
P R A C E N A U K O W E P O L I T E C H N I K I WA R S Z A W S K I E J
z. 187 Elektronika 2013

Andrzej Zalewski

Instytut Automatyki i Informatyki Stosowanej

MODELLING AND EVALUATION
OF SOFTWARE ARCHITECTURES

Rękopis dostarczono 16.04.2013 r.

 Software architecture is an important development artefact, with substantial infl uence over
the quality of a software system. This monograph presents the state of the art in modelling
and evaluating software architectures, which are two closely related research areas infl uencing
each other. Three main approaches to architectural modelling have been covered, i.e. models of
software structure, architectural decisions, and models of architecture description. Semi-formal
models, such as block diagrams models, UML, SysML and Archimate, are mainly used for
modelling software structure. Architectural decisions capture the rationale underlying a given
architectural design and the logic of the architecting process. The most important models for
documenting architectural decisions have been discussed and compared: textual models, a com-
prehensive, fl agship model by Zimmerman et al. extended with decision-making support, as well
as the author’s Maps of Architectural Decisions model, which has been tailored to the needs of
documenting the evolution of rapidly and unpredictably evolving systems. Architectural patterns
and tactics, which are closely related to architectural decisions, are also covered by this survey.
The System Organisation Pattern is the author’s proposition for the effective representation of
top-level architecture of large-scale distributed systems, combining concepts of architectural
patterns and architectural decisions. The models of architectural description focus on organising
architectural information according to the stakeholders’ concerns, captured by viewpoints. The
monograph covers the most important developments in this area, i.e. ISO 42010:2011 standards,
Kruchten’s 4+1 views, Zachman’s framework and recent developments regarding viewpoints.
Architecture evaluation methods have evolved alongside architectural modelling. A new taxono-
my of architecture evaluation methods, based on the method’s applicability has been introduced,
and two basic paradigms of architecture evaluation have been identifi ed. Eighteen state-of-the-
art architecture evaluation methods have been characterised according to a uniform description
scheme. The Early Architecture Evaluation Methods, developed for the evaluation of large-scale
system architectures at the inception stage of development, being the author’s contribution to
the research on architectural evaluation, was included in this survey. Such a comprehensive sur-
vey of architecture evaluation methods enabled the state of the art to be analysed, and a further
research outlook to be drawn up.

4 Introduction

1. INTRODUCTION

 Software architecture has become a primary fi eld of software engineering re-
search in the recent twenty years. The wave of research on software architecture,
which has intensifi ed since the end of 20th century, can be perceived as a desire
for yet another “silver bullet” [31] targeted at the growing complexity of software
systems being developed nowadays. Its proposition can be summarised as:
 increasing the level of abstraction at which software systems are modelled and

designed, by focusing the design activities on software structures at various
levels of detail;

 analysing how these structures shape the properties of a software system,
which should provide feedback on the quality of software design.

 These ideas are naturally not entirely new, as systems structures and the prop-
erties that result from them have already been studied in general in the systems
science of the 1960s and 70s (compare e.g. [136], [3], [68],) and in later work on
modularisation (e.g. [9], [10]). Similarly, software structures and their infl uence
on its properties have been studied since the advent of this discipline – compare,
for example, [47], [48], [116], [114]. The legacy concepts of component (module)
coupling and cohesion [161], [113] have become basic measures of the infl uence
of software architecture on its maintainability and are still in use.
 We can see that programming paradigms and software development method-
ologies (structured [162], [161] object-oriented [24], and service-oriented [5]) ad-
dress the inherently “architectural” issue of software decomposition, i.e. defi ne
decomposition units (functions, classes/objects, services), ways of composing
them into aggregate ones (hierarchies of functions, class inheritance, service or-
chestration), mechanisms of data exchange between software units (function in-
vocation, message passing), and other means of organising software (source code
modules, packages).
 The concept of software architecture itself was born together with software en-
gineering in the late 1960s [108, p. 22], [121, p. 9], [156]. Currently, there are nu-
merous defi nitions of ‘software architecture’, emphasising its various aspects, e.g.
[118], [60], [15] ISO/IEC/IEEE 24765:2010(E) [75], ISO/IEC/IEEE 42010:2011
[77]. Putting all of them together reveals that ‘software architecture’ comprises
three basic elements:
 Structure – the building elements and their structure (relationships), rules gov-

erning the organisation, design and evolution of a software system;
 Behaviour – the logic of co-operation between the components;
 Motivation – the design intent and its rationale that shaped both structure and

behaviour.

5 Introduction

 The importance of software architecture is that it may potentially infl uence
all the non-functional quality attributes, or even place the development project
in jeopardy. The infl uence of software architecture is felt throughout the entire
lifecycle of the system. For example: over-complex software design can make
changes very diffi cult and costly. As architecture defi nes an overall organisation
of a software system, its changes require a substantial effort and may involve seri-
ous risks. Therefore, software architecture, although invisible, is a valuable asset.
 The development of a software architecture requires architecture models to
represent design concepts and evaluation methods that can be used in order to as-
sess whether software architecture suffi ciently supports signifi cant requirements.
The research on software architecture has been addressing both these concerns.
This monograph focuses on architecture evaluation; however, the architecture has
to be represented in some way in order to enable an analysis of its properties. Ar-
chitectural models determine the scope of available analyses. Therefore, a survey
of modelling approaches for software architecture has also been included. The
book covers the following topics:
1. Software architecture modelling (chapter 2), which has been divided into three

main areas: Architecture Modelling Languages (ADLs, section 2.1), architec-
tural decisions (section 2.2) and models of an architectural description (sec-
tion 2.3). The state of art in architectural modelling is discussed in section 2.4.
The general conclusion of this chapter is that architectural modelling is domi-
nated by informal and semiformal models. At the same time, the importance
of aggregate concepts such as architectural styles, patterns or tactics for docu-
menting and analysing architectures has also been emphasised;

2. Architecture Evaluation Methods (chapter 3) – this chapter comprises three
main parts:

 a. sections 3.1–3.4 introduce basic concepts in order to prepare the ground
for a precise and consistent presentation of architecture evaluation methods
(sections 3.5–3.9). This includes: presentation of the paradigms of archi-
tectural evaluation (section 3.1), introduction of a taxonomy of architecture
evaluation methods (sections 3.2 and 3.3) and defi nition of a uniform tem-
plate for a description of architecture evaluation methods (section 3.4);

 b. sections 3.5–3.9 contain a survey of architecture evaluation methods, where
the architecture evaluation methods have been grouped according to the
taxonomy introduced in section 3.4;

 c. sections 3.10–3.11 are devoted to a discussion of the research achievements
in the area of architectural evaluations and drafting an outlook for further
research.

 The uniform survey of all the state-of-the-art architecture evaluation methods
is a unique value delivered by this monograph, because the results of research on

6 Software Architecture Modelling

architecture evaluation dispersed among many publications have been gathered,
presented and discussed in a single work.
 The author’s original contribution to the fi eld of software architecture research
comprises:
1. Diagrammatic model of architectural decisions, called Maps of Architectural

Decisions (MAD) [170], [167], which has been validated in an industrial set-
ting (section 2.2.4);

2. The concept of the System Organisation Pattern [171], [169], comprising a set
of architectural decisions defi ning the overall design of a large-scale distrib-
uted system (section 2.2.6);

3. The taxonomies of architecture evaluation paradigms (section 3.1) and archi-
tecture evaluation methods (section 3.3) based on the scope of the method’s
applications;

4. Early Architecture Evaluation Method (section 3.9.2) [169] – an original archi-
tecture evaluation method aimed at identifying major risks at the earliest stages
of the development of large-scale distributed systems.

2. SOFTWARE ARCHITECTURE MODELLING

 The purpose of this chapter is to summarise the achievements in architectural
modelling to date, in order to provide a basis for the presentation and discussion
of architecture evaluation methods. Therefore, its purpose is not to deliver a full,
detailed presentation on architecture models, but rather to provide insights into
their internal design and discuss their features.
 The modelling of software architecture has so far been developed in three main
directions: modelling software structures, documenting architectural decisions
and organising architecture descriptions.
 Research on modelling software structures (section 2.1) has focused on devel-
oping Architecture Description Languages (ADLs), which, as with other model-
ling languages (e.g. structured notations or UML), defi ne modelling constructs and
syntax rules that constrain the scope of uses and compositions of these constructs,
as well as the semantics of the models built out of the modelling constructs.
 The general advantage offered by Architecture Description Languages is that
they explicitly represent software structures by exposing its building components
and the relationships between them. However, they contain no information on
what has motivated a given design (rationale), or how the architects arrived at it.
This design intent and decision-making process, unless properly captured, evapo-
rates as soon as software is implemented or the architects are gone. This defi ciency
is addressed by the concept of architectural decisions (section 2.2). The underly-

7 Software Architecture Modelling

ing concept is that software architecture can be modelled as a set of architectural
decisions, whose superposition defi nes a given software architecture.
 In addition to these two directions, models of organising architectural documen-
tation have also been developed (section 2.3). The research challenge addressed
here was to develop means of organising sets of architecture models, of whatever
kind, so as to be able to extract the information needed by various stakeholders. The
core achievements have been summarised by the recent standard ISO/IEC/IEEE
42010:2011, which promotes the organisation of architecture description around
stakeholders, their concerns and viewpoints that capture these concerns. This idea
has also infl uenced the newest ADLs, namely ArchiMate, which is compliant with
the standard mentioned above.

2.1. MODELS OF SOFTWARE STRUCTURE

 Models of software structure capture the following aspects of software
architecture:
 Components – units of a system’s organisation, which, for example, can be the

unit of computation (procedures, classes, objects, applications or even a sys-
tem consisting of many applications), data store, hardware and execution envi-
ronment units, etc.;

 Interactions – represent the exchange of data between the components,
e.g. queuing buffers, common data structures, sub-procedure invocations,
communication protocols, message passing, etc. Interactions are usually repre-
sented by connectors;

 Compositions – show how higher level components are built out of lower level
ones;

 Context – represent the business or technical environment that the modelled
system interacts with. It can include: the components of a technical infrastruc-
ture (sensors, input devices), users, business processes and the organisation’s
structures.

 Models of software structure have been developed since the advent of software
engineering (comp. e.g. [114], [141]). They were later named Architecture De-
scription Languages (ADL) [104] when the wave of research on software archi-
tecture intensifi ed. The evolution of ADLs has gone towards bringing architecture
modelling at a higher level of abstraction (compared to traditional object-oriented
and structured notations), enriching the models of system context (business or
technical) and including components of technical infrastructure on which the soft-
ware runs.
 State-of-the-art architectural modelling encompasses structured models, box
models, UML and SysML and ArchiMate notation (sections 2.1.1–2.1.4). Struc-

8 Software Architecture Modelling

tured models represent software architecture at a low level of abstraction and pro-
vide limited information on a system’s context. The block diagrams are very fl ex-
ible and can be used at every level of abstraction, from a top level coarse-grained
view of domains and systems to the detailed software components [152]. At the
same time they are intuitive, hence easy to learn and comprehend even by an un-
trained person. Therefore, block diagrams remain a popular means of representing
software architecture, despite the lack of a formal syntax and the semantics and
ambiguities that arise as a result.
 This limitation has been addressed by semiformal models (UML, SysML)
combining an increased level of modelling formalism with the fl exibility of block
diagrams. However, all the models mentioned so far abstract from the business
context of a software architecture, which makes it diffi cult to organise a set of
such models along with the stakeholders’ concerns and viewpoints (compare sec-
tion 2.3). The ArchiMate notation is a response to this challenge. It combines
models of a system structure with the extensive models of the organisation being
served by the modelled system.

2.1.1. Structured Models

 The category of structured models includes two basic models that represent
software at an architectural level, namely data fl ow diagrams (DFD) and structure
charts that have been included in various modelling notation delivered by the
structured methodologies, compare e.g. [162], [68], [113], 161]. Structured mod-
els capture the four basic entities that designate being an ADL:
1. Components – software components are represented both on data fl ow dia-

grams on a coarse-grained level (processes, transformations) and on structure
chart on a fi ne-grained level (functions, procedures);

2. Interactions – are represented as data fl ows between software entities on
data fl ow diagrams, and on structure charts as arguments passed between
procedures;

3. Compositions – the processes (transformations) on data fl ow diagrams can
be decomposed hierarchically, which captures the process’s composition of
“smaller” sub-processes; structure charts depict how higher level functionality
is implemented by a hierarchy of more detailed ones;

4. Context – is represented as terminators on data fl ow diagrams. Terminators are
external sources or sinks of data. Special context diagram is included in major
structured methodologies such as Yourdon’s or Ward-Mellor’s method.

 Structure charts are now obsolete, while data fl ow diagrams are still used to
represent data fl ows between the processing units (components). Models of busi-
ness processes, such as BPMN [111], are in fact modern data fl ow diagrams, and
are widely used in business modelling.

9 Software Architecture Modelling

2.1.2. Block Diagrams

 Block diagrams are similar to data-fl ow diagrams, UML component diagrams
or SysML internal block diagrams. As with fully-blown ADLs, they enable the
modelling of:
1. Components – system components (domain, system, subsystem, application,

application’s components) are represented as boxes;
2. Interactions – lines or arrows between the boxes denote interactions, though its

characteristics are implicit;
3. Compositions – boxes placed inside a larger one represent a composition out

of a number of subcomponents;
4. Context – elements of system context can be represented using any symbols

(e.g. boxes, circles).

 However, the notation is informal and by no means uniform, which means that
different architects usually draw block diagrams differently. An example of a box
model is set out in fi gure 1.

Figure 1. Example of a block diagram – interbank clearing system

2.1.3. UML and SysML

 The Unifi ed Modelling Language was originally developed in order to unify
the modelling languages accompanying early object-oriented software develop-
ment methodologies, such as methods by Rumbaugh, Booch and Jacobson. UML
has grown into an industrial standard for software modelling. Its current version,
No 2.4.1, developed by Object Modelling Group (OMG), has also become an
international standard ISO/IEC 19505:2012 standard [72].
 Many of the UML models can be used to capture the basic architectural entities:
1. Components – coarse-grained components (systems, applications, applica-

tion components, services) can be presented in the component diagram; fi ne-

10 Software Architecture Modelling

grained components (e.g. class member functions) can be presented in a com-
posite structure diagram. Units of organisation of software systems are also
captured by the package diagrams, which group software entities of any kind
(classes, use cases etc.) according to the needs of the analyst.

2. Interactions – are captured in component diagrams as interfaces and connec-
tors, and in composite structure diagrams as ports and connectors. Sequence
and communication diagrams represent interactions between software entities
(objects, components).

3. Composition – composite structure and component diagrams are a general
means of modelling the composition of software system’s entities – they defi ne
the internal structure of a given component (including class) and the services it
delivers outside. The composition of software entities can also be captured by
package diagrams, e.g. they can be used to defi ne layers of software architecture.

4. Context – elements of a system context are captured as actors, allowing sys-
tem context to be captured in use-case diagrams and models, or in activity or
sequence diagrams.

 Using UML for architecture modelling is generally challenging. UML has
been specially developed as a model of object-oriented software. Therefore, it
provides modelling concepts capturing various facets and peculiarities of object-
oriented software, which en masse are not necessarily best suited to architectural
modelling. This limitation is a result of inherent properties of UMLs. It is rather
ineffective in capturing hierarchical structures, abstracts from business context,
and is best suited for modelling design details.
 The choice of UML models suitable for architecture modelling is, therefore,
problematic. Legacy considerations in this respect can be found in [105]. More
contemporary and practical guidelines can be found in [38], which provides rather
limited guidelines on how to use UML for architecture modelling; for a summary
see table 1, which assigns models to the types of architectural information (views).

Table 1. Summary of guidelines on how to use UML for documenting software architecture
(based on [38])

Component of architectural descrip-
tion

Models (diagrams) used to represent a certain element of
architectural description

Composition of software entities
(modules, components, etc.)

Package, class, composite structure diagrams.

Interactions between components,
interfaces

Component, object, composite structure diagrams.

Allocation of software entities to the
execution environment

Deployment, package diagrams.

Behaviour models Behaviour diagrams: activity, sequence, communication,
timing, interaction overview, state machine, use-case.

11 Software Architecture Modelling

 Systems Modelling Language (SysML) [112] was developed by OMG as
a UML profi le. It has been crafted to be abstract from many details typical for the
modelling of object-oriented software, while providing modelling constructs that
are well-suited for the representation of a system’s structure:
1. Components – are called blocks in SysML terminology. Blocks represent the

components of a system’s architecture (domains, systems, subsystems, appli-
cations, etc.) and are the main entities of SysML, which are included in the
following models: block defi nition and internal block diagrams (see below);

2. Interactions – are modelled in internal block diagrams corresponding to the
UML component diagrams and representing components and fl ows between
them (fl ows of data, materials, electric current). Additionally, models of be-
haviour, namely activity, sequence, state machine and use case diagrams, can
be used for modelling interaction;

3. Compositions – are modelled in block defi nition diagrams, using the same
notation as UML class diagrams (conceptual). Component compositions are
modelled as relationships between the blocks, similar to the relationships be-
tween classes in an UML class diagram, namely associations, generalisations,
compositions, and aggregations. It is also possible to defi ne multiplicities on
the ends of an association – one component may contain a number of other
components.

4. Context – internal block diagrams and use case diagrams can be used for mod-
elling a system’s context. The entities external to the modelled systems are
represented as actors or blocks.

