-response coef-
ficients are calculated from the quantities defined by
Eq. (23) in the following way

sp =
min(p,nB)∑

i=1

bi −
min( j−1,nA)∑

i=1

ai s j−i

123



Nonlinear predictive control of dynamic systems 1199

for p = 1, . . . , N . Using Eq. (26), the prediction equa-
tion (25) becomes

ŷ(k) = K (k)G�u(k) + y0(k) (27)

In Eq. (27) the predicted output trajectory, ŷ(k), is
a sum of the forced trajectory K (k)G�u(k), which
depends only on the future control increments (1),
and the free trajectory vector y0(k) = [y0(k +
1|k) . . . y0(k + N |k)]T , which entirely depends on the
past, i.e. on the values of the manipulated variable
applied to the process before the instant k. The free
trajectory is calculated from the nonlinear Wiener–
Hammerstein model. From Eq. (16), one has

y0(k + p|k) =
Ixf (p)∑

i=1

b2i x
0(k − i + p|k)

+
nB2∑

i=Ixf (p)+1

b2i x(k − i + p)

−
Iyf (p)∑

i=1

a2i y
0(k − i + p|k)

−
nA2∑

i=Iyf (p)+1

a2i y(k − i + p) + d(k)

(28)

where p = 1, . . . , N , x0(k+ p|k) denotes the auxiliary
signal between the nonlinear steady-state part and the
output linear dynamic one predicted for the sampling
instant k + p calculated at the instant k. From Eq. (6)

x0(k − i + p|k) = f (v0(k − i + p|k)) (29)

where from Eq. (19) the auxiliary signal between the
input linear dynamic part and the nonlinear steady-state
one predicted for the sampling instant k+ p calculated
at the instant k is

v0(k − i + p|k) =
Iuf (i,p)∑

j=1

b1j u(k − 1)

+
nB1∑

j=Iuf (i,p)+1

b1j u(k − j − i + p)

−
Ivf (i,p)∑

j=1

a1jv
0(k − j − i + p|k)

−
nA1∑

j=Ivf (i,p)+1

a1jv(k − j − i + p)

(30)

and the past quantities v(k− i + p) are found from Eq.
(20). As the predicted output trajectory (27) is a linear
function of the future control increments �u(k), the
MPC optimisation problem (2) becomes the quadratic
programming task

min�u(k)

{ ∥∥ ysp(k) − y0(k) − K (k)G�u(k)
∥∥2 + ‖�u(k)‖2�

}

subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax

− �umax ≤ �u(k) ≤ �umax

ymin ≤ y0(k) + K (k)G�u(k) ≤ ymax (31)

where ‖x‖2 = xTx and ‖x‖2A = xTAx, the set-point
trajectory vector ysp(k) = [ysp(k + 1|k) . . . ysp(k +
N |k)]T and the vectors of output constraints, i.e.
ymin = [

ymin . . . ymin
]T
, ymax = [

ymax . . . ymax
]T,

are of length N . The vectors of input constraints, i.e.
umin = [

umin . . . umin
]T
, umax = [

umax . . . umax
]T,

�umax = [�umax . . . �umax]T and the vector u(k −
1) = [u(k − 1) . . . u(k − 1)]T are of length Nu, the
matrices � = diag(λ, . . . , λ) and

J =

⎡

⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤

⎥⎥⎥⎦ (32)

are of dimensionality Nu × Nu.
The described MPC strategy is referred to as the

MPC algorithm with nonlinear prediction and sim-
plified linearisation (MPC-NPSL). It is because, at
each sampling instant on-line, the nonlinear Wiener–
Hammerstein model is used for prediction of the non-
linear free trajectory and the same model is used to
find a linear approximation of the model for the cur-
rent operating point. Linearisation is carried out in
a simplified way, because the linear dynamic blocks
are multiplied by the current gain of the nonlinear
steady-state one. At each sampling instant k of the
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algorithm the gain K (k) of the steady-state part of
the model for the current operating point is estimated
from Eq. (21) and the nonlinear free trajectory y0(k)
is found from Eqs. (28)–(30), (20), and the unmea-
sureddisturbance is estimated fromEq. (18). TheMPC-
NPSL quadratic optimisation problem (31) is solved
to find the future control increments �u(k), the first
element of which is applied to the process, i.e. set
u(k) = �u(k|k)+u(k−1). TheMPC-NPSL quadratic
optimisation problem has only one unique global solu-
tion provided that � > 0 (i.e. λ > 0).

The same approach may be also used for theWiener
model [23]. It is also possible to use the linearised
model for calculation of the free trajectory [22]. It is
necessary to stress the fact that the MPC-NPSL algo-
rithm does not require an inverse model of the nonlin-
ear steady-state part of the model, as it is necessary in
the MPC algorithms with on-line model linearisation
for cascade Wiener [19–21] and Hammerstein [15–17]
systems, respectively.