 The most noticeable difference to UML is the lack of fully-blown data mod-
elling capability: class and object diagrams are absent in SysML. Compared to
UML, it also offers rather limited support for behaviour modelling: only activity,
sequence, state machine and use case diagrams are available in SysML.
 Package diagrams defi ne packages of modelling artefacts and the relation-
ships between them. Packages may contain: other packages, viewpoints, views,
blocks and requirements. They may also be connected to the requirements and
other models or model components, such as blocks and requirements. Package
diagrams enable documentation to be organised in a way that is compliant with
ISO/IEC 42010 (compare section 2.3.1). Package diagrams may be perceived as
a kind of index of architectural information that enables navigation through it.
 SysML provides two additional diagrams:
1. The requirements diagram captures:
 the hierarchy of requirements relevant to a given system’s design (general

requirements are translated onto more detailed ones, and so on recursively);
 the process of deriving requirements, i.e. how requirements are conceptu-

ally related to each other and how the analyst arrived at certain architecture.

12 Software Architecture Modelling

The requirements diagram captures the context of a given requirement,
i.e. related problems, the means of verifying whether a requirement has
been fulfi lled, its rationale, and refi nement relationship.

2. The parametric diagram is supposed to integrate models of a system’s behav-
iour and structure with engineering analysis models (e.g. in the case of control
systems, models of a system’s dynamics and optimal control algorithms).

2.1.4. ArchiMate

 ArchiMate 2.0 [150] is an emerging (version 1.0 appeared in 2009) diagram-
matic modelling language developed and promoted by The Open Group, which
is becoming popular mainly among the enterprise architecture community. It at-
tempts to include the concepts of service-oriented modelling into an ADL. There-
fore, the concept of services is included in the notation. ArchiMate has been craft-
ed to address the following main issues:
 Compliance with the ISO 42010:2011 standard, which was achieved by or-

ganising architectural models in eighteen predefi ned viewpoints capturing
various kinds of architectural information (e.g. an organisation’s structure,
business processes, application usage, application deployment, service imple-
mentation) at various levels of detail (e.g. overview-level, technical details).
Content patterns and examples of models are provided for all the viewpoints,
along with modelling hints;

 Enabling modelling at a higher level of abstraction than competing notations
(UML, SysML), which was achieved by including the concepts of service-
oriented modelling [5] into the modelling notation, remaining detached from
the details of the system’s dynamics and by focusing on software architecture
modelling at the application and component levels;

 Modelling organisational structures and processes, software systems and un-
derlying technology as an integrated unity. This was achieved mainly by
broadening the scope of architectural modelling by including the rich mod-
els of technical and organisational context into the scope of architectural
modelling.

 Architecture documentation in ArchiMate comprises three layers (table 2):
 Business (customers’ perspective, business processes),
 Application (applications used in order to offer products and defi ne business

processes), and
 Technology (the computing, storage and network infrastructure needed for

a system to run).

 For each of these three layers, three aspects can be captured in ArchiMate
models: structural (static structures), behavioural (a system’s dynamics and in-

13 Software Architecture Modelling

teraction between the structural elements) and informational (link other concepts,
especially behavioural, to the goals of an organisation) elements.

Table 2. Layers and components of architectural models of ArchiMate

Layers Structural elements Behavioural elements Informational
elements

Business Business actor, business
role, business collaboration,
business interface, location,
business object

Business process, busi-
ness function, business
interaction, business event,
business service

Representation, me-
aning, value, product,
contract

Application Application component,
application collaboration,
application interface, data
object

Application function, appli-
cation interaction, applica-
tion service.

–

Technology Node, device, system
software, infrastructure
interface, network, commu-
nication path

Infrastructure function,
infrastructure service

Artefact

 The four basic components captured by the ADLs are represented in Archi-
Mate as follows:
 Components – component-connector modelling is included in the application

structure viewpoint and both connectors (interfaces) and various types of com-
ponents are included in the notation, compare table 2.

 Interactions – ArchiMate offers rather limited support for modelling behaviour
details, especially when compared to UML or SysML. It focuses on capturing
the collaborations between the modelling entities in abstraction from details
of its dynamics. Interactions between software components are captured in the
application co-operation and application behaviour viewpoints;

 Compositions – ArchiMate enables block diagram style composition model-
ling and also contains composition and aggregation relationships, which can
be applied to any modelling object (e.g. application component, business pro-
cess). Composition is captured in the application structure viewpoint;

 Context – ArchiMate includes models both of the business environment and
of the technical infrastructure, which is a major advantage over the models
described in sections 2.1.1–2.1.3. The participation of an application in a busi-
ness process is captured in the application usage viewpoint; the relationships
between software and infrastructure are modelled in the implementation and
deployment viewpoint and in the infrastructure usage viewpoint.

 The graphical symbols of the ArchiMate notations recall traditional UML,
structured or box models. They are supposed to be intuitively understandable.
Therefore, no formal semantics are defi ned, and there are no correspondence

14 Software Architecture Modelling

rules. This makes ArchiMate a lightweight architecture model, even when com-
pared with the semi-formal UML or SysML. However, this fact can, paradoxi-
cally, foster its industrial adoption.

2.2. ARCHITECTURAL DECISIONS AND ARCHITECTURAL
KNOWLEDGE

 Architectural decisions [152], [78], [91] provide an approach to the model-
ling of software architecture alternative to the models of software structure (sec-
tion 2.1). This alternative is founded on the following assumptions:
1. Architecture is a result of a decision-making process; therefore, software ar-

chitecture can be represented as a set of architectural decisions made in order
to develop a given architecture;

2. Architectural decisions resolve certain architectural issues by choosing the
most suitable design.

3. These choices are made rationally, which implies that every architectural deci-
sion has its rationale, i.e. the motivation of the choices made.

 The rationale is a component missing from the models of software structure
and is usually considered tacit architectural knowledge that tends to vaporise with
the passage of time or as the developers leave. However, not knowing the ratio-
nale hinders the transfer, the sharing and the reuse of knowledge on software
architecture.
 Let us also note that the idea of documenting design decisions and the rationale
behind them can be traced back to efforts made in the 1960s and early 70s, aimed
at an idealistic goal of defi ning and formalising the design process, for example
compare [3], Issue-Based Information Systems (IBIS) [96] as well as models of
design rationale discussed in [79].
 Section 2.2.1 presents and discusses the concept and models of architectural
decisions, section 2.2.2 discusses the use of architectural decisions as a carrier
of architectural knowledge, section 2.2.3 presents an advanced model [172] for
capturing architectural decisions, which is accompanied by the techniques of deci-
sion-making support. Section 2.2.4 presents the Maps of Architectural Decisions
model [167], which is suitable for documenting the evolution of rapidly evolving
systems. Architectural patterns and tactics, which are concepts closely related to
architectural decisions, are discussed in section 2.2.5. System Organisation Pat-
tern combining the concept of architectural patterns and architectural decisions
into an effective means of documenting top-level architecture of large-scale sys-
tems is presented in section 2.2.6. Finally, the limitations of the existing approach-
es to architecture decision-making and capturing are discussed in section 2.2.7.

15 Software Architecture Modelling

2.2.1. Concept of Architectural Decisions

 Although the concept of architectural decision is fairly mature, it is not easy
to fi nd a precise defi nition in the existing literature. The seminal paper by Jansen
and Bosch [78] defi nes architectural decisions as, “a description of the set of ar-
chitectural additions, subtractions and modifi cations to the software architecture,
the rationale, and the design rules, design constraints and additional require-
ments that (partially) realize one or more requirements on a given architecture.”
This “compositional” defi nition refl ects the expectation that software architecture
could be synthesised as a sum (or rather a superposition) of a number of architec-
tural decisions, which could be expressed by an equation: software architecture =
= ad1 + ad2 + … + adn.
 In order to achieve this goal, a model linking architectural decisions with the
fragments of component-connector models (Design Fragments) has been defi ned.
The entire architecture was supposed to be composed out of those Design Frag-
ments. However, this goal has so far turned out to be infeasible, namely neither
the decisions nor the “+” operator have been formally defi ned. The unresolvable
diffi culty turned out to be the multifaceted nature of software architecture and
the cross-cutting nature of architectural decisions. It makes it diffi cult to combine
both of them in a strict and formalised manner. Although, this research direction
has been abandoned, the components of architecture decision model by Jansen
and Bosch do infl uence contemporary research, e.g. [167], [133].
 Currently, an architectural decision is understood as a choice between a num-
ber of architectural (design) alternatives, aimed at resolving a certain architec-
tural issue (problem), for example, “the selection of a communication mechanism
between given services” (synchronous/asynchronous), “the selection of a persis-
tence solution for a web application” (Hibernate/QLOR/Spring/OJB), and “the
selection of an application server and its associated components”.
 The contents of architectural decisions have been featured in a number of
papers [152], [78], [92], [170], [167], [154], [134]. Although, they use different
wording and differ in some minor details, a generalised model of the content of
architectural decisions can easily be derived from them. It includes the following
attributes:
 Problem (issue) – problem that the architectural decision is expected to address;
 Options (positions, variants) – architectural solutions that are considered as

possible solutions to a certain problem;
 Solution – the chosen option, i.e. the architectural solution;
 Rationale – explanation and reasoning underlying the choice made, i.e. it can

explain identifi ed trade-offs, indicate pros and cons (compare [78], [167]) or
chosen properties of all the considered options [170];

 Decision context – it relates a given architectural decision to the information,
which was taken into account, while making that decision, namely other ar-

16 Software Architecture Modelling

chitectural decisions, artefacts, design constraints, design rules, requirements,
artefacts and assumptions, compare [152], [78], [143];

 Implications (consequences) – an architectural decision can introduce new de-
sign constraints, introduce or modify existing requirements, require a review
of certain other decisions, etc.;

 Technical fi elds – contain data necessary to manage decision-making, and or-
ganise sets of architectural decisions. This category includes such fi elds as
status, author, time stamp, history and categories.

 Further insight into the nature of architectural decisions provides classifi ca-
tions of architectural decisions. The most infl uential one of these has been intro-
duced by Kruchten in [93]. It defi nes four classes of architectural decisions:
 Existence decisions – defi ne a system’s structure (systems, subsystems, appli-

cations, etc.) – compare [103] and behaviour;
 Bans or non-existence decisions – constrain a system’s design by indicating

that some structural elements or behaviour will not be included. For example,
“the system is supposed to be a no-SQL one”, “the system will not use asyn-
chronous communication”;

 Property decisions – defi ne properties that architecture should account for, for
example, “the system should cope with a varying load”, or “the system should
operate on poor-quality communication links”. Hence, this category can be
understood as encompassing decisions that introduce design rules, guidelines
or constraints;

 Executive decisions – they are made by the management stakeholders, and
hence they are usually not addressing directly any software components or
their properties. To this category belong: process decisions (e.g. the choice of
a development process, the choice of a change management scheme), technol-
ogy and tool decisions (e.g. the choice of the implementation technology, the
choice of the implementation environment, or the choice of the testing tools).

 Another important taxonomy was introduced in [172]. It divides architectural
decisions between the four levels, namely:
 Executive level – this is the same category as in Kruchten’s taxonomy, e.g. pre-

ferred implementation or execution platform;
 Conceptual level – these are decisions that defi ne architectural solutions in-

cluded in a given architecture in abstract from the implementation details,
e.g. using a message broker to gather and distribute messages between a num-
ber of systems;

 Technology level – this category captures the implementation choices, e.g. com-
munication protocols, choice of interface technology (e.g. web service);

 Vendor asset level – this group includes decisions about the choice of vendors
of the products that implement the technologies chosen at the technology-lev-
el, or about the confi guration of these products, e.g. the choice of component’s

17 Software Architecture Modelling

vendor can serve as a general example, a more specifi c one can be the choice
of an enterprise service bus vendor.

 The most important weakness of Kruchten’s taxonomy is its vagueness and am-
biguity. In practice, property decisions may overlap with non-functional require-
ments; it may be diffi cult to distinguish between certain executive decisions and ex-
istence decisions (e.g. a decision that “the system will use Oracle® database” may
be attributed to both the existence and executive class of architectural decisions).
The classifi cation by Zimmerman et al. is much more precise, as it is supposed to
follow the top-down logic of the architectural decision-making process, neverthe-
less, the category of executive decisions still overlaps with other categories.

2.2.2. Capturing Architectural Knowledge with Architectural Decisions

 Architectural knowledge comprises explicit and tacit knowledge. The former
is documented as artefacts, defi ned by a development process (e.g. waterfall, Ra-
tional Unifi ed Process) and created during the software development. Tacit archi-
tectural knowledge, in turn, is the reasoning and motivation underlying a given
design. It tends to vaporise with the passage of time or as the staff leaves, if it is
not captured as it is conceived.
 By documenting architectural decisions, one captures both explicit and tacit
architectural knowledge, namely architectural design and its rationale as well as
the decision-making process that leads to a given architectural design. Architec-
tural decisions integrate various kinds of architectural knowledge into a single
entity. This observation triggered a wave of research on architectural knowledge
management [6], in which architectural decisions play a pivotal role.
 There are two general research challenges in the area of architectural knowl-
edge management:
1. The representation of architectural decisions including their content and form

of presentation (graphical, textual);
2. The organisation of large sets of architectural decisions in order to enable the

storage, navigation, manipulation (adding, modifying, deleting), search and
retrieving of the relevant architectural knowledge. Let us note that in order to
document software architecture, a lot of architectural decisions usually have to
be captured, e.g. in [173] almost 400 architectural issues, and hence, architec-
tural decision kinds, have been identifi ed.

 The fi rst of the above issues has been addressed by the introduction of various
ways of representing architectural decisions:
 as pure text records, whose content complies with that presented in section 2.2.1,
 visualised in the form of diagrams, which should facilitate comprehension,

compare e.g. [170], [167], [133], [45];
 linked to the relevant development artefacts, compare e.g. [35], [167].

18 Software Architecture Modelling

 The second of these two research challenges has been addressed by document-
ing the various relations between the architectural decisions or their components
(options and chosen solutions) and by classifying architectural decisions accord-
ing to a predefi ned scheme (compare section 2.2.1).
 A reference point for classifi cations of relations that might exist between archi-
tectural decisions constitutes an infl uential classifi cation by P. Kruchten presented
in [93], [92]. It defi nes the following categories of relations:
 1. Constrains – one decision constrains the other, e.g. the decision that “System

A will use JBoss application server” constrains the decision about “the choice
of an external, grid cache for system A” (the choice of JBoss application server
implies that external, grid cache will have to belong to the JBoss family).

 2. Forbids – one decision eliminates the other, e.g. “the system will use a syn-
chronous communication” forbids “the services will use asynchronous
communication”;

 3. Enables – one decision makes the other possible, e.g. “System A will com-
municate with B over a queuing system” enables “System A will send data to
system B asynchronously”;

 4. Subsumes – one decision includes other decisions, e.g. “System A will be im-
plemented in Java” subsumes “Component X, Y, Z of system A will be imple-
mented in Java”;

 5. Confl icts with – two decisions are mutually exclusive, e.g. “module X will be
implemented in Ada” confl icts with “module X will be implemented in Java”.

 6. Overrides – one decision cancels another, e.g. “subsystem A and B will share
a relational database” overrides “subsystem A will store data in XML fi les only”.

 7. Comprises – means that a certain decision is actually composed of a number of
sub-decisions, e.g. “confi guration of communication between subsystems” de-
cision can comprise “synchronous vs. asynchronous communication”, “choice
of communication protocol”, “choice of communication library/api” decisions.

 8. Is an Alternative to – two decisions address the same problem, but denote a dif-
ferent solutions, e.g. “Subsystems A and B will communicate asynchronously”
and “Subsystems A and B will communicate synchronously” address the same
issue but propose different solutions. Let us note that this is, in fact, rather
a relation between considered options (potential solutions) not between archi-
tectural decisions alone.

 9. Is Bound to – two decisions constraint each other, e.g., “component A will run
on an application server” and “component A will be implemented in J2EE”.

10. Is Related to – decisions are related to each other in some way other than those
listed above.

 The general problem is that the above relations are ambiguous and vague. It
is often diffi cult to identify them in practice. A separate issue is that some of
these relations are between the components of architectural decisions rather than

19 Software Architecture Modelling

between the decisions themselves – generally most of them could be defi ned as
relations between the considered options (“is an alternative to”, “confl icts with”,
“forbids”, “enables”) or between an option and another decisions (or vice versa)
(“overrides”, “enables”, “forbids”). This is quite an ambiguous situation, which
makes this classifi cation more cognitive than practical.
 Architectural decisions, their classifi cations as well as the relations between
them, are the basic components of models of architectural knowledge and of the
design of architectural knowledge management systems, which enable architec-
tural knowledge to be produced, consumed and managed. Architectural knowledge
management models and tools usually defi ne their own classifi cation schemes for
architectural decisions and for the kinds of relations between architectural deci-
sions; nevertheless, the above classifi cation still remains a reference point. For
a survey of the experimental tools, refer to [144], [6]; none of them has been ad-
opted by the software industry so far.
 The fl agship model for architectural knowledge management with many ad-
ditional features has been presented in section 2.2.3.

2.2.3. Extending Models of Architectural Decisions
with Decision-Making Support

 The ideas presented in section 2.2.2 gave rise to the development of elabo-
rate methodologies for architectural decision-making and capturing architectural
knowledge, supplementing the basic components of the models of architectural
knowledge, described in sections 2.2.1 and 2.2.2, with the following elements:
 rules of model consistency;
 support for decision-making, possibly including the decision-making tech-

niques [53]; and
 modelling guidelines.

 A highly formalised model by Zimmerman et al. [172], being a major achieve-
ment in this fi eld, has been presented below.
 The model proposed in [172] comprises:
A. The taxonomy of architectural decisions;
B. Architecture decision model, which represents the architectural decisions and

the relations between them and their components (detailed treatment is pro-
vided beneath);

C. The integrity constraints;
D. The support for architectural decision-making: the outcome instances mecha-

nism and the production rules.