4.2 Nonlinear MPC algorithm with on-line predicted
trajectory linearisation

Although the time-varying linear approximation of the
Wiener–Hammerstein system is calculated for the cur-
rent operating conditions of the process, the same lin-
earised model is used for the calculation of the output
predictions for the whole prediction horizon. When the
horizon is long and the operating point is changed sig-
nificantly, such a linearised model is likely to describe
properties of the real nonlinear process not precisely,
i.e. the mismatch between the model prediction and
behaviour of the real process may be significant. It
may result in not acceptable quality of control. A con-
ceptually better method is to calculate not a linear
approximation of the model and next use it for find-
ing the predicted trajectory, but to directly find a lin-
ear approximation of the nonlinear predicted trajec-
tory defined on the prediction horizon, ŷ(k), Eq. (24).
It is important to stress the fact that linearisation is
not carried out for the current operating point of the
process, as in the MPC-NPSL algorithm, but along an
assumed future sequence of the manipulated variable
utraj(k) = [

utraj(k|k) . . . utraj(k + Nu − 1|k)]T. Using
the Taylor’s series expansion method, a linear approx-
imation of the nonlinear output trajectory ŷ(k) along
the input trajectory utraj(k) is

ŷ(k) = ŷtraj(k) + H(k)
(
u(k) − utraj(k)

)
(33)

where the output trajectory ŷtraj(k) describes the pre-
dictions for the input trajectory utraj(k) and H(k) is
the matrix of the derivatives of the predicted out-
put trajectory with respect to the future values of
the control signal. The obtained approximation for-
mula (33) is really a linear function of the future
values of the control variable over the control hori-
zon, i.e. u(k) = [

u(k|k) . . . u(k + Nu − 1|k)]T. The
main issue is the choice of the future input trajectory
utraj(k), along which linearisation is performed. Ide-
ally, it should be close to the trajectory correspond-
ing to the optimal control increments (1), which is not
known at the sampling instant k, because this is the
decision variable vector inMPC, calculated at the same
instant. A possible solution is to use for linearisation
the trajectory determined by the most recent value of
the manipulated variable, i.e. the value applied to the
process at the previous sampling instant, utraj(k) =
[u(k − 1) . . . u(k − 1)]T. A better approach is to repeat
trajectory linearisation and calculation of the future
control policy a few times at each sampling instants
in the internal iterations t = 1, . . . , tmax. In the cur-
rent internal iteration t the predicted nonlinear out-
put trajectory ŷt (k) = [

ŷt (k + 1|k) . . . ŷt (k + N |k)]T
is linearised along the input trajectory found in the
previous internal iteration (t − 1), i.e. ut−1(k) =[
ut−1(k|k) . . . ut−1(k + Nu − 1|k)]T. Analogously to
the case when the trajectory is linearised along some
assumed input trajectory utraj(k), which results in the
approximation (33), using theTaylor’s series expansion
method, a linear approximation of the nonlinear output
trajectory ŷt (k) along the input trajectory ut−1(k) is

ŷt (k) = ŷt−1
(k) + H t (k)

(
ut (k) − ut−1(k)

)
(34)

where the output trajectory corresponding to the input
trajectory calculated at the previous internal itera-
tion, ut−1(k), is denoted by ŷt−1

(k) = [
ŷt−1(k +

1|k) . . . ŷt−1(k + N |k)]T and H t (k) is the matrix of
the derivatives of the predicted output trajectory with
respect to the future values of the control signal. The
matrix is calculated for the input and output trajectories
found in the previous internal iteration, t − 1, because
no new information is available. It is of dimensionality
N × Nu and has the structure
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H t (k) = d ŷ(k)
du(k)

∣∣∣∣∣∣ ŷ(k)= ŷt−1
(k)

u(k)=ut−1(k)

=

⎡

⎢⎢⎢⎣

∂ ŷt−1(k+1|k)
∂ut−1(k|k) · · · ∂ ŷt−1(k+1|k)

∂ut−1(k+Nu−1|k)
...

. . .
...

∂ ŷt−1(k+N |k)
∂ut−1(k|k) · · · ∂ ŷt−1(k+N |k)

∂ut−1(k+Nu−1|k)

⎤

⎥⎥⎥⎦ (35)

where p = 1, . . . , N and r = 0, . . . , Nu − 1. Equa-
tion (34) is really a linear function of the future
values of the control variable over the control hori-
zon calculated at the current internal iteration t , i.e.
ut (k) = [

ut (k|k) . . . ut (k + Nu − 1|k)]T. It is possi-
ble to express the linear approximation of the non-
linear output trajectory as a function of the incre-
ments of the manipulated variable calculated for
the current sampling instant k and in the current
internal iteration t , i.e. the trajectory �ut (k) =[�ut (k|k) . . . �ut (k + Nu − 1|k)]T corresponding to
the vector (1). It is necessary because future incre-
ments of the manipulated variable, not its future val-
ues, are minimised in the second part of the MPC
cost function J (k). Taking into account that ut (k) =
J�ut (k) + u(k − 1), where the matrix J of dimen-
sionality Nu × Nu is defined by Eq. (32) and the vector
u(k−1) = [u(k − 1) . . . u(k − 1)]T is of length Nu, the
linear approximation of the nonlinear predicted output
trajectory (34) is

ŷt (k) =H t (k)J�ut (k) + ŷt−1
(k)

+ H t (k)
(
u(k − 1) − ut−1(k)

)
(36)

It is easy to note that the obtained approximation for-
mula (36) is really a linear function of the future incre-
ments of the control variable over the control horizon,
i.e. �ut (k), which is calculated for the current sam-
pling instant k and in the current internal iteration t .
The vector ut−1(k) is known, the matrix J is fixed,
whereas the vector ŷt−1

(k) and the matrix H t (k) may
be determined from the Wiener–Hammerstein model
of the process. From Eq. (16), the predicted value of
the output for the sampling instant k + p calculated at
the current instant k and at the current internal iteration
t is

ŷt (k + p|k) =
Ixf (p)∑

i=1

b2i x
t (k − i + p|k)

+
nB2∑

i=Ixf (p)+1

b2i x(k − i + p)

−
Iyf (p)∑

i=1

a2i ŷ
t (k − i + p|k)

−
nA2∑

i=Iyf (p)+1

a2i y(k − i + p) + d(k)

(37)

where from Eq. (6), one has

xt (k − i + p|k) = f (vt (k − i + p|k)) (38)

for p − i ≥ 0. From Eq. (19), the predicted signals
between the input linear dynamic part and the nonlinear
steady-state one are

vt (k − i + p|k) =
Iuf (i,p)∑

j=1

b1j u
t (k − j − i + p|k)

+
nB1∑

j=Iuf (i,p)+1

b1j u(k − j − i + p)

−
Ivf (i,p)∑

j=1

a1jv
t (k − j − i + p|k)

−
nA1∑

j=Ivf (i,p)+1

a1jv(k − j − i + p)

(39)

and the past quantities v(k− i + p) are calculated from
Eq. (20). The entries of the matrix (35), i.e. the deriva-
tives of the predicted trajectory ŷt−1

(k) for the previous
internal iteration, t − 1, with respect to the future con-
trol scenario�ut−1(k) are found by differentiating Eq.
(37), which gives

∂yt−1(k + p|k)
∂ut−1(k + r |k) =

Ixf (p)∑

i=1

b2i
∂xt−1(k − i + p|k)

∂ut−1(k + r |k)

−
Iyf (p)∑

i=1

a2i
∂yt−1(k−i+ p)

∂ut−1(k+r |k) (40)
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The first partial derivative in the right side of Eq. (40)
depends on the specific type of the nonlinear steady-
state block, described by the function f

∂xt−1(k − i + p|k)
∂ut−1(k + r |k) =d f (vt−1(k − i + p|k))

dvt−1(k − i + p)

× ∂vt−1(k − i + p|k)
∂ut−1(k + r |k) (41)

where from Eq. (39), the derivatives of the predicted
signals between the input linear dynamic part and the
nonlinear steady-state one are

∂vt−1(k − i + p|k)
∂ut−1(k + r |k) =

Iuf (i,p)∑

j=1

b1j
∂ut−1(k − j − i + p|k)

∂ut−1(k + r |k)

−
Ivf (i,p)∑

j=1

a1j
∂vt−1(k − j − i + p|k)

∂ut−1(k + r |k)
(42)

Because u(k + p|k) = u(k + Nu − 1|k) for p ≥ Nu,
the first partial derivatives in the right side of Eq. (42)
can only have two values

∂ut−1(k + p|k)
∂ut−1(k + r |k)

=
{
1 if p = r or (p > r and r = Nu − 1)

0 otherwise
(43)

The second partial derivatives in Eqs. (40) and (42)
must be calculated recursively. One may notice that

∂ ŷt−1(k + p|k)
∂ut−1(k + r |k) = 0 (44)

for r ≥ p − 1 and

∂vt−1(k + p|k)
∂ut−1(k + r |k) = 0 (45)

for r ≥ p.
According to Eq. (36), linearisation makes it possi-

ble to express the predicted output trajectory ŷt (k) as a
linear function of the future control increments�ut (k)
calculated for the current sampling instant k and at the
internal iteration t . Hence, theMPC optimisation prob-
lem (2) becomes the following quadratic programming
task

min
�ut (k)

{∥∥ ysp(k) − H t (k)J�ut (k) − ŷt−1
(k)

H t (k)(u(k − 1) − ut−1(k))
∥∥2 + ∥∥�ut (k)

∥∥2
�

}

subject to

umin ≤ J�ut (k) + u(k − 1) ≤ umax

− �umax ≤ �ut (k) ≤ �umax

ymin ≤ H t (k)J�ut (k) + ŷt−1
(k)

+ H t (k)(u(k − 1) − ut−1(k)) ≤ ymax (46)

The obtained quadratic optimisation problem, analo-
gously to that used in the MPC-NPSL algorithm [(Eq.
(31)], has only one unique global solution provided that
� > 0 (i.e. λ > 0).

The described MPC strategy is referred to as the
MPC algorithm with nonlinear prediction and lineari-
sation along the predicted trajectory (MPC-NPLPT).
At each sampling instant k of the algorithm the unmea-
sured disturbance is estimated from Eq. (18) using the
Wiener–Hammerstein model of the process. Next, the
internal iteration is initialised (t = 1): an initial guess
of the future input trajectory is assumed, e.g. using
the value of the manipulated variable calculated and
applied to the process at the previous sampling instant,
i.e. u0(k) = [u(k − 1) . . . u(k − 1)]T, or the last Nu−1
elements of the optimal trajectory calculated at the pre-
vious instant and not applied to the process, i.e. the
trajectory

u0(k) =

⎡

⎢⎢⎢⎢⎢⎣

u0(k|k)
...

u0(k + Nu − 3|k)
u0(k + Nu − 2|k)
u0(k + Nu − 1|k)

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

u(k|k − 1)
...

u(k + Nu − 3|k − 1)
u(k + Nu − 2|k − 1)
u(k + Nu − 2|k − 1)

⎤

⎥⎥⎥⎥⎥⎦
(47)