 The taxonomy of architectural decisions proposed in [172] classifi es archi-
tectural decisions against the four predefi ned refi nement layers, which are sup-
posed to refl ect a top-down design approach:

20 Software Architecture Modelling

 The executive decisions – the same as analogous Kruchten’s category;
 The conceptual decisions – a selection of top-level architectural patterns

(e.g. three-tier application, service-oriented architecture) and key technologies
(e.g. Business Process Management System, Enterprise Service Bus);

 The technology decisions – a selection of detailed-level architectural patterns,
design patterns [61] are typical examples;

 The vendor asset decisions – choice of vendors of system and software com-
ponents (e.g. application server, commercial component libraries, middleware
solution).

 The model of an architectural decision comprises the following elements,
making up the tree structure shown in fi gure 2:
 Topic groups, which represent closely related design concerns. Topic groups

should be organised as tree-like top-down hierarchies. Topic groups provide
means of organising architectural decisions in a logical and easy to compre-
hend way, which could be tailored to a certain application.

 Issues, which represent architectural (design) problems;
 Alternatives, which represent possible solutions to a given issue. The given

alternative can only be a solution to a single issue.

Figure 2. An example of architectural decision model.

 The architectural decision model [172] is represented as a set of trees
(a forest), representing architectural decisions. Trees (decisions) are additionally
grouped according to the levels of abstraction they belong to. In general, an or-
dered set of such levels should be predefi ned by the architects. The four refi ne-
ment levels described above can also be used for that purpose.

21 Software Architecture Modelling

 It has also been noticed in [172] that relations exist rather between the compo-
nents of the models of architectural decisions than between decisions themselves.
These relations set up links between models of architectural decisions. This has
enabled the integrity constraints and the production rules to be defi ned. The latter
support the decision-making process. The following relations have been defi ned:
 Between issues (problems):
 – the infl uences relation represents a cross-cutting concern between issues;
 – the refi nedBy relation represents an issue that should be analysed at differ-

ent levels of detail, i.e. x refi nedBy y means that the details of issue x are
represented by issue y, which has to belong to a lower, more detailed level
of the architectural decision model;

 – the decomposesInto relation represents functional aggregation, i.e. the
related issues should in fact defi ne a single, decomposable, architectural
problem. These issues have to belong to the same refi nement level.

 Between alternatives (options)
 – forces – alternative x forces y means that selection of alternative x in one

issue, enforces the choice of alternative y in another issue.
 – isIncompatibleWith – denotes that related alternatives exclude each other

(are incompatible).
 – isCompatibleWith – means that two alternatives work together;
 Between other model entities:
 – the triggers relation between: alternative, issue and topic group – it is

a causal relation, meaning that it captures a decision-making process, rather
than logical dependencies. It means that the selection of a given alternative
a triggers issue i together with the topic group t, to which issue i should
belong. The triggers relation defi nes the decision-making paths that run
through a number of decision trees;

 – the hasOutcome relation binds an issue and an outcome instance. An out-
come instance is an entity representing a subset of alternatives that are con-
sidered for a given kind of issue. This enables already analysed issues to be
reused, by connecting their alternatives (outcome instance) to other issues.

 The model briefl y described above has been accompanied by a set of nine
integrity constraints that should preclude fl awed structures of relations. The in-
tegrity rules are:
1. The relations refi nedBy and decomposesInto exclude each other (the latter con-

cerns alternatives belonging to the same refi nement level, while the former
concerns different refi nement levels).

2. The issues bound by either refi nedBy or decomposesInto relation must not be
simultaneously in an infl uences relation, and vice versa. This would introduce
a useless redundancy.

22 Software Architecture Modelling

3. If an alternative x forces y, the other alternatives connected to the same issue as
alternative y should be incompatible with y;

4. The relations defi ned between the alternatives (forces, isCompatibleWith, isIn-
compatibleWith) are mutually exclusive; one of them is supposed to exist be-
tween every pair of alternatives, isCompatibleWith is default one.

5. If issue i is refi nedBy issue j or decomposesInto issue j, then all the alternatives
connected with issue i trigger issue j (the triggers relation is induced by the
relations refi nedBy and decomposesInto and should be automatically included
in the model, which is later needed for a decision making).

6. The forces relation between alternatives x and y means that alternative x trig-
gers issue i, which contains alternative x.

7. Let us consider all the issues that are reachable from alternative x (I(x)) by
following the triggers relations in the same way as the breadth-fi rst search
graph algorithm (starting from an issue x we arrive by the triggers relation at
issue i, then starting from each of the alternatives connected with issue i we
follow trigger relations to other issues, from these issues we repeat the earlier
procedure adding issues found “on the way” to the set I(x)). For every issue j
reachable from alternative x, there must be at least one alternative a attached to
issue j, such that the a isCompatibleWith i, or exactly one alternative connected
to issue j must be in a forces relation with alternative x.

8. Issue j triggered by alternative x that belongs to issue i must belong to a lower
refi nement level than i, or, if they belong to the same refi nement level, issue j
should be a successor of issue i according to the ordering relation (it defi nes the
recommended reading sequence for architectural decisions, which comprise
the architectural decision model).

9. If alternative x is chosen, only alternatives that are compatible or forced by
alternative x are allowed to be chosen in other outcome instances of the same
type (label). See more on outcome instances below.

 Let us note that:
 these rules constrain the syntax not the semantics of the model, as they either

preclude or impose a certain correspondence between the relations, but do not
deal with the concrete content of issues and alternatives, which provide a car-
rier for the decisions’ semantics;

 these rules can be verifi ed automatically;
 rules Nos 5 and 6 ensure the automatic generation of the triggers relation; for

more on the role of the triggers relation see below;
 rule No 7 is supposed to ensure the resolvability of the models, i.e. whatever

alternative one starts from, one arrives at issues that have at least one alterna-
tive that is compatible with the starting issue;

 the model’s authors observe that rule No 8 does not hold in many cases, as
strictly top-down architecting is not always possible. For example, in many
cases vendor-level decisions result straight from the executive decisions;

23 Software Architecture Modelling

 there is no proof of the completeness of the above set of rules, i.e. it has not
been proved that there cannot exist a faulty model that satisfi es the integrity
constraints.

 In the model described above, architectural decision-making is a process of
traversing issues following triggers relations, and choosing a resolution out of the
alternatives resolving a certain issue. The method does not provide any support for
making choices, which is left to the architects.
 Decision-making starts from issues, called entry points, that do not participate
directly in any triggers relation. Note that some triggers relations can be gener-
ated automatically from refi nedBy, decomposesInto and forces relations (compare
integrity rules Nos 5 and 6). All the entry points should be examined.
 The method assumes that some issues may recur in the architecture. Such re-
curring issues should be addressed consistently, i.e. the sets of alternatives that
resolve such issues should recur in all the recurring issues. Such a recurring, reus-
able set of alternatives is called outcome instance and can be bound to issues with
a hasOutcome relation. Outcome instances that concern the same kind of issues
have the same text labels (possibly denoting the kind of issue, e.g. “service inter-
face type”). This way, such recurring issues can be treated coherently. Outcome
instances may be in one of three statuses: “open” (assigned initially), “implied”
(intermediate status, containing only one alternative, which has not been pruned),
and “resolved” (none or one alternative has been chosen).
 The decision is made by choosing an alternative according to the architect’s
knowledge and preferences. It results in pruning all the other alternatives con-
nected to the considered issue. The following production rules provide for the
automatic pruning of superfl uous alternatives and for updating the statuses of out-
come instances:
1. [Pruning the incompatible alternatives] Let a1 and a2 be alternatives to issue

i, which are incompatible. If a1 is chosen as a solution to an issue i (note: it
means that the status of issue i is changed to “resolved”), then a2 should be
removed from all the outcome instances of i. As choices are made, more and
more alternatives become incompatible with the alternatives already chosen.
This rule expresses that there is no point in analysing alternatives that confl ict
with a decision already made.

2. [Outcome propagation] If alternative x forces y and x has been chosen, then al-
ternative y should also become chosen, and other alternatives to y pruned. This
choice should be propagated to all the instances of the outcome alternatives that
contain alternative y. Note: alternative y may occur in a number of outcome
instances of the same type. Outcomes affected by this procedure are called “im-
plied outcomes”, i.e. their status is changed from “open” to “implied”.

3. [Outcome instance status update] If all the alternatives have been pruned from
outcome instance p, or after pruning there remains only a single alternative,

24 Software Architecture Modelling

then the status of such an outcome is changed to “implied”. Such implied out-
come instances should be reviewed by the architect in order to verify their
technical soundness. This may result in revoking a previously made decision.

2.2.4. Maps of Architectural Decisions

 The model by Zimmermann et al. captures and supports the architecture deci-
sion-making process in a highly formalised way, especially when compared to the
textual models of architectural decisions [6], [152]. The fundamental precondition
for this formalisation is that it is possible to enforce a certain order of architec-
tural decision-making (in the case of [172] – top-down refi nement). As observed
in [167], such an orderly decision-making process is, in many practical cases,
unachievable. Many modern organisations, including telecoms, belong to the
class of “emergent organisations” whose systems are “subject to constant urgent
change” [22]. Their evolution is random rather than a highly predictable, carefully
deliberated process following an earlier established path, as in [64] or [172]. At
the same time, architects working for emergent-organisations have a rather lim-
ited time for crafting architectural changes, which leaves little time for capturing
architectural knowledge. These factors limit the applicability of elaborate models
and methodologies, such as that of Zimmerman et al.
 Maps of Architectural Decisions 2.0 model (MAD 2.0) was crafted in order to
support the capture of architectural decisions as they are made while architecting
changes to rapidly evolving systems. Its presentation has been based on paper [167].
 MAD 2.0 works similarly to popular mind maps used to graphically present
a problem structure. The model consists of two diagrams, Architecture Deci-
sion Relationship Diagrams (ADRD), and Architecture Decision Problem Maps
(ADPM). ADRD represents the logic of the decision-making process – the dia-
gram can be developed gradually, while ADPM models the internal structure of
a single decision problem (issue). The notation’s syntax and validity rules are
presented below.
 The Architecture Decisions Relationship Diagram (ADRD) is built out of
just two basic elements (fi gure 3):
 Decision problem – represents the architectural issue being considered;
 Attributes: problem name, problem description, status, creation date, resolu-
tion date, extended solution rationale.
 States: defi ned – indicates a newly defi ned project, being solved – an ADPM
for the problem has been created, but the problem has not yet been resolved,
solved, requires reassessment – indicates that solution, or the occurrence of other
problems, requires an already resolved problem to be reconsidered.
 Connector – in its basic form shows just that one problem led the architect

to the one indicated by an arrow, in the form of a hexagon it indicates that the

25 Software Architecture Modelling

solution of a given problem constrains the possible solutions of the indicated
problem (“constrains relation”). Two Decision problems can be connected
only once.

Figure 3. The Elements of an Architectural Decisions Relationship Diagram

 Problems can group on the ADRD by surrounding some of them with a solid
line – compare fi gure 5. Such a group is treated as a single problem. In this way,
architects can indicate that problems concern a closely-related issue (e.g. defi ne
a domain solution).
 The Architecture Decision Problem Map (ADPM) is a model, in which ar-
chitectural decisions are actually captured. The elements of the ADPM diagram
have been summarised in fi gure 4. The central element of a diagram is a single de-
cision problem symbol (as in fi gure 3) representing the architectural issue (prob-
lem) being analysed. The other symbols are:
 Solution – represents a single solution to the architectural problem being

considered
 Attributes: name, state, description, generated problems.
 States: defi ned – assigned immediately after creating an element; feasible –
indicates a solution meeting all the requirements, infeasible – indicates a solution
that does not meet some of the requirements (the two former states are assigned
automatically), chosen – indicates the fi nally selected solution (assigned by the
decision-maker).
 Requirement – represents a requirement relevant to a given architectural

problem
 Attributes: name, description
 Decision-maker – represents a person or a group of people responsible for the

resolution of a related architectural problem.
 Attributes: name, remarks
 Pro or Con – represents a single advantage or disadvantage of a given solution
 Attributes: name, description, state, related requirement (met or unmet re-
quirement if the given element represents such a case)

26 Software Architecture Modelling

 State: defi ned – assigned immediately after creating a given Pro or Con ele-
ment; minor, medium, major – declares the importance of a given advantage or
disadvantage of a given solution.

Figure 4. The Elements of the ADPM Diagram

 MAD 2.0 models have been crafted to assist system architects in the same
way as creating mind maps. This helps to capture architectural knowledge as it
gradually comes to light while elaborating the architecture (i.e. decision-mak-
ing). Examples of ADPM and ADRD models are presented in fi gure 5 and 6.
Note that a tool supporting the capture of architectural decisions and binding
them to appropriated parts of specifi cations of changes has also been developed
and described in [167].
 The syntax of the MAD 2.0 model is intuitive. The following syntax rules have
been defi ned:
 Rule 1. Two decisions represented on ADRD may be unconnected or connect-

ed with just a single connector.
 Rule 2. Decision-maker, Requirement and Solution symbol on ADPM can

only be attached to a Decision problem symbol.
 Rule 3. Pros and Cons symbols on ADPM can only be attached to a solution

symbol.

27 Software Architecture Modelling

Figure 5. An example of an ADPM model

 Although, MAD 2.0 models are semiformal, the syntax imposes a certain
structure of the information representing architectural decisions that enables mod-
el validation:
 Rule 1. Every decision problem has to be resolved, i.e. one of the solutions

chosen.
 Rule 2. Every solution has to be assessed in the context of every requirement

relevant to the given problem. All these requirements have to be fi nally classi-
fi ed as either Pros (requirement met) or Cons (requirement not met) of a given
solution.

 Rule 3. Every Pro (Advantage) or Con (Disadvantage) may be attached to
a given solution only once.

 Rule 4. Only a single solution to a given problem can be in the “Chosen” state.
 Rule 5. Pros and Cons connected with a given solution cannot be mutually

contradictory.
 Rule 6. Two solutions to a problem cannot designate virtually the same resolu-

tion to the same architectural problem.

28 Software Architecture Modelling

 Rules 1–4 can be verifi ed automatically, while rules 5–6 can be verifi ed with
a model walkthrough.

Figure 6. ADPM for the problem of CRM selection

 When developing models supporting architectural decision-making, we face
the classic dilemma: the more complicated the model, the less usable it is, and
vice versa: we can increase usability by decreasing the complexity of the model,
and at the same time decrease its expressiveness, namely the range of analyses
it enables. Over-complicated architecture decision-making models create a com-
plexity of their own, adding to the complexity of the overall systems construction,
instead of supporting complexity control [168].
 Table 3 contains a comparison of the Maps of Architectural Decisions model
with textual representations of architectural decisions and model by Zimmerman
et al. (section 2.2.3).
 Semiformal diagrammatic modelling has turned out to provide the right bal-
ance between model usability and complexity. MAD 2.0 is certainly not over-
loaded with information, though it is still possible to verify some consistency/
completeness rules. In terms of the level of formalism, MAD 2.0 stands between
informal text models (e.g. [152], [65]), and the formalised model by Zimmerman
et al. Although the range of information concerning architectural decisions and
the decision-making process has been limited, the most important components of

29 Software Architecture Modelling

architectural knowledge are still preserved, i.e. the rationale of the decision, the
considered solutions and their pros and cons.

Table 3. Models supporting architectural decision making – a comparison

Textual models MAD 2.0 Model by Zimmerman et al.

Model form Text records Diagrams, additional
information stored in attri-
butes of diagram elements

Graphs, certain elements
accompanied with text
attributes.

Level of
formalism

Basic information
structuring (fi elds of
text records).

Syntax defi ned, simple
consistency/completeness
check.

Syntax defi ned, extended
completeness/consistency
check, decision-making con-
sistency based on relations
between ADs.

Information
content

Issue, Decision, Sta-
tus, Group, Assump-
tions, Constraints,
Positions, Argument,
Implications, Related
decisions, Related
requirements,
Notes [3]

Decisions, two kinds of
relations between ADs,
problems (issues), possi-
ble solutions, pros and
cons of every solution,
chosen solution indicated,
rationale.

Classifi cation of architectu-
ral problems, possible solu-
tions, pros and cons of every
solution, chosen solution
indicated, rationale.

Classifi -cation
of ADs

No classifi cation as-
sumed, decisions can
be grouped according
to the architects’
needs.

No classifi cation assumed;
decisions can be grouped
according to the archi-
tects’ needs.

Problems assigned to one
of the following levels:
Executive, Conceptual,
Technology, Vendor Asset.
Topic groups provide for an
additional classifi cation.

Relations
between ADs

Does not assume any
particular types of
relations.

Only “leads to” and “con-
strains” relations.

Infl uences, refi ned by,
decomposes into, forces, is
incompatible with, is com-
patible with, triggers, has
outcome.

Rationale
modelling

Textual. Diagrammatic, when
necessary supported by
additional textual explana-
tions.

Textual.

Model
analysis and
verifi cation

Manual walkthroughs
only.

Limited to syntax enfor-
cement, consistency/com-
 ple teness check, with
automated or manual
walkthroughs.

Automatic verifi cation of
decision-making consistency,
completeness and consist-
ency check.

 ADPM is similar to the rationale model of [133]. An assessment of candidate
problem solutions by indicating their pros and cons seems intuitive and recalls the
model proposed in [78].