For the initial future input trajectory u0(k), the future
output trajectory ŷ0(k) is calculated from Eqs. (17b),
(19), (37), (38) and (39). Thematrix H t (k), which con-
sists of derivatives of the predicted output trajectory
with respect to the future control policy, specified by
Eq. (35), is calculated usingEqs. (40)–(42) and the con-
ditions (43)–(44). The MPC-NPLPT quadratic optimi-
sation problem (46) is solved to find the future control
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increments �u1(k) in the first internal iteration. If the
condition

N0∑

p=0

∥∥ysp(k − p) − y(k − p)
∥∥2 ≥ δy (48)

is true, the internal iterations are continued (t =
2, . . . , tmax). The tuning parameters N0 and δy are cho-
sen experimentally. In the internal iteration t the pre-
dicted output trajectory ŷt−1

(k) corresponding to the
future input trajectory ut−1(k) = J�ut−1(k)+ u(k −
1) and the matrix H t (k) are calculated (in the same
way it is done in the first internal iteration). The MPC-
NPLPT quadratic optimisation problem (46) is solved
to find the future control increments �ut (k). If the dif-
ference between future control increments calculated
in the consecutive internal iterations is small, it means
when

∥∥∥�ut (k) − �ut−1(k)
∥∥∥
2

< δu (49)

or t > tmax, internal iterations are terminated. Other-
wise, the next internal iteration is started (t : = t + 1),
the nonlinear output trajectory is linearised and the
quadratic optimisation problem is solved. The tuning
parameter δu is chosen experimentally. Having com-
pleted the internal iterations, the first element of the
obtained future control policy is applied to the process,
i.e. set u(k) = �ut (k|k) + u(k − 1).

The MPC-NPLPT algorithm for Hammerstein and
Wiener systems with a specific nonlinear part repre-
sented by a neural network is discussed in [12,23],
and the algorithm for a general Hammerstein–Wiener
model is described in [26].

5 Simulation results

The considered process is a heat exchanger [30], whose
control system is depicted in Fig. 2. Cold water (the
input stream) is heated by a hot steam, and the process
produces hot water (the output stream). The objec-
tive of the temperature controller is to calculate the
value of the manipulated variable (process input), u,
which is typically a electric signal, in such a way
that temperature of hot water, which is the controlled
variable (process output), y, follows changes of its
set point. The heat exchanger may be modelled as a

Fig. 2 The control system of the heat exchanger

Wiener–Hammerstein structure shown in Fig. 1. The
first (input) linear dynamic part of the model repre-
sents the dynamic subsystem between the manipulated
variable and the valve position, v, and it is defined by
the second-order equation

(1 − 1.5714q−1 + 0.6873q−2)v(k)

= (0.0616q−1 + 0.0543q−2)u(k) (50)

i.e. a11 = −1.5714, a12 = 0.6873, b11 = 0.0616, b12 =
0.0543, nA1 = nB1 = 2. The nonlinear steady-state
block represents the relation between the valve position
and theflowrate of the input streamactually delivered to
the heat exchanger, x , and it is defined by the nonlinear
function

x(k) = f (v(k)) = v(k)√
0.1 + 0.9v2(k)

(51)

Finally, the second (output) linear dynamic block repre-
sents the dynamic subsystem between the steam input
stream and the temperature of the hot water and it is
defined by the second-order equation

(1 − 1.7608q−1 + 0.7661q−2)v(k)

= (−5.7715q−1 + 5.673q−2)u(k) (52)

i.e. a21 = −1.7608, a22 = 0.7661, b21 = −5.7715,
b22 = 5.673, nA2 = nB2 = 2. Figure 3 shows the
characteristics x = f (v) of the nonlinear steady-state
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Fig. 3 The characteristics x = f (v) of the nonlinear steady-state block and the characteristics y = f (u) of the whole Wiener–
Hammerstein system

block and the characteristics y = f (u) of the whole
Wiener–Hammerstein system.

In order to demonstrate advantages of the nonlinear
MPC algorithms discussed in this work, the following
MPC algorithms are compared:

(a) The classical linear MPC algorithm (the gener-
alised predictive control [1]). For prediction and
optimisation of the future control increments, a lin-
ear model corresponding to the nominal operating
point u = v = x = y = 0 is used. The order of
dynamics of the model is nA = nA1 + nA2 = 4,
nB = nB1 + nB2 = 4, and from Eq. (22), it has the
form

A(q−1)y(k) = K B(q−1)u(k)

Model coefficients are calculated from Eqs. (23),
(50) and (52), which gives

A(q−1) =1 − 3.3322q−1 + 4.2203q−2 − 2.4140q−3

+ 0.5265q−4

B(q−1) = − 0.3555q−2 + 0.0361q−3 + 0.3080q−4

From Eq. (51), the constant gain of the nonlinear
steady-state part of the model is

K = dx

dv
= dx

dv

∣∣∣∣
x=0, v=0

= d f (v)

dv

∣∣∣∣
v=0

= 0.1−0.5 = 3.1623

(b) The described MPC algorithm with on-line sim-
plified linearisation (MPC-NPSL). The nonlinear
Wiener–Hammerstein model is used to update the
current gain of the parameter-varying linear model
specified by Eq. (22). For the given steady-state
nonlinear part of the model defined by Eq. (51), the
gain of the nonlinear block for the current operat-
ing point, defined as the derivative of the auxiliary
signal x of the model with respect to the auxiliary
signal v (Eq. 21), is calculated as

K (k) =dx(k)

dv(k)
= d f (v(k))

dv(k)
= (0.1 + 0.9v2(k))−0.5

− 0.9v2(k)(0.1 + 0.9v2(k))−1.5 (53)

where the value v(k) defines the current operating
point.

(c) The MPC algorithm with on-line trajectory lin-
earisation (MPC-NPLPT). For initialisation of lin-
earisation Nu − 1 elements of the future con-
trol sequence calculated at the previous sampling
instant are used, and the trajectory u0(k) is defined
by Eq. (47). The derivative of the predicted auxil-
iary signal x of the model with respect to the aux-
iliary signal v, predicted for the sampling instant
k − i + p at the current instant k and in the internal
iteration t (necessary for trajectory linearisation in
Eq. (41)), using Eq. (51), is calculated from
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Fig. 4 Simulation results of the linear MPC algorithm; λ = 1

d f
(
vt−1(k − i + p|k))

dvt−1(k − i + p)

= (0.1 + 0.9
(
vt−1(k − i + p|k))2

)−0.5

− 0.9
(
vt−1(k − i + p|k)

)2

×
(
0.1 + 0.9(vt−1(k − i + p|k))2

)−1.5

(d) The “ideal” MPC algorithm with nonlinear opti-
misation (MPC-NO) in which the full nonlinear
Wiener–Hammerstein model is used for prediction
and optimisation of the future control policy [Eqs.
(16)–(20)].

In the nonlinear MPC algorithms, i.e. in MPC-
NPSL, MPC-NPLPT and MPC-NO, the same non-
linear Hammerstein–Wiener model is used, although
in a different way. At each sampling instant of the
linear MPC strategy and in the MPC-NPSL algo-
rithm a constrained quadratic optimisation problem is
solved on-line, in the MPC-NPLPT maximally tmax

such problems are necessary, whereas in the MPC-NO
strategy a nonlinear optimisation task is solved. All
algorithms are implemented in MATLAB. The active-
set algorithm is used for quadratic optimisation, and
the sequential quadratic programming (SQP) method
is used for nonlinear optimisation [35]), both with
their default parameters. The same dynamic model
described by Eqs. (50)–(52) is used as the simulated
system. Parameters of all compared MPC algorithms
are the same: N = 10, Nu = 3, typically λ = 1, the
constraints imposed on the value of the manipulated

variable are: umin = −1, umax = 1. If necessary, the
additional constraints imposed on the rate of change of
the manipulated variable are also taken into account,
�umax = 0.25.

At first, the linear MPC algorithm is simulated.
Figure 4 depicts the obtained simulation results. The
set-point trajectory consists of four fast step changes.
Because there is a significant mismatch between the
nonlinear process and the linear model used for pre-
diction, the linear MPC algorithm does not work, and
it is unable to steer the process in such a way that
the controlled variable follows the changes of the set-
point trajectory with no steady-state error. Conversely,
there is practically no steady-state, and the output vari-
able of the process oscillates. In order to reduce the
oscillations, the penalty factor λ must be increased to
the value 8000 (or more). Figure 5 shows simulation
results. Increasing the value of λ makes it possible
to obtain stable control, but changes of the manipu-
lated variable are very slow which leads to unaccept-
ably slow trajectory tracking of the controlled out-
put.

Next, theMPC-NPSL algorithmwith simplified lin-
earisation is considered. The linear MPC algorithm
uses for prediction the linear model, which is con-
ceptually not a good idea whereas MPC-NPSL algo-
rithm uses the nonlinear Wiener–Hammerstein model
of the process, but in a simplified way, i.e. the trans-
fer functions of the linear dynamic parts of the model
are multiplied by the gain of the nonlinear steady-state
block for the current operating point, defined by the
value of the variable v(k) [Eq. (53)]. Figure 6 depicts
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Fig. 5 Simulation results of the linear MPC algorithm; λ = 8000
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Fig. 6 Simulation results of the MPC-NPSL algorithm with simplified on-line model linearisation and quadratic optimisation; λ = 1

the obtained simulation results when the penalty fac-
tor λ has its default value 1. Unfortunately, although
the obtained control quality is much better than in the
case of the linear MPC algorithm, i.e. the output trajec-
tory of the process is stable and there is no steady-state
error, the MPC-NPSL algorithm gives big overshoot.
It is because the changes of the set-point trajectory are
fast and significant. It may be also noted that the input
trajectory is characterised by big changes, even from
the minimal to the maximal value of the manipulated
variable. Similarly to the linear MPC algorithm, it is
also possible to improve the MPC-NPSL algorithm by
increasing the penaltyλ. Figure 7 shows the trajectories
obtained for λ = 250. Because the MPC-NPSL algo-
rithm uses more accurate approximation of the system

than the linear MPC approach does, it requires much
a lower value of λ (250) in comparison with that nec-
essary in the linear MPC algorithm (8000). In conse-
quence, the MPC-NPSL (with increased λ) is faster
than the linear MPC strategy, but it is still quite slow
and its overshoot is unacceptable.