30 Software Architecture Modelling

 MAD 2.0 does not assume any predefi ned classifi cations of architectural deci-
sions, which is a reasonable decision if one considers the drawbacks of existing
classifi cations, described in [168] and section 2.2.1 and 2.2.2.
 Only two kinds of relations between ADs are available in MAD 2.0. This pro-
vides for a smooth, uninterrupted fl ow of the architecting process, as architects do
not need to worry about which of the several kinds of relations to choose from,
which often becomes a separate challenge in itself. The MAD 2.0 was accompa-
nied by a tool similar to Knowledge Architect [6] – architectural decision models
are linked to appropriate parts of requirements specifi cations.
 Although MAD 2.0 has been motivated by the rapid, random changes typical
for the evolution of systems supporting emergent organisations, it can also be
used as a kind of light-weight architecture decision-making model for the initial
architecture development.

2.2.5. Architectural Patterns

 Architectural patterns are an idea complementary to architectural decisions.
They are, in fact, generic architectural solutions, which resolve certain type of ar-
chitectural problems [65]. Hence, architectural patterns defi ne reusable solutions
for recurring architectural issues.
 The concept of design pattern has been originally developed in the civil engi-
neering discipline. A comprehensive catalogue of urban and building engineering
patterns, found in the famous book by Alexander et. al. [4], which is still cited by
all contemporary books and many research papers on patterns in software engi-
neering, introduces a scheme for pattern defi nition that comprises context, i.e. the
conditions in which a problem occurs, the problem and the solution to that prob-
lem. These three basic elements can be supplemented with auxiliary information
on such issues as the consequence of using a given pattern, possible implementa-
tions, and examples of applications.
 Let us note that there are three almost synonymous expressions denoting the
concept of patterns to be used in software design: design patterns, architectural
styles, architectural patterns (compare, e.g. [65]).
 Design patterns were introduced in the famous book by Gamma et al. [61] and
are supposed to be used in detailed software design. The book comprises a col-
lection and defi nition of patterns recurring in the design of object-oriented soft-
ware. It includes the following categories of patterns: creational (abstract factory,
builder, factory method, prototype, singleton), structural (adapter, bridge, com-
posite, decorator, facade, fl yweight, proxy) and behavioural (chain of responsibil-
ity, command, interpreter, iterator, mediator, memento, observer, state, strategy,
template method, visitor).
 Architectural patterns and styles are synonymous notions denoting design pat-
terns that can be used at an architectural level. Defi nitions of architectural patterns

31 Software Architecture Modelling

include not only the description of a problem’s context, the problem statement
and solution to that problem, but also the possible infl uence of that solution on
software properties. This enables the properties of software to be inferred from the
patterns included in software architecture.
 The comprehensive catalogue of architectural patterns can be found in [32],
[33], [34], [131], [88]. A survey of this catalogue is beyond the scope of this
monograph. Let us observe that the most important architectural patterns are:
layers, pipes and fi lters, shared repository, active repository, blackboard, inter-
ceptor, model-view-controller, client-server, publish-subscribe, broker, and mes-
sage queuing.
 Architectural patterns are an effective means of capturing design knowledge,
because they defi ne both the structure and logic of a given part of the software
architecture. This is a major advantage over the models of software structure (sec-
tion 2.1), which usually requires a number of diagrams to capture both structure
and processing logic. Architectural patterns increase the level of abstraction of
architectural modelling by providing higher-level entities that enable to defi ne,
comprehend and analyse software architecture. This leads to the conclusion that
both patterns and architectural decisions can effectively represent complex enti-
ties making up software architecture. However, the users of such a pattern-based
architecture description have to possess profi cient knowledge on patterns.
 Architectural tactics (compare, for example, [16], [142]) are a concept similar
to patterns. They denote a proven solution to a recurring issue connected with
a given quality attribute, though they focus on defi ning mechanisms or guiding
the design activities rather than indicating certain structures. Architectural tac-
tics for modifi ability (e.g. increase cohesion, reduce coupling), performance (e.g.
prioritise events, introduce concurrency), security (e.g. detect intrusion, authenti-
cate users), testability (e.g. executable assertions) and usability (e.g. cancel, undo)
have been gathered in [16]. Let us note that the sets of architectural patterns and
architectural tactics overlap to some extent.

2.2.6. System Organisation Pattern for Large-scale Distributed Systems

 As observed in section 2.2.5 architectural decisions and patterns are very ef-
fective at capturing complex design entities. This advantage has motivated the de-
velopment of the System Organisation Pattern for large-scale distributed systems
[171], [169], which is presented below.
 System Organisation Pattern defi nes a “back-bone” of a large-scale distributed
system, which comprises a set of architectural decisions that defi ne how a system
is organised in terms of permanent data storage management, data communica-
tion, data input and output, coarse-grained modularisation and allocation within
the organisational structure. It provides an effi cient way of documenting top-level
architectural design for large-scale distributed systems. System Organisation Pat-

32 Software Architecture Modelling

tern as every other architectural pattern can be defi ned in terms of context, prob-
lem and solution to that problem.

Context: The class of large-scale software systems can be distinguished by the
following technical features:
 Strong geographical distribution – large-scale software is typically built at the

commission of national or global public or private organisations.
 Large volumes of data being stored and processed.
 Large numbers of concurrent users being served – the number of users usually

refl ects the number of an organisation’s employees, and typically exceeds 1000
users.

 Distribution of computational and data resources – results from the geographi-
cal distribution feature; the main concern here is the allocation of storage and
processing to the locations and the organisation’s units.

 Managing large distributed data resources – the distribution of data resources
(distributed databases, local databases in thick-client architecture) usually re-
quire the resolution of issues of data synchronisation, transaction processing
and data exchange between system units.

 Long- and short-distance communication solutions ensuring data fl ow between
the system’s units – communication mechanisms, protocols, message passing
schemes, etc. (compare also [63])

Problem: Large-scale distributed systems consist of entities that recur throughout
the system’s structure. For example, if it has been decided to have local databases
serving local client software for each company location, then this structure will be
replicated in all the locations. Therefore, the basis for a detailed design of a large-
scale distributed system is the identifi cation of those entities, their allocation with-
in a target organisational structure, ensuring the communication between them,
as well as the organisation of permanent data storage to be used by those entities.

Solution: The following architectural decisions should be made in order to defi ne
the large-scale system’s backbone, upon which a detailed design will be made:
 Decomposition into a set of subsystems/applications – defi nes a coarse-grained

functional decomposition. Subsystems here are meant as single applications,
or suites of applications accompanied by a common infrastructure (e.g. da-
tabases, application servers), prepared for a single functional domain. Each
application or subsystem encompasses a portion of the system’s functionality.
The allocation of functionality is a crucial aspect of the decomposition onto
a set of subsystems/applications.

 Geographical and organisational allocation of subsystems/applications – the
structure of the system has to refl ect the structure and geographical distribution
of a target organisation. The System Organisation Pattern provides information
on the organisation’s units for which certain applications are provided, as well

33 Software Architecture Modelling

as information on the geographical situation of these units and corresponding
subsystems/ applications.

 Organisation of data input – defi nes the design and location of points where
external data is entered into the system. This includes system interfaces, the
location of remote access points, data entry (typing) points, scanning devices,
sensors etc.

 Organisation of data storage and processing:
 – Data storage distribution – defi nes the distribution of permanent data re-

sources (typically databases),
 – Data processing organisation – is basically about choosing the data process-

ing architecture (client-server, multi-tier, thin/thick client).
 – Distributed data storage management – concerns the synchronisation of

distributed databases, transmitting data onto remote systems, uploading
data from a local data store to the main data store.

 – Transaction management – regards the selection of solutions ensuring
transactional processing. This involves both short and long transactions,
but short ACID (Garcia-Molina et al., 2001) transactions are offered by
data base engines. However, this mechanism is not suffi cient for long
transactions requiring specialised advanced solutions, such as transaction
monitors.

 Communications framework – defi nes the communication mechanisms be-
tween equivalent system entities (e.g. processes, applications) and communi-
cation protocols used to transmit data between system entities.

*
 Such a set of decisions may be represented using the templates presented in
[152], [65], or as an architectural narrative containing information prescribed by
the above defi nition of the System Organisation Pattern (section “solution”). Let
us consider, for example, the top level architectural description of the interbank
clearing system [169] shown in fi gure 1:
 This system was designed to deliver wire transfer services between banks, and
has been operating in a clearing house company for more than 15 years. It con-
sists of three subsystems (the fi rst two subsystems had mirror copies to increase
reliability):
1. Clearing processing system – processing wire transfer data.
2. FTP gateway – receiving packages of wire transfers data sent from client ap-

plications and providing access to them for the clearing processing system.
3. The client application – used to verify data before the clearing process, and to

send and receive data from the FTP gateway.

 The clearing processing system and the FTP gateway are located in the data
centre of the clearing house, while client applications are installed in the banks’

34 Software Architecture Modelling

systems. The client application uploads wire transfer data, packaged in a text fi le
and stamped with a hash, on to the FTP gateway, which in turn verifi es the consis-
tency of the received data and, if successful, access to the data is provided for the
clearing processing systems. The clearing process works in sessions, therefore,
the packages are processed by the clearing processing system at scheduled times.
Repackaged wire transfer data, directed to corresponding banks (transfer address-
ees), is sent back to the FTP gateway. Finally, these packages are downloaded by
the client application of the corresponding banks.
 This example shows that the System Organisation Pattern effi ciently captures
top-level designs of large-scale distributed systems. This is achieved by defi ning
a comprehensive set of architectural decisions that defi ne the system’s design at
a uniform abstraction level. Such a model defi nes the top-level system entities
(subsystems, applications etc.) and their placement in the geographic and organi-
sational structure, the organisation and operation of the permanent data storage,
as well as the communication mechanisms used to transfer data between system
entities. These basic components of every distributed software system design de-
fi ne a platform upon which more detailed designs will be crafted. A method of
evaluating the System Organisation Pattern is presented in detail in section 3.9.2.

2.2.7. Limitations of Architectural Decision-Based Modelling

 The limitations of architectural decision-based modelling of software architec-
ture have been examined in depth in [168]. The main observation was that, despite
the role of architectural decisions as a carrier of architectural knowledge, architec-
tural decision-making contributes minimally to overcoming a software system’s
complexity. This results mainly from:
 the limitations of the textual documentation of architectural decisions, i.e. in-

completeness, inconsistency and ambiguity, as well as ineffi ciency in repre-
senting and sharing engineering concepts;

 the inherent complexity – architectural decisions may represent internally com-
plex, often cross-cutting concepts; they may concern a single or a number of
entities, and they may represent concepts belonging to various abstraction levels.

 These properties make it diffi cult to defi ne an unambiguous classifi cation of
architectural decisions and a set of such relations between architectural decisions
or their components. This, in turn, hinders the effective organisation of large sets
of architectural decisions.
 Providing support for architectural decision-making and knowledge capturing
also remains a challenge. Despite efforts to formalise the architecture decision-
making process, such as [172], architecting remains a creative activity that re-
mains resistant to formalisation efforts, especially in the case of modern highly
complex and rapidly evolving software systems.

35 Software Architecture Modelling

 With the current state of the art, it is rather unimaginable that architecture doc-
umentation could consist only of architectural decisions – such a model consist-
ing of hundreds of architectural decisions would collapse under its own weight,
becoming useless. No wonder, then, that architectural decisions and architectural
knowledge management still remain an area of intensive research that is yet to be
implemented in every-day engineering practice.
 Architectural patterns, combined with architectural decisions, may help to
overcome some of the above limitations. Architectural patterns aggregate compo-
nent structures and logic of their collaboration. This increases the level of abstrac-
tion at which software architecture is represented and comprehended. The concept
of the System Organisation Pattern (section 2.2.6) takes advantage of architectural
patterns’ ability to effectively represent complex design entities. Its effi ciency in
representing the top-level architecture of large scale systems comes also from
predefi ning categories of architectural decisions to be captured.

2.3. MODELS OF ARCHITECTURAL DESCRIPTIONS

 Software architecture, as with any complex entity, can be seen from a num-
ber of perspectives. The research on architectural descriptions is concerned with
organising architectural information according to the needs of architecture stake-
holders. Views and viewpoints are the primary mean of organising architectural
information. They are supposed to tailor the scope of architectural information
and the way it is presented to the needs of the architecture stakeholders.
 Although the software architecture research community attributes the origins
of the research on viewpoints and views to a seminal paper by Perry and Wolf
[118], it is interesting to observe that similar concepts had already been introduced
in [126] (1977), and that some results of research on viewpoints were presented in
1992 [55].
 The concept of stakeholders’ viewpoints and the views of software architecture
was fi rst generalised by the standard IEEE 1471 “IEEE Recommended Practice for
Architectural Description” and its contemporary successor international standard
ISO/IEC/IEEE 42010:2011 “Systems and software engineering — Architecture
description”. This standard is presented in detail in section 2.3.1. The research on
architectural description resulted in defi ning sets of viewpoints (sometimes called
viewpoint frameworks), which can be seen as instantiations of the general archi-
tecture description model defi ned by ISO/IEC/IEEE 42010:2011 standard. These
instantiations address the information needs of various stakeholders, hence, they
defi ne sets of various viewpoints.
 Popular models of architecture description, such as, 4+1 Views by Kruchten
[94], Zachman’s framework [163] are presented in sections 2.3.2 and 2.3.3 re-

36 Software Architecture Modelling

spectively. The recent developments in the genre of viewpoint-based architectural
description are presented in section 2.3.4. Let us note that many various sets of
viewpoints are defi ned by architecture frameworks, e.g. DoDAF [50], Reference
Model for Open Distributed Processing [71] etc. These frameworks, categorise
architectural information, but do not recommend certain notations to be used for
modelling software architecture from certain perspectives.

2.3.1. Standard ISO/IEC/IEEE 42010:2011

 Different stakeholders may have different concerns, hence they may be in-
terested in different aspects of software architecture (e.g. data fl ow, control fl ow,
component interaction and composition, source code organisation, component-to-
hardware allocation, etc.), and may need information at different levels of detail.
This has been refl ected by the standard of architectural description – ISO/IEC/
IEEE 42010:2011. Architecture stakeholders can include the following groups of
people: users, operators, acquirers, owners, suppliers, developers, builders and
maintainers.

Figure 7. A fragment of the conceptual model of an architectural description, based on ISO
42010:2011

 According to this standard, the architecture description should be organised
around architecture viewpoints combining architecture views, concerns and
model types (fi gure 7):
 Concern – is an abstract notion that denotes something of interest to one or

more stakeholders, e.g. a system’s property, a kind of information, etc. Every
concern should be framed by at least one viewpoint. Concerns may be related
to the system’s goals, the adequacy of the architecture for the system’s goals,

37 Software Architecture Modelling

the feasibility of the system’s development project, the risks and impact on the
stakeholders, or they may simply refl ect the need for a certain kind of informa-
tion (e.g. data exchanges between the system’s sites, or the allocation of func-
tions to the system’s sites);

 Architecture View – is a model or a set of models expressing the architecture
of a system from the perspective of specifi c system concerns;

 Model types – defi ne available types of models that can be included in views.

 Architecture viewpoint defi nes how to “construct, interpret and use architec-
ture views in order to frame specifi c concerns.” It should specify: concerns framed
by this viewpoint; stakeholders whose concerns are framed by the viewpoint;
model kinds used in this viewpoint; “languages, notations, conventions, model-
ling techniques, analytical methods and/or other operations to be used on models”
for every model used in the viewpoint. The standard also includes a viewpoint
template presented in [38].
 Let us note that standard ISO 42010:2011 includes also the following notions:
 Architecture framework, i.e. modelling methodology for a specifi c domain

and/or community of stakeholders; it should include at least one concern,
stakeholder and viewpoint related to the concerns; architecture framework is,
in fact, a set of architecture views together with their corresponding entities
(concerns, model types, views, etc.);

 Architecture description language (ADL), i.e. model kinds that frame cer-
tain concerns of the stakeholders, rules of correspondence between models of
various kinds. Note that the standard does not recommend any specifi c model-
ling language to be used;

 Architectural decisions and rationale that are recommended to be included
in an architectural description;

 Architecture description element is a generalisation of all the components
of an architectural description, as defi ned by the standard (stakeholder, view,
viewpoint, model, model kind).

 Correspondence and correspondence rules are a means of establishing the
relations between architecture description elements and verifying their consis-
tency. The standard simply defi nes these notions, but does not recommend any
concrete form of their representation, or a consistency analysis.

2.3.2. Four Plus One Views of Software Architecture

 In his famous paper “4+1 views of software architecture” (1995) [94],
Kruchten proposed to represent software architecture using the views sum-
marised in table 4.
 Kruchten’s framework refl ects the practice of architecture modelling using
UML, as it indicates models to be used for documenting software architecture.

38 Software Architecture Modelling

The framework does not establish correspondence rules defi ning compliance be-
tween the included models.

Table 4. 4+1 views of software architecture by Kruchten

View Stakeholder Concern
Logical view End users Functionality
Development view Programmers Software development
Process view System integrators Performance, scalability, throughput
Physical view System engineers System topology, delivery, installation, telecommunica-

tion
Scenarios Architect Consistency between the models belonging to different

views.

2.3.3. Zachman’s Framework

 Zachman’s framework [163] categorises information describing software archi-
tecture according to a set of pre-established criteria, namely the subject of informa-
tion and the level of scope related to the stakeholder who has an interest in that kind
of information (compare the framework summary in tables 5 and 6). Let us observe
that Zachman’s framework was proposed back in 1987, while the famous paper by
Perry and Wolf comes only from 1992. The framework has a number of versions,
with the most current being No 3.0, called “The Enterprise Ontology”.

Table 5. Zachman’s framework: level of detail and their relevant stakeholders

View Stakeholders Concern
Scope, context Executives Identifi cation. Lists.
Business concepts Business Management Defi nition. Business-level models.
System logic. Architects Representation. Models of system logic.
Technology physics Engineers Specifi cation.
Tool components Technicians Confi guration
Operations instances Users Instantiations

Table 6. Zachman’s framework: categories of architectural information

Level of detail Description
What Concerns data that fuels the modelled system, including documents, data struc-

tures and databases.
How Represents information processing from business processes to components im-

plementing a certain functionality.
Where Concerns a system’s geography, topography and topology, including networks.
Who Concerns organisations, roles and people.
When Concerns timing properties.
Why Concerns motivation underlying the related architectural information.