Next, the MPC-NPLPT algorithm with on-line tra-
jectory linearisation is considered. When compared
with the MPC-NPSL strategy, it uses conceptually
a more advanced approximation method of the pre-
dicted output trajectory. It is because the MPC-NPLPT
scheme directly finds a linear approximation of the pre-
dicted output trajectory over the prediction horizon,
linearisation is carried out for a future input trajec-
tory defined over the control horizon, whereas in the
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Fig. 7 Simulation results of the MPC-NPSL algorithm with simplified on-line model linearisation and quadratic optimisation; λ = 250
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Fig. 8 Simulation results: the MPC-NPLPT algorithm with on-line trajectory linearisation and quadratic optimisation with tmax = 1
(solid line), the MPC-NO algorithm with on-line nonlinear optimisation (dashed line); in both algorithms λ = 1

MPC-NPSL algorithm only a linear approximation of
the model is found for the current operating point of
the process and the forced trajectory G(k)�u(k) in
Eq. (25) is calculated from the same linearised model
applied recurrently over the prediction horizon. There-
fore, the MPC-NPLPT algorithm is likely to give more
accurate approximation of the predicted output trajec-
tory than the MPC-NPSL one and to result in bet-
ter control quality. Figure 8 compares the trajecto-
ries of the MPC-NPLPT algorithm with those obtained
in the MPC-NO in which the full nonlinear Wiener–
Hammerstein model is used for prediction and opti-
misation of the future control policy, and no approx-
imation of the model or the predicted output trajec-

tory is used. In both algorithms the parameter λ has its
default value 1. Nevertheless, in contrast to the linear
MPC algorithm and the NPC-NPSL one (Figs. 4, 6),
the MPC-NPLPT algorithm gives very good, precise,
steady-state error-free control, and overshoot is very
small. Furthermore, it may be noticed that the trajec-
tories of the MPC-NPLPT algorithm are very similar
to those obtained in the truly nonlinear MPC-NO strat-
egy. It is interesting to point out that very good con-
trol quality of the MPC-NPLPT algorithm is obtained
even though only one internal iteration is performed at
each sampling instant (tmax = 1), which means that
the predicted output trajectory is linearised only once
at each instant. In order to increase accuracy of the
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Fig. 9 Simulation results: the MPC-NPLPT algorithm with on-line trajectory linearisation and quadratic optimisation with tmax = 5,
δu = δy = 1 (solid line), the MPC-NO algorithm with on-line nonlinear optimisation (dashed line); in both algorithms λ = 1

MPC-NPLPT algorithm, the maximal possible number
of internal iterations is increased to 5, and the additional
parameters are δu = δy = 1. The obtained simulation
results are shown in Fig. 9. In this case the trajectories
of the MPC-NPLPT algorithm with on-line trajectory
linearisation and quadratic optimisation are practically
the same as those of the MPC-NO algorithm.

In order to conveniently compare effectiveness of
the discussedMPC algorithms, two indices are defined.
The first one is the sum of squared errors (SSE)

SSE =
100∑

k=1

(
ysp(k) − y(k)

)2

It is interesting to point out that the SSE index is
not actually minimised in MPC. That is why the sec-
ond, relative index takes into account the discrepancy
between any MPC algorithm and theoretically the best
MPC-NO strategy

D =
100∑

k=1

(yMPC−NO(k) − y(k))2 (54)

where yMPC−NO(k) denotes the output of the process
when it is controlled by the MPC-NO algorithm, and
y(k) is the output if a different MPC algorithm is used.
Table 1 compares all evaluated MPC algorithms (lin-
ear MPC, MPC-NPSL, MPC-NPLPT) in terms of the
indices SSE and D, as well as computational burden
(MFLOPS). The linear MPC strategy is very bad, the

MPC-NPSL is much better, but only the MPC-NPLPT
strategymakes it possible to obtain control quality com-
parable with that typical of the MPC-NO strategy. As
many as four versions of the MPC-NPLPT algorithms
are compared: with one internal iteration and three ver-
sions with maximally 5 iterations, for different values
of the tuning parameters δu [(Eq. (49)] and δy [(Eq.
(48)]. Additionally, the total number of internal iter-
ations is given in Table 1 for the MPC-NPLPT algo-
rithm. In general, the smaller the values of δu and δy,
the smaller the discrepancy between the MPC-NPLPT
algorithm and theMPC-NO one, and, at the same time,
more internal iterations are necessary, which increases
computational burden. The MPLPT algorithm with
only one internal iteration is as many as 15.84 times
more computationally efficient than the MPC-NO one.
When 5 internal iterations are allowed, for δu = δy = 1
this factor drops to 11, when δu = δy = 10−2, to
9.37 and when δu = δy = 10−4, to 7.69. Figure 10
shows the number of internal iterations in the consecu-
tive sampling instants of four compared versions of the
MPC-NPLPT algorithm. It is interesting to note that
when δu = δy = 1, which results in very good control
quality, in the majority of sampling instants only one
internal iteration is sufficient. More internal iterations
are necessary when the set point changes.