39 Software Architecture Modelling

 Zachman’s framework should be tailored to the specifi c needs connected with
a concrete modelling purpose. This means that the framework’s users should
chose information categories to be included in an architectural description, and
the models that should be used as a career for each information category. It does
not recommend any modelling notation and does not defi ne any correspondence
rules between various categories of information defi ned by the model. Zachman’s
framework, compared to Kruchten’s 4+1 views, extends the strictly technical in-
formation on software architecture with broad information on system’s context
(organisational, business, motivational). This makes Zachman’s framework suit-
able for modelling architectures of large-scale systems, while 4+1 views are ad-
equate for capturing architecture of software applications.

2.3.4. Recent Achievements in Viewpoint-based Architecture Modelling

 Views and viewpoints have become a separate area of interest for both the
architecture community and practitioners. This research was aimed at extending
the scope of information comprising an architectural description or focusing on
certain specifi c issues. Let us consider some of the recent developments in the
“viewpoint research”:
 the inclusion of architectural decisions into an architectural description was

proposed in [154]. A set of viewpoints representing architectural decisions has
been defi ned. It includes the following viewpoints: decision details (contents
– compare section 2.2.1), architectural decision relationship viewpoints (en-
compasses relations between architectural decisions – section 2.2.2); decision
chronology (captures changes made to architectural decisions, and by the same
their evolution), and decision stakeholder involvement viewpoints (refl ect the
roles of the stakeholders in the decision-making process);

 combining architectural decisions with the forces (factors) that infl uenced ar-
chitects to make these decisions is the core concept of the viewpoint for forces
on architectural decisions [153]. This viewpoint focuses on capturing the mo-
tivation underlying the architectural decisions;

 the variability viewpoint [146] focuses on architectural information regarding
mechanisms supporting software variability, namely on variability points in-
cluded in a software’s design;

 the business goals viewpoint [37], which frames the business goals that drive
an architecture. Business goals are represented as goal subject (stakeholder
concerned with a goal), goal object (architectural entities to which the goal
applies), environment (legal, social, technical, customer aspects concerning
the goal), goal, goal measure and pedigree (origin of the goal). This is yet an-
other approach to capturing the motivation underlying a software architecture.
Naturally, business goals have to be appropriately associated with the relevant

40 Software Architecture Modelling

models of software architecture representing architectures motivated by these
goals. Let us note that business aspects of a system’s architecture was already
included in Zachman’s framework [163].

 A complete presentation of the multitude of views and viewpoints that have
been developed in the past 20 years exceeds the scope of this monograph. Apart
from the classic 4+1 views by Kruchten (section 2.3.2), Zachman’s framework
(section 2.3.3) and generic The Open Group Architecture Framework (TOGAF
9.1 [151]), and some domain architecture frameworks, most of the developments
to date have not become pervasive in the industry.

2.4. DISCUSSION: STATE-OF-THE-ART ARCHITECTURAL
MODELLING

 Three waves of architectural modelling are presented in this chapter: mod-
els of software structure, architectural decisions, and models of architectural
descriptions.
 The models of software structure strive to represent software components and
the relationships between them. Suffi ciently expressive models could enable and
support the analysis of architectural properties. If combined with certain view-
points, they would enable an analysis of a system’s properties, being the stake-
holders’ concerns. However, the practice of architectural modelling is dominated
by semi-formal models, such as UML, SysML or Archimate. Each of these pro-
vides a uniform language in which different aspects of architectural design can be
expressed. Therefore, they make it easier to document, present, understand and
transfer architectural information between the architecture stakeholders. Howev-
er, reasoning about the properties of architectures documented with these models
can be done mainly on the basis of expert judgements. Model-based analysis can
be performed with the appropriate formal models. However, early ADLs, many
of which contained an underlying formal semantics, were abandoned in their in-
fancy, while the semi-formal models are not amenable to model-based analysis, as
they do not include formal models suitable for that purpose.
 The above condition signifi cantly constrains the analysability of software ar-
chitectures, hinders the development of architecture evaluation methods (compare
section 3.10), and limits the benefi ts resulting from the viewpoint-focused archi-
tecture descriptions.
 Architectural decisions, supplement the explicit architectural knowledge,
which can be represented with the models of software structure, with tacit knowl-
edge on rationale and the logic of the architecting process. Although the content
of architectural decisions seems to be agreed by the software architecture commu-
nity, the means of managing large sets of architectural decisions are still not ma-

41 Software Architecture Modelling

ture enough for industrial use. Architectural decisions are multifaceted and often
deal with crosscutting-concerns. This hinders the development of unambiguous
classifi cations of both architectural decisions and the relations between them.
 Architectural decisions alone do not facilitate dealing with a software sys-
tem’s complexity [168]. On the contrary, they add to the software’s complex-
ity rather than minimising it. As a result, architectural decisions alone cannot
currently be used for documenting software architecture, and their effi cient use
as a model of software architecture remains still an open research challenge.
They can be used as an auxiliary modelling tool rather than as a carrier for large
amounts of architectural information, especially if it should concern details of
software design.
 While ineffective in representing design details, architectural decisions turn
out to be an effective means of capturing and explaining complex design entities,
if combined with architectural patterns or focused on a predefi ned set of archi-
tectural decisions. The concept of the System Organisation Pattern confi rms the
above observation. It also indicates a promising direction of research, which could
lead to the proposition of similar documentation schemes that could effi ciently
capture architectures of other kinds of systems and at other levels of detail.
 A lot of research effort has been devoted to the development of the models of
architecture description built upon the concept of viewpoints representing stake-
holder concerns. The concept of a viewpoint-focused architecture description, ini-
tially promoted by the IEEE 1471 standard, seems to have gained appeal with both
researchers and practitioners. The ISO 42010:2011, which is a refi ned version
of IEEE 1471, has been followed by such popular developments as Archimate,
TOGAF, and SysML. The general limitation of the hitherto research is that it de-
livers more and more categories of architecturally relevant information, without
adequately extending the available models of software architecture. In this way,
newer and newer viewpoints either defi ne auxiliary information that has to be
integrated with other models of software architecture, or provide for indexing or
“zoom-in” capability to architectural information targeted at identifying and ex-
tracting specifi c information.
 Certain recent developments seem to be addressing this very issue by integrating
modelling notation with a set of viewpoints – compare Archimate (section 2.3.4).
 The main research challenges for the near future are:
 further integration of research developments belonging to the three waves of

architectural modelling, in order to deliver an integrated modelling framework
that would organise models of software structure and architectural decisions
around a set of viewpoints;

 Enhancing the expressive power of architectural models in order to enable
an analysis of quality attributes. This could enable a model-based analysis of
quality attributes such as performance or reliability, and would provide for

42 Architecture Evaluation Methods

capturing such concerns as reliability, modifi ability and reliability within the
viewpoint-focused architecture descriptions;

 Developing correspondence rules defi ning the consistency conditions for the
set of models comprising an architectural description. The lack of these rules is
one of the traditional weaknesses of semi-formal modelling, even though such
rules were included as an integral element of the model of architecture descrip-
tion of ISO 42010:2011.

3. ARCHITECTURE EVALUATION METHODS

 The importance of software architecture results from its two basic features:
1. Software architecture infl uences many properties of a software system, includ-

ing its quality attributes (compare the quality model of ISO/IEC 25010:2011
[73] or ISO 9126 [74] standards), its ability to compete with market competi-
tors (see [11], [52]), its buildability [171], [169] and more;

2. Software architecture is a long-term asset. It is diffi cult, costly and risky to
change the architecture of an already implemented system. Therefore, fl awed
software architecture usually remains unchanged until a major reconstruction
takes place, which is similar to a vendor lock-in syndrome described in [166].

 The purpose of architecture evaluation methods can be generally defi ned as
being to analyse how software architectures infl uence software properties. Archi-
tecture evaluation methods are applied in order to verify whether a software ar-
chitecture is suitable for a given system (its type, technology, goals, environment
etc.) and does not contain fl aws that may imperil the system’s development or the
achievability of the quality requirements, or that may impede maintenance and
evolution.
 The evaluation of software architecture can be of signifi cant value for a sys-
tem’s stakeholders, especially if it is done early in the system’s life cycle, when
the architecture can easily be altered. This explains why architecture evaluation
methods have become an area of an extensive research since the appearance of the
Software Architecture Analysis Method (SAAM) [83] in 1994.
This chapter contains a critical study of the hitherto research in the area of archi-
tecture evaluation. First, the two basic paradigms (architecture verifi cation and
review) of architecture evaluation are discussed in section 3.1. The taxonomies
of architecture evaluation methods are discussed in section 3.2. This leads to the
proposition of an original taxonomy based on a method’s application area in sec-
tion 3.3. A uniform template for the description of architecture evaluation meth-

43 Architecture Evaluation Methods

ods has been introduced in section 3.4, on the basis of existing comparison frame-
works. Eighteen state-of-the-art architecture evaluation methods are presented
in sections 3.6–3.9, preceded by a short presentation of the legacy architecture
evaluation methods (section 3.5). This enables a discussion of the state of the art
in section 3.10 and identifi ed research opportunities in section 3.11.

3.1. PARADIGMS OF ARCHITECTURAL EVALUATION

 Architecture evaluation methods, in many aspects, resemble the established
methods of the software quality assurance, namely walkthroughs, reviews and
audits, compare e.g. [130], [132], [107], [115], [145].
 Two basic paradigms of architectural evaluation have emerged from the re-
search carried out to date:
1. Assessing architecture against a set of relevant requirements (fi gure 8a) – ar-

chitecture is analysed to show whether it suffi ciently supports the relevant
quality requirements.

2. Searching for architectural fl aws (fi gure 8b) – are about searching for fl aws
included in software architecture.

 Figure 8. Architecture evaluation paradigms and the workfl ow resulting from them

 The evaluation paradigm largely determines the internal design of the evalu-
ation methods following that paradigm. The general assumption underlying the
“assessing against requirements” paradigm is that software architectures can be

44 Architecture Evaluation Methods

neither objectively good, nor objectively wrong. Architecture suitable for one sys-
tem may be inappropriate for another, for example: a complex, highly coupled
modularity may hinder a software’s maintainability, at the same time it can sup-
port its market position by making a software product more diffi cult to compre-
hend and be imitated by market competitors. Therefore, architecture evaluation
should provide evidence that the software architecture is suitable for the business
goals that the system should support. These may include concerns such as growth
and continuity, meeting fi nancial objectives or constraints, meeting personal ob-
jectives, responsibility to society, country or shareholders, managing market po-
sition, managing product quality and reputation etc., compare also the business
goals viewpoint in [37].
 In order to verify whether the architecture adequately supports business goals,
they have to be expressed in terms of relevant requirements that can be verifi ed by
analysing a software’s architecture. Most methods take into account certain non-
functional requirements, such as usability, modifi ability, performance, reliability
and security. Therefore, the identifi cation of architecturally signifi cant require-
ments is the fi rst step of an evaluation in the “assessment against requirements”.
 Let us note, that quality scenarios are the most popular way of representing
quality requirements for an architectural evaluation. Quality scenario represents
a quality requirement together with the conditions or the situation, in which it
should be met. This is supposed to provide for an unambiguous and testable re-
quirements specifi cation. Architecture evaluation methods tailor the content of
quality scenarios to their particular needs.
 Knowledge of business goals is needed if requirements relevant for these goals
are supposed to be elicited. Business goals may be explicitly identifi ed (as in
ATAM) prior to eliciting the requirements, or it may be assumed that the evalua-
tion participants already have suffi cient knowledge on business goals and refl ect
it in the elicited requirements.
 The elicitation of requirements may produce a large number of requirements.
Analysing all of them may be a daunting and time-consuming task. In order to
make architecture analysis achievable within the allocated time, it is usually nec-
essary to choose for analysis only a subset of the initially elicited requirements,
which should be suffi ciently representative for the needs of the architecture stake-
holders. This is the purpose of the “prioritisation of requirements” step.
 In order to analyse software architecture, it has to be presented in terms that
enable reasoning about the infl uence exerted by the architecture on the software
properties. The general challenge is to gather information defi ning software ar-
chitecture on a level of detail suitable for a given analysis, to identify its parts
that infl uence the analysed requirements, and to gather the information necessary
for the evaluation techniques. This is the purpose of the “elicitation of architec-
ture” task, which can be done on the basis of formal architectural documentation,

45 Architecture Evaluation Methods

requirements specifi cations or verbal descriptions. This activity is often aimed
at identifying architectural approaches, patterns, tactics, or decisions included in
software architecture. Let us note that, even if a formal architecture description
exists, the identifi cation of architectural patterns, tactics etc. included in software
architecture requires some knowledge that is external to the architectural descrip-
tion. The existing architecture evaluation methods are not very prescriptive in this
respect; the “sliced” form of an analysed architecture generally depends on the
evaluation method, its goals and analysed properties.
 The “evaluation” step is the very essence of every architecture evaluation
method. In this step, architecture evaluation techniques are applied in order to as-
sess the infl uence of the architecture on the analysed requirements. Naturally, this
is the component that varies among the architecture evaluation methods.
 Architecture evaluation techniques are analysis tools used within the workfl ow
of the architecture evaluation method in order to establish how the architecture in-
fl uences the software’s properties. They have been classifi ed in [2] as questioning
techniques (e.g. scenarios, questionnaires, checklists) and measuring techniques.
The latter include software metrics (compare e.g. [36], [67], [120], [124]), simula-
tions, prototypes, experiments as well as model-based analysis techniques, such
as queuing networks, rate monotonic analysis models [89], reliability analysis
models and methods [159], concurrency models (e.g. CSP [70], LOTOS [100],
and other process calculi, Petri Nets [80]) etc.
 In many cases, the results produced by the architecture evaluation require
some further processing before they can be presented to the evaluation audience,
which is the purpose of the “establishing outcomes” step. This may be just about
prioritising outcomes according to their importance (e.g. SAAM), relating them
to the relevant business goals (e.g. ATAM) or transforming the values of metrics
into the conclusion of an evaluation (e.g. TARA). Methods assume various forms
of presenting results, e.g. report or visual presentation.
 The “search for architectural fl aws” paradigm (fi g 8b) does not demand that
requirements be elicited and prioritised before the actual analysis of the archi-
tecture. Therefore, such activities are absent in its workfl ow. However, in order
to discover fl aws in the evaluated architecture, it is necessary that information
on the architecture be elicited in a form suitable for the evaluation, which is the
role of the “elicitation of architecture” step. Its results are generally similar to
those of a corresponding activity of the “assessment” paradigm. The evaluation is
done by walking through an appropriately “sliced” architecture in search of fl aws
(compare, for example, PBAR). Detected fl aws may impede some of the quality
requirements, which is included in the evaluation’s conclusion.
 Finally, although the existing evaluation methods defi ne a variety of evaluation
processes, all of them include the overarching logic of architectural evaluation
captured by the evaluation paradigms presented in this section.

46 Architecture Evaluation Methods

3.2. TAXONOMIES OF ARCHITECTURE EVALUATION METHODS

 Although there are more than thirty architecture evaluation methods, only
a few taxonomies of such methods exist. Barcelos and Travassos [13] have clas-
sifi ed architecture evaluation methods according to the evaluation techniques,
they use. They defi ned categories of methods based on questioning techniques, on
measuring techniques and on hybrid techniques, which follows the classifi cation
of evaluation techniques presented in [2].
 Breivold and Crnkonvic [29] applied similar classifi cation criteria and defi ned
categories of experience-based, scenario-based and metric-based architecture
evaluation methods. In a survey paper [90], only scenario-based and metric-based
categories have been differentiated.
 The general drawback of the evaluation technique-based classifi cations is that
many architecture evaluation methods (e.g. ATAM, PASA, TARA, HoPLAA) use
a number of architecture evaluation techniques, belonging to various categories.
 A more elaborate classifi cation scheme has been proposed by Roy and Gra-
ham [127], who fi rst categorise architecture evaluation methods according to the
development stage at which they are applicable, namely before implementation
(early methods) or after implementation (late methods), and then, according to the
evaluation techniques used by these methods. Hence, early methods have been
classifi ed as scenario-based and mathematical-model based, while late ones as
metrics-based and tool-based. A controlled experiment-based category has been
distinguished for both early and late methods applicable to architectural styles or
design patterns. This taxonomy, apart from inheriting the weaknesses of evalua-
tion technique-based classifi cations, has a further three limitations:
1. The taxonomy confusingly mixes architecture evaluation methods such as

ATAM, SAAM and ALMA, with architecture evaluation techniques (model-
based, metric-based); The methods belonging to the “search for architectural
fl aws” paradigm fall outside of the proposed classifi cation. It is little wonder
that they have been omitted in the taxonomy;

2. Early methods are generally also applicable to the implemented software, and
some metric-based techniques (attributed to the “late” category), especially
based on architecture-level metrics, can also be applied before implementa-
tion, e.g. to component-connector models.

 Let us note that expressions such as “scenario-based”, “lightweight”, and “ear-
ly”, together with their default antonyms “non-scenario-based”, “comprehensive”
and “late” (used less frequently), provide for the most popular, common classi-
fi cations of architecture evaluation methods. However, they are still vague. The
vast majority of the architecture evaluation methods are scenario-based. Criteria
indicating which methods are lightweight and which are not have not yet been
defi ned (I try to introduce such in section 3.7). Finally, the term “early” is also not

47 Architecture Evaluation Methods

a precise one, as “much earlier” methods than most of the scenario-based ones can
be defi ned, as has been shown in section 3.9.2.

3.3. APPLICATION AREA-BASED TAXONOMY OF ARCHITECTURE
EVALUATION METHODS

 In order to resolve the inherent ambiguities of the existing taxonomies, a novel
taxonomy has been proposed (fi gure 9). It categorises the architecture evaluation
methods according to the scope of their applications, dividing them into two basic
classes:
 General-purpose methods, whose area of application is not restricted to any

property or to any kind of software systems to be assessed;
 Special-purpose methods, which have been designed in order to be applied

for the analysis of chosen quality attributes (attribute-specifi c methods sub-
class) or a given class of software systems (application domain-specifi c meth-
ods subclass).

Figure 9. Application area-based taxonomy of architecture evaluation methods

 The taxonomy provides for an unambiguous classifi cation of existing architec-
ture evaluation methods. It is useful both for researchers and practitioners. It helps
the latter to seek architecture evaluation methods that best suit their needs. The
former can easily note the research opportunities, for example, it appears that the
number of domain-specifi c methods does not correspond with the diverse kinds of
software systems, and the choice of methods of analysing given quality attributes
is limited to just one or two methods. A classifi cation of architecture evaluation

48 Architecture Evaluation Methods

methods included in this survey has been shown in table 7. The evaluation para-
digms defi ne a dimension orthogonal to the categories presented above, which has
also been shown in table 7.

Table 7. Architecture evaluation methods classifi ed according to the application area-based
taxonomy

Class Subclass “Assessment against requirements”
methods

“Search for architectural
fl aws” methods

General-
purpose

– SAAM, SBAR, ATAM, Lightwe-
ight ATAM, CBAM, APTIA

PBAR, SHADD, TARA,
ARID

Special-pur-
pose

Attribute-specifi c Usability: SALUTA
Modifi ability: SAAM’94 [83], SA-
AMCS, ESAAMI, ALPSM, ALMA
Performance: PASA, CPASA
Evolvability: SAAMER, AREA
Modularity: ASAAM
Reliability: SARAH

–

Application do-
main-specifi c

HoPLAA EAEM

3.4. CHARACTERISING ARCHITECTURE EVALUATION METHODS

 Architecture evaluation methods are elaborate concepts that can be character-
ised by many properties. The sets of such features have already been proposed in
papers [49], [8] and [84], which present comparison frameworks for architecture
evaluation methods. They contain just fl at lists of features concerning various
aspects of architecture evaluation methods. The methods’ properties included in
the comparison frameworks have been grouped below according to the aspect of
architecture evaluation methods they concern. Hence, the properties of architec-
ture evaluation methods have been categorised as shown below:
1. Method design
 a. Evaluation goals – the purposes for which architecture evaluation methods

can be applied;
 b. Method inputs:
 i Form of architectural description – form of architectural description

needed for the analysis (e.g. formal, informal, particular ADL, etc.).
 c. Method internal logic:
 i. Examined properties – a list of properties (mainly quality attributes)

subject to evaluation;
 ii. Evaluation process – defi nes the activities needed to perform an

evaluation;

49 Architecture Evaluation Methods

 iii. Evaluation participants – the roles of people that should participate in
an evaluation and their participation in the appropriate steps of architec-
ture evaluation;

 iv. Representation of evaluated requirements;
 v. Techniques for eliciting requirements;
 vi. Techniques for prioritising requirements;
 vii. Architecture evaluation techniques;
 d. Method outcomes – the evaluation results produced by a given method;
2. Method properties resulting from its design:
 i. Applicability stage – phases, at which an evaluation method can be

applied;
 ii. Level of effort – the empirically measured level of effort required to

perform an evaluation;
 iii. Reuse of knowledge – techniques supporting the reuse of knowledge

and experiences gathered during earlier evaluations;
 iv. Support for non-technical issues (e.g. social, managerial);
3. External features:
 a. Tool support – the existence of tools supporting a given architecture evalu-

ation method;
 b. Method maturity – a record of the method’s applications.

 The properties characterising method design have become the basis for a uni-
form description framework for architecture evaluation methods, which will be
used in a survey presented in sections 3.6–3.9, while the properties resulting from
method’s design and external features will become a basis for the discussion of
method’s properties in section 3.10.
 The uniform description framework for architecture evaluation methods
comprises:
1. Method highlights – this section underlines the distinguishing features of

a method, and presents the challenges that the method resolves.
2. Evaluation goals – the methods of eliciting the goals of the evaluation or (more

commonly) listing the goals of the evaluation that are built-in into the method
are presented here.

3. Examined properties – this section contains a list of software properties that
are examined by a given architecture evaluation method. In most cases, these
concern non-functional quality attributes such as usability, performance, reli-
ability and modifi ability (compare [16]).

4. Evaluation process – a description of the workfl ow of a method, comprising an
ordered list of activities with a short description of each, if needed to compre-
hend the method logic.

5. Architecture description – this section indicates the form of the description of
the evaluated architecture that is required by a given evaluation method.

50 Architecture Evaluation Methods

 6. Representation of evaluated requirements – architecture evaluation methods
usually assess architecture against a set of requirements. These may take vari-
ous forms, from informal statements to formalised quality scenarios of ATAM.
In some cases, such as AREA (section 3.8.5), SARAH (section 3.8.6), some
equivalents of the requirements are used in order to focus the analysis. Both are
described in this section.

 7. Techniques for eliciting requirements – the techniques for identifying architec-
turally relevant requirements or their equivalents (in the case of some meth-
ods) are presented in this section.

 8. Techniques for prioritising requirements – in most cases, the scope of the
architecture evaluation has to be limited in order to make it feasible in terms
of time, effort and cost. This usually means that only requirements that ex-
ert a prevailing impact on the analysed properties have to be chosen for the
evaluation. The prioritisation techniques provided by a method are presented
in this section.

 9. Architecture evaluation techniques – there are various techniques that can
be used to analyse software properties at an architectural level. Architecture
evaluation methods employ many of them, and often propose new ones. This
section describes the details of the evaluation techniques, and presents how
architecture is analysed in order to arrive at the outcomes of the evaluation.

10. Evaluation outcomes – types of outcomes that are produced by an evaluation
method.

11. Method limitations, discussion – the limitations and peculiarities of a method.

3.5. NOTE ON THE LEGACY ARCHITECTURAL EVALUATION
METHODS

 The early developments in the area of architecture assessment have been com-
prehensively presented in a survey [49] covering the methods described in table 8.
They have been included in this monograph for the sake of completeness of the
presentation.

Table 8. Early developments in architecture evaluation

Method’s acronym, full name Analysed attributes, Short description
SAAM – Scenario-Based Architec-
ture Analysis Method [83]

Initially [83] SAAM was used for analysing modifi ability,
later [39], SAAM was later extended onto any subset of the
quality attributes. For details of the method see section 3.6.1.

SAAMCS – SAAM Founded on
Complex Scenarios [98]

Flexibility (related to modifi ability), scenario-based me-
thod, focuses on scenarios that are diffi cult to achieve, and
therefore could cause major risks.

51 Architecture Evaluation Methods

Table 8 cont.

Method’s acronym, full name Analysed attributes, Short description
ESAAMI – Extending SAAM by
Integration in the Domain [106]

Mainly modifi ability, scenario-based method which promo-
tes the reuse of domain-specifi c knowledge captured with
analysis templates (reusable fragments of architectures,
concept similar to architectural patterns)

SAAMER – Software Architecture
Analysis Method for Evolution and
Reusability [101]

Evolution/reusability, scenario-based method with scena-
rios capturing the anticipated changes

SBAR – Scenario-Based Architec-
ture Reengineering [21]

Multiple, uses different analysis techniques depending
on the analysed attributes (e.g. mathematical modelling,
simulation)

ALPSM – Architecture Level Predic-
tion of Software Maintenance [20]

Maintainability, scenario-based method with scenarios
capturing the anticipated changes enforced by the mainte-
nance activities

SAEM – A Software Architecture
Evaluation Model [51]

Multiple attributes; employs metric-based evaluation tech-
nique based on GQM

 Most of these early developments have become the foundations for more ma-
ture evaluation methods, namely SAAM, SAAMCS, ESAAMI, SAAMER were
later included into Architecture Trade-off Analysis Method (ATAM), ALPSM
evolved into ALMA, and some have been left dormant (SAEM, SBAR).

3.6. SURVEY OF COMPREHENSIVE GENERAL-PURPOSE
ARCHITECTURE EVALUATION METHODS

 According to the taxonomy presented in section 3.3, general-purpose architec-
ture evaluation methods are characterised by the following properties:
 They can be used in order to analyse any software architecture, i.e. they are not

oriented on a chosen application’s domain;
 They are supposed to be used for analysing architectural support for any subset

of the quality attributes.

3.6.1. Software Architecture Analysis Method (SAAM)

 Method highlights: SAAM is most probably the fi rst architecture evalua-
tion method compliant with the contemporary meaning of this term and with the
assessment against requirements paradigm. The method was published several
times, compare the original paper [83], and [86], [39]. Note that the word “sce-
nario” was not used in the original paper on SAAM [83], though, SAAM was al-
ready a scenario-based method. The presentation of SAAM was based on the most
recent account of the method presented in [39]. In SAAM scenarios are analysed

52 Architecture Evaluation Methods

by searching an architecture for components, which are responsible for achieving
properties requirements represented by these scenarios.
 Evaluation goals: the goals of SAAM-based analysis are not as carefully de-
fi ned as in ATAM or ALMA. SAAM can serve various purposes, including iden-
tifying architectural weaknesses (requirements that are not suffi ciently supported
by the architecture) and the comparison of architectures.
 Examined properties: mainly modifi ability, though other attributes may also
be analysed.
 Evaluation process: The activities of SAAM’s evaluation process comply
with those described in section 3.1:
1. Develop scenarios;
2. Describe architecture;
3. Classify and prioritise scenarios;
4. Individually evaluate indirect scenarios – see “architecture evaluation tech-

niques” section;
5. Assess scenario interactions – see “architecture evaluation techniques”

section below;
6. Create an overall evaluation

 Architecture description: SAAM assumes a component-connector model of
software architecture, supplemented with necessary information regarding data
and a system’s dynamics, the latter in any understandable form (e.g. diagrams and
text). In practice, the development of scenarios and architecture description can
be performed iteratively because it is often necessary to tailor the architecture’s
description to the specifi c needs of a concrete assessment.
 Representation of evaluated requirements: quality scenarios representing
the stakeholders’ expectations with regard to the anticipated use of a system, for
example: porting to another operation system, expected changes to a system’s
functionality, or a change of the development environment. No structure has been
imposed on the quality scenarios, they are just simple statements. In a broader
understanding, scenarios express in brief the stakeholders’ activities, anticipated
changes and other properties that the system should support.
 Techniques for eliciting requirements: brainstorming, possibly in a number
of iterations.
 Techniques for prioritising requirements: classifying scenarios as direct or
indirect in order to provide insights into how they are supported by architecture,
then cumulative voting of the participants and selecting the top 30% of the elicited
scenarios for a detailed inspection. Direct scenarios are those that are already ad-
dressed by architecture, while indirect scenarios are quite the opposite: the archi-
tecture has to be modifi ed in order to ensure that the indirect scenario is supported.
 Architecture Evaluation Techniques: informal, namely analysing the archi-
tectural description aimed at showing how direct scenarios are met by architecture

53 Architecture Evaluation Methods

and identifying changes to the architecture required in order to obtain architectural
support for the indirect scenarios (step 3). This is followed by an analysis of the
interaction of indirect scenarios (step 4): two scenarios interact if the same com-
ponent has to be changed in order to satisfy two or more indirect scenarios. Too
many such interactions may indicate poor architectural design, i.e. poor function-
ality allocation resulting in low cohesion and high coupling. It may also indicate
that the architecture has not been analysed at an appropriate level in terms of the
scope, and that the architecture’s description should probably be refi ned in order
to perform an adequate evaluation.
 Techniques for establishing outcomes: SAAM is rather sketchy in this re-
spect. It has been suggested in [39] that scenarios should be weighted by their im-
portance, where the measure can be the anticipated cost of changes, level of risk
or some other criteria agreed by the stakeholders. The weighting is particularly
useful when comparing two or more alternative architectures.
 Evaluation outcomes: the fi ndings established during the analysis, which may
include: scenarios that are diffi cult or costly to become supported by architecture,
risks connected with some scenarios, cost of modifi cations.
 Methods validation: number of applications diffi cult to estimate, certainly
exceeds ten.
 Method limitations, discussion: SAAM, especially when compared to ATAM,
offers an unsophisticated evaluation process. It directly addresses the participation
of various stakeholders, as well as the need to identify and prioritise stakehold-
ers’ concerns. Evaluation techniques (a distinction between direct and indirect
scenarios; scenario-interaction) are rather sketchy, meaning that the analysis relies
heavily on the knowledge and experience of the participants.

3.6.2. Architecture Trade-Off Analysis Method (ATAM)

 Method highlights: ATAM was fi rst presented in 1998 [87]. The description
of ATAM presented below is based on [39] and [16]. The prevailing goal shap-
ing ATAM’s “design” was the method’s fl exibility. It can be used for a variety of
evaluation purposes (e.g. risk analysis, seeking architecture improvement oppor-
tunities, architecture comparison), which are neither presumed nor built-in into
the method’s design, but are established individually during every single analysis.
 The general purpose of ATAM-based evaluation is to fi nd out whether archi-
tecture adequately supports business goals driving architectural design. Therefore,
although during an evaluation the viewpoints of various stakeholders are taken
into account, business stakeholders’ goals and concerns are treated with particular
care. In fact, their concerns defi ne a reference point for the entire evaluation. As
stakeholders’ concerns and goals may confl ict with each other, ATAM provides
techniques for explicitly managing (requirements prioritisation based on cumula-
tive voting and utility tree) and resolving such confl icts (identifying trade-offs).

54 Architecture Evaluation Methods

 Evaluation goals: elicited from the stakeholders at the start of the evaluation
(step 4).
 Examined properties: non-functional quality attributes, for example: usabil-
ity, modifi ability, security, performance, availability, and testability. In fact, any
property that is important for achieving business goals may be evaluated.
 Evaluation process: a summary is contained in table 9.
Table 9. Summary of the steps in ATAM

Evaluation
Step

Main
participants, Goal Outcomes

Phase I Presentation
1. Present the

ATAM
All stakeholders,
ET(*)

To make the stakeholders aware of the
ATAM evaluation process and its sup-
porting techniques

–

2. Present the
business
drivers

All stakeholders,
ET

To make the stakeholders aware of the bu-
siness goals the system is developed for, as
well as the architectural drivers (quality at-
tributes shaping the architecture)

–

3. Present the
architecture

Project decision
makers, ET

To make the evaluation team familiar
with the architecture, being evaluated

–

4. Identify the
architectural
approaches

Architects, ET To identify architectural styles (patterns,
tactics) included in an architecture
design

List of architectural
approaches/styles
included in the archi-
tectural design

5. Generate the
quality attri-
bute tree

Project decision
makers, ET

To establish the preferences of project
decision makers concerning the quality
attribute goals

Quality attribute tree.
Initial list of prioriti-
sed quality scenarios

6. Analyse the
architectural
approaches

Architect, ET To build up an initial overview of the re-
lations between the software architecture
and most important quality attribute go-
als. To identify initial analysis outcomes
expressed in terms of risks, non-risks, sen-
sitivity points and trade-off points

Initial lists of risks,
non-risks, risk themes,
sensitivity points,
trade-off points

Phase II Testing
7. Brainstorm

and prioritise
scenarios

All stakeholders,
ET

To exploit the knowledge of all the stake-
holders in order to get a broader and deeper
view of the quality requirements

Final list of prioritised
quality scenarios

8. Analyse the
architectural
approaches

Architect, ET To extend and refi ne the outcomes
achieved in step 6

Final lists of risks,
non-risks, risk themes,
sensitivity points, trade-
off points

Phase III Reporting
9. Present the

results
All stakeholders. To summarise the evaluation outcomes

and relate them to the business drivers
presented in step No 2

Evaluation outcomes
presentation. Evalu-
ation report

(*) ET – Evaluation Team

55 Architecture Evaluation Methods

 Architecture description: an architecture description is necessary for an AT-
AM-based evaluation. Architectural approaches, i.e. architectural tactics and pat-
terns (compare section 2.2.5) used in software architecture should be identifi ed
during the evaluation (step 4).
 Representation of the evaluated requirements: quality scenarios express the
quality attributes in terms of concrete situations, which should be supported by
software architecture. ATAM defi nes a precise template for documenting the qual-
ity scenarios, comprising the following elements:
 Source – the stakeholder, exerting a stimulus on an architecture;
 Stimulus – is a condition to which the architecture should respond;
 Artefact – is affected by a stimulus;
 Environment – the condition in which a stimulus occurs;
 Response – the response to/support for a given stimulus;
 Response measure – a measure of the desired response.
 Let us consider, for example:
 a modifi ability scenario: a group of users (source) wishes a new report (stimu-

lus) to be included in a fi nancial application (artefact) with its next build (envi-
ronment). The architecture should enable such an extension to be implemented
(response) within a week (response measure);

 a performance scenario: a user (source) requests the presentation of fl ight of-
fers (stimulus), application (artefact) under normal operating conditions (en-
vironment) presents (response) a list of offered fl ights in no more than 30 sec-
onds (response measure).

 Techniques for eliciting requirements: although brainstorming isa require-
ments elicitation technique used in ATAM, the elicitation process is organised in
a unique way. Requirements elicitation takes place after building up the partici-
pants’ awareness of the business goals (step 2) and knowledge of the evaluated
architecture (step 3). Quality scenarios elicitation is a two-phase process:
 in the “Preparation” phase (step 5), it is done with the project’s decision mak-

ers (architect, customer, sponsor, the project’s management, component de-
signers) only. It results in building a utility trees with the quality scenarios in
the leaves.