In many practical control systems not only the range
of themanipulated variable, but also its speed of change
is constrained. It is possible to slower the MPC algo-
rithms by increasing the penalty factor λ. Figures 11
and 12 depict simulation results of the MPC-NPLPT
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Table 1 Control accuracy (SSE), the relative accuracy criterion (D) and computational burden (MFLOPS)of comparedMPCalgorithms,
for the MPC-NPLPT strategy the sum of internal iterations (NII) is also given; in all algorithms λ = 1

Algorithm SSE D MFLOPS NII

Linear MPC 8.9758 × 103 5.6648 × 103 8.79 –

MPC-NPSL 3.3507 × 103 2.5582 × 102 9.39 –

MPC-NPLPT, tmax = 1 3.2471 × 103 1.0681 × 100 17.04 100

MPC-NPLPT, tmax = 5, δu = δy = 100 3.2226 × 103 1.4549 × 10−4 24.55 130

MPC-NPLPT, tmax = 5, δu = δy = 10−2 3.2225 × 103 1.0095 × 10−4 28.81 150

MPC-NPLPT, tmax = 5, δu = δy = 10−4 3.2224 × 103 3.9883 × 10−7 35.10 179

MPC-NO 3.2224 × 103 0 270.01 –
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Fig. 10 The number of internal iterations (NII) in the consecutive sampling instants of four versions of the MPC-NPLPT algorithm
with on-line trajectory linearisation and quadratic optimisation; λ = 1

and MPC-NO algorithms for λ = 100 and λ = 1000,
respectively. The bigger the penalty parameter, the
slower the input and output trajectories of the process
and the bigger the overshoot.Unfortunately, it is impos-
sible to guarantee that all the increments of themanipu-
lated variable for each sampling instant fulfil any fixed
constraint. That is why the rate constraint is taken into
account in the optimisation problems. The trajecto-
ries obtained in the MPC-NPLPT and MPC-NO algo-
rithmswith the additional constraint�umax = 0.25 are
depicted inFig. 13. The additional constraint is satisfied
at each sampling instant. Also in this case there are no
noticeable differences between the MPC-NPLPT and
MPC-NO compared algorithms, although during the
presented simulations the parameters are δu = δy = 1,
tmax = 5. Table 2 compares all discussed algorithms in

terms of the indices SSE and D, computational burden
(MFLOPS), and in the case of the MPC-NPLPT algo-
rithm the number of internal iterations is given. The
additional constraint increases computational burdenof
all MPC algorithms (when compared with Table 1), but
still theMPC-NPLPT algorithmwith trajectory lineari-
sation and quadratic optimisation is many times more
computationally efficient than the MPC-NO one.

An interesting issue is to verify effectiveness of
the MPC algorithms when the process is affected
by unmeasured output noise (with normal distribu-
tion with zero mean and standard deviation 0.1). The
obtained simulation results of the MPC-NPLPT and
MPC-NO algorithms are depicted in Fig. 14, and
Table 3 compares all discussed algorithms in terms
of the indices SSE and D, computational burden
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Fig. 11 Simulation results: the MPC-NPLPT algorithm with on-line trajectory linearisation and quadratic optimisation with tmax = 5,
δu = δy = 1 (solid line), the MPC-NO algorithm with on-line nonlinear optimisation (dashed line); in both algorithms λ = 100
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Fig. 12 Simulation results: the MPC-NPLPT algorithm with on-line trajectory linearisation and quadratic optimisation with tmax = 5,
δu = δy = 1 (solid line), the MPC-NO algorithm with on-line nonlinear optimisation (dashed line); in both algorithms λ = 1000

(MFLOPS) and the number of internal iterations (for
the MPC-NPLPT algorithm). Finally, Fig. 15 com-
pares theMPC-NPLPT andMPC-NO algorithmswhen
the additional constraint �umax = 0.25 is taken into
account and the process is affected by unmeasured
noise, and the values of all criteria SSE, D, MFLOPS
and NII are given in Table 4. It is necessary to point out
that in all cases the MPC-NPLPT algorithm with tra-
jectory linearisation and quadratic optimisation gives
the trajectories practically the same as the MPC-NO
approach with nonlinear on-line linearisation, whereas
its computational burden is much lower.

6 Conclusions

This work details two general nonlinear MPC algo-
rithms for dynamic processes described by cascade
Wiener–Hammerstein models, which consist of a non-
linear steady-state block sandwiched by two linear
dynamic ones. The algorithms are computationally effi-
cient, and since only quadratic optimisation problems
are solved on-line, no nonlinear optimisation is neces-
sary. In both cases the inverse steady-state block is not
necessary, which is a very frequent approach to control
based on cascade models.
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Fig. 13 Simulation results: the MPC-NPLPT algorithm with
on-line trajectory linearisation and quadratic optimisation with
tmax = 5, δu = δy = 1 (solid line), the MPC-NO algorithm with
on-line nonlinear optimisation (dashed line); in both algorithms

λ = 1 and the additional constraint �umax = 0.25 imposed
on the rate of change of the manipulated variable is taken into
account

Table 2 Control accuracy (SSE), the relative accuracy criterion
(D) and computational burden (MFLOPS) of compared MPC
algorithms, for the MPC-NPLPT strategy the sum of internal

iterations (NII) is also given; in all algorithmsλ = 1 and the addi-
tional constraint �umax = 0.25 imposed on the rate of change
of the manipulated variable is taken into account