 The utility tree represents the internal structure of each of the quality attributes
as it is understood by the project decision makers. General quality attributes,
such as performance, reliability, are translated onto a set of more detailed prop-
erties, e.g. performance onto throughput and response time, reliability onto
fault tolerance and availability. These more detailed properties may be trans-
lated onto even more detailed ones and so on. The depth of the utility tree is
not limited formally, though it should obviously be kept reasonable if the tree
is supposed to be comprehensible and useful. The development of a utility tree
should go from general to specifi c.

56 Architecture Evaluation Methods

 In the “Testing” phase (step 7), requirements are elicited from all the stake-
holders, and a larger set of scenarios is elicited from all the stakeholders dur-
ing a brainstorming session, which should foster the communication between
stakeholders.

 The elicitation of scenarios is facilitated by introducing a classifi cation of the
quality scenarios and providing scenario templates for the essential quality at-
tributes: usability, testability, interoperability, modifi ability, performance and
security [15], [16]. The scenarios have been classifi ed into three basic groups:

 Use-case scenarios – represents the ways in which stakeholder’s are plan-
ning to use the system;

 Growth scenarios – refl ect the expected changes in the system’s context and
how the system should accommodate these changes. These changes may
concern foreseen functionality modifi cations and the system’s load;

 Exploratory scenarios – scenarios of this kind are supposed to be kind of
a stress test aimed at revealing the architecture’s limitations. They should
refl ect extreme cases of changes to the system’s operating condition, the
system’s mission, performance and reliability requirements. Their evalua-
tion should discover more risks, sensitivity and trade-off points.

 Techniques for prioritising requirements: the prioritisation of requirements
is integrated with quality scenario elicitation, though different techniques are used
in the “Preparation” and “Testing” phases:
 In the “Preparation” phase, the quality scenarios are prioritised in order to

reveal their relative importance for the project decision makers. The advised
technique is to assess scenarios along two dimensions: a scenario’s importance
for the system’s success, and the diffi culty of ensuring that the architecture
supports a given scenario. The assessment should be done using a numeric
scale or three-level ranking H/M/L (High/Medium/Low), which the ATAM’s
authors prefer because of its simplicity. The scenarios of a higher ranking ex-
press the requirements that are most important to the key project’s stakeholders
(high priority scenarios).

 In the “Testing” phase, the elicited quality scenarios should be prioritised us-
ing a cumulative voting [99] technique in which all the stakeholders take part.
Comparing the priorities established in the “Preparation” and “Testing” phases
can show whether the architects have a common understanding of design goals
with the decision makers.

 Techniques for assessing architecture: the general architecture analysis
technique is the analysis of the infl uence on quality attributes infl icted by the ar-
chitectural tactics and patterns included in a system’s architecture, which should
be done scenario-by-scenario. Both qualitative (e.g. experience-based reasoning)
and quantitative (compare section 3.10.3) can be used. In fact, ATAM allows any

57 Architecture Evaluation Methods

architecture analysis techniques to be used if its choice is reasonable with regard
to the goals and conditions of a given evaluation.
 Evaluation outcomes: risks – architectural decisions that may negatively af-
fect quality attributes, non-risks – safe architectural decisions, risk-themes – re-
curring kinds of risks, sensitivity points – decisions that may infl uence certain
quality attributes, trade-off points – an architectural decision that affects more
than one quality attribute at the same time and in the opposite directions (e.g. the
choice of layers increases modifi ability but reduces performance).
 Method validation: an extensive evaluation record is available, compare [81],
[54], [25], [139], [123] as well as evaluation examples in [39], [15]. The outcomes
of 18 ATAM-based evaluations were summarised in [17], [18].
 Method limitations, discussion: The Architecture Trade-off Analysis Method
(ATAM) is perceived as the most sophisticated and the most mature architecture
evaluation method. ATAM is a successor of SAAM, as it adopts and extends sce-
nario-based evaluation paradigm. These extensions made to SAAM components
have been depicted in table 10.

Table 10. How ATAM extends the concepts introduced by SAAM

SAAM ATAM
Addressing
business
goals

Unstructured, it was assumed that
the participation of the stakehold-
ers in scenario generation will
ensure that business goals are re-
fl ected in the set of scenarios

Quality scenarios are supposed to translate busi-
ness goals into the language of quality require-
ments captured with quality scenarios

Scenario
structure

Unstructured scenarios briefl y
representing activities of the
architecture’s stakeholders

Quality scenarios extend the concept of SAAM’s
scenarios by providing a uniform quality scena-
rio template.

Scenarios
elicitation

Unstructured Scenarios elicitation techniques – brainstorming
facilitated by:
 The quality scenario classifi cation: use case

scenarios, growth scenarios, exploratory
scenarios;

 The quality scenario templates for each of the
quality attributes.

Architecture
representa-
tion

Architecture is presented and
comprehended in terms of
components and connectors,
though no modelling notation
has been recommended

Architecture is presented and comprehended
in terms of architectural tactics and patterns.
No architecture model has been recommended,
though many examples use some set of architec-
tural views

Require-
ments
(scenarios)
prioritisation

Prioritisation with cumulative
voting

Two-phase prioritisation: establishing quality
attributes, which are of highest interest to the
major stakeholders (decision makers) by the use
of a utility tree, then juxtaposing the earlier out-
comes with a broader view of all the stakeholders.

58 Architecture Evaluation Methods

 Apart from the important extensions to a scenario-based assessment paradigm,
a distinguishing feature of ATAM is that it is the only method that tries to ex-
plicitly relate the elements of an architectural design to business goals driving
that design. Despite its sophistication, numerous ATAM limitations are commonly
recognised and triggered further research aimed at overcoming them. These limi-
tations include [165]:
1. High level of effort (32-70 man-days, 2-6 weeks) and the cost of a fully-blown

ATAM-based evaluation – compare [39];
2. The method does not indicate precisely how to relate the outcomes of an evalu-

ation back to the business goals.
3. Quality scenarios used in ATAM effectively represent detailed requirements,

but are often ineffective and even confusing when defi ning more general prop-
erties. For example, a work around is needed to represent a requirement that
“the generation of reports should not interfere with the processing of transac-
tions”: Stimulus: transaction arrives; Source of stimulus: user; Artefact: sys-
tem; Response: the system processes the transaction in no more than 2 sec-
onds; Environment: the system (as a whole) is processing a report when the
transaction arrives; Response measure: maximum transaction processing time.
It is certainly not a straightforward way to put across the requirement to sepa-
rate OLTP from OLAP.

4. The cumulative voting is known for its defi ciencies, voting can give rise to
numerous games played between the stakeholders in order to obtain preferred
requirements priorities. It is observed in [99] that, in most cases, the method
works well only once per project.

5. In the case of many real-world projects, a lack of architectural documentation
together with the instability of the quality requirements make ATAM-based as-
sessments impossible – compare [66];

6. Insuffi cient integration with the established development and project manage-
ment practices. Such a time-consuming evaluation does not comply with the
short cycles of agile methods’ iterations. In the case of integrating ATAM with
RUP, the elicitation of quality scenarios may overlap with the activities of the
“Requirements” discipline of RUP.

3.6.3. Analytic Principles and Tools for the Improvement of Architectures
(APTIA)

 Method description: APTIA [85] is an extension to ATAM, aimed at extend-
ing ATAM-based analysis by an in-depth investigation of risk themes identifi ed
during ATAM analysis in order to identify design alternatives and to choose
among them. The method promotes the use of quality attribute models in order to
analyse architecture and propose alternatives on the basis of the outcomes of such

59 Architecture Evaluation Methods

a model-based analysis. The choice among the alternatives should be made by
analysing cost and benefi t related to the considered architectural options.
 Evaluation goals: to identify and make choices among alternative architec-
tural designs.
 Examined properties: APTIA does not limit analysis to any presumed set of
quality attributes.
 Evaluation process: according to [85], APTIA comprises the following steps:
1. Perform an ATAM.
2. Determine the focus for analysis based on risk themes identifi ed through

ATAM.
3. Use quality attribute models related to the risk themes to understand the

architecture.
4. Use insights gained from model-based analysis and design principles to pro-

pose alternatives.
5. Rank the alternatives based on costs/benefi ts.
6. Make design decisions.
 Steps Nos 3–4 should be repeated for each of the considered quality attributes.

 Architecture description: architectural description is needed to use APTIA as
it in fact starts from performing an ATAM-based evaluation.
 Representation of evaluated requirements: risk themes discovered during
the ATAM provide the focus of an APTIA-based analysis.
 Techniques for eliciting requirements: as with ATAM.
 Techniques for prioritising requirements: not prescribed, left to the exper-
tise of the evaluators.
 Architecture Evaluation Techniques: a cost-benefi t analysis of CBAM
(compare section 3.8.8) is applied in order to rank the identifi ed architectural al-
ternatives; quality attribute models (e.g. Rate Monotonic Analysis [89], reliability
engineering techniques [102], performance analysis techniques [12]), are promot-
ed as a means of investigating how architecture affects the quality of the software.
 Evaluation outcomes: identifi ed architectural alternatives as well as cost and
benefi ts related to those alternatives.
 Method validation: the examples set out in [85] present an analysis of the per-
formance with Rate Monotonic Scheduling [89] and variability with cost-benefi t
models.
 Method limitations, discussion: APTIA combines the ATAM with analysis
techniques for certain quality attributes in order to deepen the outcomes of an AT-
AM-based analysis. However, the evaluation process is rather loose, and the prop-
er application of the techniques listed in [85] depends entirely on the expertise of
the evaluator. The application of model-based architecture assessment techniques
requires evaluators with skills in certain branches of mathematical modelling

60 Architecture Evaluation Methods

(e.g. stochastic modelling, Rate Monotonic Analysis, queuing models, reliability
models, etc.). However, practitioners are rather reluctant to use advanced math-
ematical models during software development, as the survey [7] confi rms.

3.7. GENERAL-PURPOSE LIGHTWEIGHT ARCHITECTURE
EVALUATION METHODS

 The limitations of comprehensive architecture evaluation methods, in particu-
lar ATAM, especially those directly perceived by users of the method as a high
level of effort and cost, together with the lack of a convincing business case for
the ATAM assessment [7], have triggered a wave of research on lightweight archi-
tecture analysis methods.
 Although the criteria indicating which methods are lightweight and which are
not have not yet been defi ned, they can be deduced from publications setting out
proposals for such methods:
 Inexpensiveness in terms of time, effort, and cost;
 Minimum formality – the method provides for sketched evaluation steps rather

than a formally defi ned evaluation process, such as in the case of ATAM;
 Minimum number of project stakeholders involved in the assessment;

 Minimum scope of documentation needed in order to perform an evaluation,
i.e. lightweight methods should not require a complete architecture description,
nor a complete specifi cation of requirements, and should not require other kinds
of models. These methods should be able to accept partial documentation or to
elicit the necessary information, in situ, during an evaluation.

3.7.1. Active Reviews for Intermediate Designs (ARID)

 Method highlights: ARID [40], [39] refers to the classic concept of active
design reviews [115], which is an established software quality assurance tech-
nique. The architecture is not evaluated in order to confi rm its support for quality
attributes and business goals, but in order to detect its weaknesses.
 Evaluation goals: an assessment of an architecture’s suitability through the
discovery of architectural issues resulting from a software architecture, or its part.
 Examined properties: ARID does not assume an analysis of any particular
software properties, and they are not explicitly established during the analysis.
The analyses focus on a set of properties represented by a set of quality scenarios.
 Evaluation process:
Phase 1: Pre-meeting
 Step 1: Identify reviewers
 Step 2: Prepare design presentation

61 Architecture Evaluation Methods

 Step 3: Prepare seed scenarios (seed scenarios are presented by designers or
the review facilitator to the evaluation participants in order to explain
the concept of quality scenario; seed scenarios have not got to be used
in the phase 2)

 Step 4: Prepare for the review meeting
Phase 2: Review meeting
 Step 5: Present ARID method
 Step 6: Present design
 Step 7: Brainstorm and prioritise scenarios
 Step 8: Perform a review (evaluate architecture)
 Step 9: Present conclusions

 Architecture description: architecture is presented and discussed with the
stakeholders; no particular form of architectural documentation has been assumed.
 Representation of evaluated requirements: quality scenarios are the only
carrier for the evaluated requirements, though no particular contents of quality
scenarios are recommended.
 Techniques for eliciting requirements: brainstorming.
 Techniques for prioritising requirements: cumulative voting.
 Architecture Evaluation Techniques: ARID is not very strict in this respect.
Expert and experience-based reasoning are the main assessment techniques ap-
plicable in such an informal review.
 Evaluation outcomes: list of issues (problems) connected with a given
architecture;
 Method validation: a pilot example presented in [40].
 Method limitations, discussion: reviews can only reveal the existence of
certain fl aws in a software’s architecture, but will not show that architecture ad-
equately supports business goals. This, together with the assumption that ARID
is supposed to be used for a single version of software architecture, enables the
method’s simplicity.

3.7.2. Pattern-Based Architecture Reviews (PBAR)

 Method highlights: the Pattern-Based Architecture Reviews method was
crafted in order to better suit production-focused projects than traditional ATAM-
based architecture reviews [66]. Such projects are typical for many real-world
organisations focusing on delivering operational software, rather than on develop-
ing extensive documentation and on strictly following a prescriptive development
processes. They often use agile and lean software development methodologies
[41], [42], which also limits the use of comprehensive evaluation methods.
 Evaluation goals: the aim of such an evaluation is the identifi cation of quality
attribute issues – see the evaluation outcomes section below.

62 Architecture Evaluation Methods

 Examined properties: the analysis looks at the risks potentially affecting non-
functional quality attributes.
 Evaluation process: The evaluation with PBAR should be performed during
a single, face-to-face meeting with the development team. This evaluation com-
prises the following fi ve consecutive steps:
1. Establishing the most important quality requirements by analysing user stories

and by the discussion with the developers;
2. Eliciting software architecture by discussing the software’s structure with the

developers;
3. Identifying architectural patterns;
4. Examining the infl uence of the identifi ed architectural pattern on the quality

attributes;
5. Identifying and discussing analysis outcomes, i.e. quality attribute issues.

 Architecture description: no particular form of architectural documentation
is assumed. Architecture is elicited during informal meetings, discussions and pre-
sentations with the development team. Architectural patterns included in software
architecture have to be identifi ed during the evaluation.
 Representation of evaluated requirements: not prescribed.
 Techniques for eliciting requirements: requirements are elicited informally,
in situ, during an informal meeting with the development team.
 Techniques for prioritising requirements: absent.
 Architecture Evaluation Techniques: the architectural assessment is based
on the known relationships between architectural patterns and the quality attri-
butes (section 2.2.5). The evaluation is based on investigating the mismatches
between architectural patterns included in the design and non-functional qual-
ity requirements. The assessment technique has not been formalised and requires
knowledge on architectural patterns and their potential infl uence on software
quality attributes. A common example of this is the negative infl uence of layers
pattern on performance, or of the “pipes and fi lters” pattern on reliability (a fi lter
is a single point of failure).
 Evaluation outcomes: quality attribute issues, i.e. quality attributes that have
not been properly addressed by the architecture, patterns that could have been
included into the design, and confl icts between quality attributes and patterns in-
cluded in the design.
 Method validation: nine student capstone projects carried out with real
customers.
 Method limitations, discussion: PBAR bears all the features of the light-
weight methods mentioned in section 3.7. The authors report that PBAR requires
only 4 to 11 man-hours, a negligible amount when compared to ATAM’s average
of 32 man-days [39].

63 Architecture Evaluation Methods

 However, drawing conclusions with regard to the infl uence of patterns on qual-
ity attributes is not decisive in most cases, and in many cases is actually elusive
and/or ambiguous. This can limit the applicability of pattern-based evaluation.
For example, layers may impede software performance, though most contempo-
rary internet applications follow this style; a message broker is a single point of
failure, which does not hinder its popularity (compare, for example, enterprise
service bus), but these performance and reliability risks are usually addressed by
the appropriate system’s design, namely by a resource contingency or redundancy
respectively.

3.7.3. Tiny Architectural Review Approach (TARA)

 Method highlights: TARA [157], [158] is supposed to be applicable in indus-
try, where more complex evaluation methods and techniques often cannot be ap-
plied because of their intrinsic complication or the level of required participation
by stakeholders. TARA relies on code analysis techniques and/or operational data,
both requiring that software has already been implemented.
 Evaluation goals: the goal of TARA evaluation is defi ned in [158] as “to
establish how well suited a particular architecture is to supporting a set of key
requirements.”
 Examined properties: functional (!) and non-functional requirements estab-
lished individually for every assessment;
 Evaluation process: TARA comprises seven steps:
1. System context and requirements – the evaluator builds his understanding of

key requirements and context, in which the system exists,
2. Functional and deployment views – the evaluator builds his understanding of

the system’s context and design, developing or gathering a kind of architecture
description;

3. Implementation analysis – assessment techniques are applied;
4. Requirements assessment – the results of the implementation analysis should

be related to the identifi ed requirements. Expert judgement is the main tech-
nique supposed to be applied here. Finally, levels of the evaluator’s confi dence
in the system’s ability to fulfi l the requirements should be assessed for every
identifi ed requirement.

5. Identify and report fi ndings – the report on the evaluation’s fi ndings is usually
at least partially prepared in parallel with the evaluation activities (steps 3 and
4); however, in this step the outcomes of the evaluation should be gathered in
a uniform and comprehensible form.