Algorithm SSE D MFLOPS NII

Linear MPC 6.4735 × 103 3.5184 × 103 13.61 –

MPC-NPSL 4.5174 × 103 1.6602 × 102 13.16 –

MPC-NPLPT, tmax = 1 4.3867 × 103 2.2540 × 10−1 20.64 100

MPC-NPLPT, tmax = 5, δu = δy = 100 4.3949 × 103 2.8476 × 10−4 32.86 139

MPC-NPLPT, tmax = 5, δu = δy = 10−2 4.3949 × 103 2.8108 × 10−4 37.78 158

MPC-NPLPT, tmax = 5, δu = δy = 10−4 4.3948 × 103 7.0495 × 10−6 43.76 180

MPC-NO 4.3948 × 103 0 336.57 –

Table 3 Control accuracy (SSE), the relative accuracy criterion
(D) and computational burden (MFLOPS) of compared MPC
algorithms, for the MPC-NPLPT strategy the sum of internal

iterations (NII) is also given; in all algorithms λ = 1 and the
process is affected by unmeasured noise

Algorithm SSE D MFLOPS NII

Linear MPC 8.4341 × 103 5.5010 × 103 8.68 –

MPC-NPSL 3.3463 × 103 1.9925 × 102 9.41 –

MPC-NPLPT, tmax = 1 3.2132 × 103 9.2140 × 10−1 17.05 100

MPC-NPLPT, tmax = 5, δu = δy = 100 3.1935 × 103 3.9639 × 10−4 24.40 129

MPC-NPLPT, tmax = 5, δu = δy = 10−2 3.1935 × 103 3.9639 × 10−4 34.02 186

MPC-NPLPT, tmax = 5, δu = δy = 10−4 3.1935 × 103 3.9639 × 10−7 41.07 223

MPC-NO 3.1934 × 103 0 266.42 –
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Fig. 14 Simulation results: the MPC-NPLPT algorithm with
on-line trajectory linearisation and quadratic optimisation with
tmax = 5, δu = δy = 1 (solid line), the MPC-NO algorithm with

on-line nonlinear optimisation (dashed line); in both algorithms
λ = 1 and the process is affected by unmeasured noise
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Fig. 15 Simulation results: the MPC-NPLPT algorithm with
on-line trajectory linearisation and quadratic optimisation with
tmax = 5, δu = δy = 1 (solid line), the MPC-NO algorithm with
on-line nonlinear optimisation (dashed line); in both algorithms

λ = 1, the additional constraint �umax = 0.25 imposed on the
rate of change of the manipulated variable is taken into account
and the process is affected by unmeasured noise

The first algorithm (MPC-NPSL) is conceptually
quite simple: at each sampling instant on-line the gain
of the nonlinear block is found and used to update the
parameters of the linear model. Such a linear approxi-
mation of the model is used to calculate the predicted
output trajectory and the future control increments, and
the influence of the past is determined from the nonlin-
ear Wiener–Hammerstein model. A clear disadvantage
of that approach is the fact that the model is linearised

on-line in a simplified way and the same linearised
model is used for the prediction over the whole pre-
diction horizon. That is why the MPC algorithm with
simplifiedmodel linearisation, although for the consid-
ered heat exchanger benchmark it works much better
than the rudimentaryMPC algorithms based on a linear
model, gives big overshoot when the set point changes
fast and significantly.
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Table 4 Control accuracy (SSE), the relative accuracy criterion
(D) and computational burden (MFLOPS) of compared MPC
algorithms, for the MPC-NPLPT strategy the sum of internal
iterations (NII) is also given; in all algorithms λ = 1, the addi-

tional constraint �umax = 0.25 imposed on the rate of change
of the manipulated variable is taken into account and the process
is affected by unmeasured noise

Algorithm SSE D MFLOPS NII

Linear MPC 1.5876 × 103 1.0167 × 104 13.80 –

MPC-NPSL 4.3896 × 103 1.6696 × 102 13.23 –

MPC-NPLPT, tmax = 1 4.2469 × 103 3.0850 × 10−1 20.52 100

MPC-NPLPT, tmax = 5, δu = δy = 100 4.2526 × 103 4.0882 × 10−3 32.74 138

MPC-NPLPT, tmax = 5, δu = δy = 10−2 4.2538 × 103 4.3179 × 10−4 40.97 184

MPC-NPLPT, tmax = 5, δu = δy = 10−4 4.2538 × 103 3.3998 × 10−5 48.42 206

MPC-NO 4.2539 × 103 0 330.16 –

The second strategy (MPC-NPLPT) uses a more
advanced linearisation method. At each sampling
instant on-line a linear approximation of the predicted
output trajectory is found over the whole prediction
horizon. It is a conceptually better approach in compar-
ison with the first one, in which the model itself is only
linearised for the current operating point. Indeed, for
the considered heat exchanger system the MPC algo-
rithm with trajectory linearisation gives the same tra-
jectory as the MPC-NO algorithm with nonlinear opti-
misation repeated at each sampling instant on-line. Fur-
thermore, it is computationally efficient in two respects:
qualitatively and quantitatively. Firstly, it needs only
quadratic optimisation. Secondly, when comparedwith
the MPC-NO algorithm it is many times less computa-
tionally demanding.

In contrast to the extended dynamic control (EDMC)
algorithm [36] which extends the linear DMC algo-
rithm by using a time-varying disturbance vector which
captures the effect of nonlinearities, in the described
MPC strategies the effect of the past is calculated
directly from the full nonlinear model, the horizon
of dynamics is not used (only prediction and control
horizons are necessary), and it is not required that
the process is stable and it does not contain integra-
tion.

A natural direction of future research is the incor-
poration of the Wiener–Hammerstein model in eco-
nomic MPC [37,38] or in set-point optimisation coop-
erating with MPC [1,12]. The mentioned approaches
tightly integrate economic optimisation and feedback
MPC.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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