6. Deliver the fi ndings and recommendations.

 Architecture description: system context, functional and deployment struc-
tures have to be understood by the evaluator. The method does not assume any

64 Architecture Evaluation Methods

form of architecture description, though some notes or sketches can be used for
that purpose.
 Representation of evaluated requirements: a list of key functional and non-
functional requirements.
 Techniques for eliciting requirements: the practical advice was that an ef-
fective elicitation technique is to identify candidate requirements with the de-
velopers, then to validate and approve them with relevant stakeholders. Other
techniques for eliciting requirements and sources of information on requirements
(e.g. requirements specifi cation documents) have not been excluded.
 Techniques for prioritising requirements: integrated with requirement elici-
tation techniques, i.e. it is an expert choice made by an evaluator consulted with
the stakeholders.
 Architecture Evaluation Techniques: chosen as needed, no techniques are
excluded in advance. The method that [158] promotes involves the use of au-
tomated code analysis techniques (module dependencies, size measures, code
metrics (e.g. McCabe’s metrics, comment to code ratio, etc.; see also [67]), test
coverage. For software already deployed, information characterising software ex-
ecution (e.g. event/incident/production logs).
 Method validation: TARA has been used in an industrial context for a small
number of exercises [158].
 Method limitations, discussion: The main limitation of TARA is its depen-
dence on expert judgement with regard to drawing conclusions from the evidence
gathered during the architecture analysis. TARA can be applied to already imple-
mented software as long as code analysis techniques are to be used. This seems to
be another important defi ciency, as software architecture is hardly ever corrected
when software is ready for deployment. Therefore, TARA’s outcomes can only be
applied in the maintenance phase.

3.7.4. Lightweight ATAM

 Method highlights: The high cost of an ATAM-based evaluation results from
the complicated evaluation procedure and extensive participation of stakeholders.
Naturally, limiting both of these factors will diminish the total level of effort re-
quired for an evaluation, thereby minimising the cost of the evaluation. This idea
has been put into force in Lightweight ATAM presented in [16], which should
not require more than 4-6 hours. The method is supposed to be used internally
by a development team that is already familiar with the system’s architecture and
goals. Lightweight ATAM is supposed to be used between full ATAMs, namely
for intermediate evaluations of consecutive development increments. As it takes
as an input most of the results of an ATAM evaluation (e.g. utility trees, quality
scenarios), it is not a stand-alone lightweight architecture evaluation method such
as ARID, PBAR or TARA.

65 Architecture Evaluation Methods

 Evaluation process: the evaluation process was created by eliminating or con-
straining the scope of ATAM’s activities, which is shown in table 11.

Table 11. Comparison of ATAM and Lightweight ATAM (based on table 21.4 [16])

Phase Inclusion/time Comments
1. Present the ATAM Omitted The participants are supposed to be

familiar with ATAM
2. Present business drivers Short overview, 15 min The participants are expected to be fa-

miliar with the system and its business
goals

3. Present architecture Short overview, 15 min As above
4. Identify the architectural

approaches
Short overview, 15 min Supposed to be known to the architect,

or in many cases identifi ed already in
the previous phase

5. Generate the quality attri-
bute tree

Included, variable length,
0.5–1.5 hrs

Here, the existing utility tree and set of
quality scenarios should be supplement-
ed with newly emerged information

6. Analyse the architectural
approaches

Included, 2–3 hrs Mapping the highest-priority scenarios
onto the architecture cannot be avoid-
ed, though it can encompass a limited
number of scenarios, e.g. newly identi-
fi ed

7. Brainstorm and prioritise
scenarios

Omitted The scenarios should already have
been included in step 5

8. Analyse architectural ap-
proaches

Omitted This has already been done in step 6

9. Present results Included, 30 min The “increments” of risks, non-risks,
sensitivity points and trade-offs, to-
gether with those already identifi ed,
should be reviewed and discussed

 Evaluation goals, examined properties, architecture description, repre-
sentation of evaluated requirements, techniques for eliciting requirements,
techniques for prioritising requirements, Architecture Evaluation Tech-
niques: generally the same as in ATAM. Most of the results of ATAM are reused
by Light-weight ATAM.
 Method validation: information not available.
 Method limitations, discussion: the method can be used only as a supplement
to full ATAMs, which means that it should be performed at intermediate develop-
ment stages, where a full ATAM has not been planned, but some form of archi-
tecture evaluation is needed. The lower effort is achieved at the expense of a less
exhaustive and objective evaluation, which refl ects the obvious trade-off between
the scope and depth of an evaluation.

66 Architecture Evaluation Methods

3.7.5. Scenario-based Approach to Software Architectural Defects Detection
(SHADD)

 Method highlights: SHADD [135] reverses the approach that underlies the
majority of the architecture evaluation methods. The evaluation starts by hypoth-
esising about the possible problems, and then about defects that might be causing
those problems. The hypotheses about defects included in the software architec-
ture are validated by the analysis of software architecture.
 Evaluation goals: the discovery of architectural defects.
 Examined properties: the SHADD method is not aimed at evaluating any
specifi c software quality attribute, or architectural support for that attribute.
 Evaluation process: evaluation is performed according to a procedure com-
prising the following steps (the description presented below demystifi es the origi-
nal method’s presentation in [135]):
1. Identifi cation of problems – takes the form of a brainstorming session; each

problem is characterised by its cost (loss caused by a given problem occurring)
and the probability of an occurrence (initially assumed as 1);

2. Identifi cation of hypothetical defects causing the problems identifi ed in step
No 1. The problems are analysed in order to identify defects that might cause
them; the more severe problems are analysed fi rst.

3. Verifi cation of the identifi ed defects, and carrying out corrective actions if
needed.

 Hypothetical defects are validated as described in the subsection above, in
descending order of severity. Corrective actions are undertaken or planned as
needed. This, in turn, should cause the evaluation participants to reconsider
their assessment of the probability of the problem occurring.

4. Check the termination criterion, fi nish or restart the analysis.
 The termination criterion is ‘average problem severity’, given by the formula:

1
p p

p P
S c p

P

 where cp and pp denote the cost and probability of problem p P occurring.
If the average problem severity is above a presumed threshold (established
individually for every assessment), the evaluation should continue. It was sug-
gested that the least severe problems should be eliminated from the set of con-
sidered problems in consecutive iterations. Such a refi ned set of problems is
subject to further evaluation, which restarts from step No 2.

 Architecture description: has not been specifi ed; the examples in [135] use
a component-connector representation of software architecture.
 Representation of evaluated requirements: the method does not address
any specifi c software requirements. However, these requirements are implicitly

67 Architecture Evaluation Methods

refl ected in the identifi ed problems, which are a consequence of not meeting
functional or non-functional requirements. Every problem is characterised by the
probability and cost (damage) of its occurrence.
 Techniques for eliciting requirements: the project stakeholders brainstorm
the problems on the basis of their knowledge of the requirements and of the soft-
ware architecture.
 Techniques for prioritising requirements: as the requirements are not ad-
dressed directly by SHADD, the prioritisation concerns the problems and defects
identifi ed during the analysis. For problems, the prioritisation criterion is the pro-
blem’s severity, which is a product of the cost and probability of the problem
occurring () p pS p c p , where cp and pp are, respectively, the cost (loss) and the
probability of problem p occurring.
 The proposed prioritisation technique was indicated as based on a fuzzy rela-
tion [164], [160], i.e. the severity of defect d is given by the formula:

 () (,)p R
p P

S d c p d

where: d D , p P , D and P – are sets of all defects and problems, respectively,
R(p, d) – is a membership function whose values are from the interval <0, 1>
indicating how much defect d, contributes to the existence of problem p, i.e. the
greater the value, the more important is defect d for the existence of problem p.

 Therefore, the severity of defect d can be understood as a share of defect d in
costs that might be incurred due to the problems that are, to the extent R(p, d),
caused by defect d. It was indicated that the values of the membership functions
should be defi ned by the participants of the evaluation.
 Architecture Evaluation Techniques: SHADD assumes that problems may
be caused by one or more defects. The members of the development team hypoth-
esise about the defects included in the software architecture. The analysis focuses
on verifying whether the hypothetical defects really exist within the software ar-
chitecture. This is achieved by applying validation cases (e.g. tests, inspections,
walkthroughs, etc.) on the relevant architectural components.
 Evaluation outcomes: although not specifi ed explicitly, the main outcome is
a list of discovered architectural defects and the problems caused by them. This
can be accompanied by information on corrective activities proposed or under-
taken during the analysis.
 Method validation: SHADD was illustrated by the example of a Parking Ac-
cess Control System [135].
 Method limitations, discussion: the method relies heavily on the knowledge
and experience of the participants, who play the role of “architectural oracle”. If
the oracle fails, the analysis will deliver no value. It seems that in this way only
small systems can be analysed, or in the case of large systems the analysis would

68 Architecture Evaluation Methods

have to be limited to the most important problems. In many cases it will turn out to
be diffi cult to estimate the costs of failures, which makes the prioritisation mecha-
nism diffi cult to use, or even useless.

3.8. ATTRIBUTE-SPECIFIC ARCHITECTURE EVALUATION
METHODS

 Special-purpose architecture evaluation methods focus the analysis on a cho-
sen quality attribute. This specialisation should make them better fi t to the spe-
cifi c needs of evaluating those quality attributes than general-purpose architecture
evaluation methods. The list of attribute-specifi c architecture evaluation methods
has been presented in section 3.3.

3.8.1. Architecture-Level Modifi ability Analysis (ALMA)

 Method highlights: ALMA [19] was specially designed for analysing archi-
tectural support for modifi ability. The scenarios represent categories of changes
that are expected to appear in the future. The impact of those changes is analysed.
ALMA provides detailed guidance as to the elicitation of scenarios and analysis
of the impact of changes, depending on the goal of the evaluation.
 Evaluation goals: chosen at the beginning of the analysis from three options:
maintenance cost prediction (to estimate the effort necessary to adapt a system to
future changes), risk assessment (identify changes that might turn out diffi cult to
carry out), software architecture comparison.
 Examined properties: modifi ability.
 Evaluation process: The assessment process comprises the following phases:
1. Establish the goal of the evaluation – choose one of the three predefi ned goals:

risk analysis, modifi cation cost, architecture comparison.
2. Describe the architecture.
3. Elicit change scenarios
4. Evaluate change scenarios
5. Interpret the results – the results of the change scenario evaluation have to be

interpreted in order to draw conclusions regarding the goal assumed at the be-
ginning of the evaluation.

 Architecture description: ALMA analysis is based on component-connector
models of software architecture.
 Representation of evaluated requirements: modifi ability requirements are
represented as a set of change scenarios, which should represent changes that are
expected to happen in the foreseeable future. The change scenario structure has not
been precisely defi ned. They have a textual form [19], for example “A new report
based on accounting data”, ”Replacement or upgrade of an operating system”.

69 Architecture Evaluation Methods

 Techniques for eliciting requirements: change scenarios are extracted dur-
ing interviews with the architecture stakeholders. There are no general rules on
selecting the interviewed stakeholders, as the right choice depends both on the
system’s specifi cs and the goal of the analysis. The hints presented in [19] could
be summarised as: the stakeholders chosen for an interview should be familiar
with the sources of changes that are important for a given analysis (or even just be
the initiators of those changes) as well as with the types of changes that may come
from these sources. For example, if a system is developed for the mass market,
a certain knowledge about the customers’ needs and domain trends is necessary to
effectively foresee changes. This knowledge can be obtained from the members of
the marketing department rather than from the software developers or architects.
 The two general elicitation techniques are top-down and bottom-up. Top-
down elicitation starts from a chosen change category, and then stakeholders are
prompted to deliver change scenarios falling into that category. In the bottom-up
technique, the interviewed stakeholders come up freely with the change scenari-
os, which are subsequently categorised. The emergence of ever newer scenarios
may also result in modifying the changes classifi cation scheme. In both cases, the
elicitation process is guided by the evaluator, which should aim at exploring the
changes most relevant for the analysis.
 Too many scenarios can make the evaluation too costly or time-consuming.
ALMA addresses this issue by proposing two techniques for minimising the num-
ber of change scenarios that are subject to the analysis:
 clustering scenarios into equivalence classes – sets of similar (equivalent) sce-

narios represented as a single one, representative for the entire set. In this way,
superfl uous scenarios will not be analysed and the entire number of analysed
scenarios will shrink;

 categorising changes – defi ning categories of changes of primary interest and
using them to facilitate and focus the development of new change scenari-
os. The scenario categories may stem from the decomposition of a system’s
domain, e.g. for an accounting system the categories can refl ect the variety
of accounting areas, e.g. fi xed assets, accounts receivable/payable, etc. The
emergence of newer scenarios can enforce the modifi cation of existing change
categories. This technique is integrated with scenario elicitation techniques.

 ALMA integrates the above activities with the elicitation techniques into a sin-
gle change scenario elicitation approach. However, the entire approach has not
been formalised into a precisely defi ned recipe, and the use of the components
described above depends on the expert knowledge of the evaluators. The stop
criteria for the elicitation process are that all the defi ned change categories have
already been considered, and further scenario elicitation does not change the clas-
sifi cation of changes.

70 Architecture Evaluation Methods

 Techniques for prioritising requirements: prioritisation criteria depend on
the evaluation goals. In the case of a maintenance cost prediction, this should be
the probability of the scenario occurring; in the case of a risk assessment goal, it
is the level of modifi ability risks (the most complex scenarios usually produce the
highest risk); in the case of architectural comparison, the two previous criteria can
be used, or scenarios that emphasise differences between the architectures. Priori-
tisation is used in step 3 as an integral part of scenarios elicitation in order to keep
the number of evaluated scenarios at an analysable level.
 Architecture evaluation techniques: the core of the ALMA architecture as-
sessment is the architecture-level impact analysis, which should be performed for
all the changes expressed by the change scenarios. Its aim is to identify the scope
of changes to software architecture that will be needed in order to accomplish the
change scenarios. However, the method offers impact analysis techniques tailored
to the relevant goals of the analysis.
 If ALMA is used for risk assessment, the assessment techniques are aimed at
estimating and comparing the complexity of changes required to fulfi l the sce-
narios. The proposed technique comprises four steps:
1. Determining the initiator of change;
2. Determining the impact level of every scenario. ALMA defi nes four impact

levels for change scenarios: (1) no impact, i.e. the change scenario has already
been provisioned for; (2) a single component is affected only; (3) several com-
ponents are affected, and (4) the software architecture is affected by the sce-
narios, i.e. structural changes are necessary to implement scenario.

3. Establishing the parties that will have to be involved in change implementa-
tion. This concerns particularly owners of the changed components. Note that
change implementation may require modifying external components (e.g. ex-
ternal systems interfaced with the modifi ed software) and that software may
include components owned by third-parties (in terms of intellectual rights).

4. Identifying the level of version confl ict that could result from implementing
a certain change. Three levels have been defi ned: (1) the scenario does not in-
troduce different versions of the same component, (2) the scenario introduces
different versions of the component, (3) the scenario’s implementation causes
version confl icts between the components.

 Although it has not been directly indicated in [19], the proposed risk assess-
ment approach is similar to the well-known equation: Level of risk = Probability
of occurrence × Level of impact, in which ‘level of impact’ should be understood
as the scenario’s complexity. The scenario’s complexity, in turn, is a product of
the number of component owners involved in making the change and the level of
version confl ict. The probability of occurrence has to be discussed with the stake-
holders. Change scenarios that pose a substantial modifi ability risk, may indicate
the need for architectural improvements.

71 Architecture Evaluation Methods

 If ALMA is performed for maintenance cost prediction, the impact analysis
should indicate the existing components affected by a given scenario and new
components that will have to be developed. The estimated maintenance effort E is
given by the formula:

 () ()
M s s I s s

s S c C s c N s
C

CS

P w c P w s
E N

N

where:
PM , PI – productivity of modifi cation (M) and implementation (I). It should be

expressed e.g. in KLOC/Man-hour;
S – represents a set of scenarios;
C(s) – denotes a set of components that needs to be changed to support scenario

s;
N(s) – denotes a set of components that has to be implemented in order to sup-

port scenario s;
NCS – number of change scenarios;
NC – number of changes expected to happen during an assumed period;
sc – size of component changes/implementation expressed in comparable

units;
wc – weight of scenario c, i.e. the ratio of estimated number of changes rep-

resented by scenario c to the total number of changes represented by all
the scenarios (note that this may be different than NC). Therefore, wc is
a share of changes represented by scenario c in the total number of chang-
es represented by all the scenarios.

 The formula estimates the total effort needed to make all the foreseen changes.
Note that each scenario may represent a number of foreseen changes of the same
category (e.g. introducing a new data report). These numbers, which are subse-
quently included in the weights wc, have to be estimated by the stakeholders.
 Evaluation outcomes: depending on the evaluation’s goal they could be: list
of modifi ability risks, estimated cost of foreseeable changes, ranking of compared
architectures with regard to the foreseeable changes.
 Method validation: two detailed, practical case studies presented in [97].
 Method limitations, discussion: ALMA provides detailed guidance for ana-
lysing modifi ability at an architectural level, which is a major advantage over the
similar but more general and sketchy SAAM. The limitation of the method is that
it does require some pre-development (pre-architecting) of changes when analys-
ing the impact of changes. This may be unachievable in many practical cases, as
architecting is usually even more challenging and time consuming than evalua-
tion. Therefore, ALMA can be applied when changes have a rather limited and
foreseeable impact.

72 Architecture Evaluation Methods

3.8.2. Scenario-based Architecture Level Usability Analysis (SALUTA)

 Method highlights: SALUTA [58], [59] facilitates verifi cation of whether
software architecture meets usability requirements, i.e. whether it adequately sup-
ports software usability. Usability is an intrinsically complex property that is de-
fi ned by four sub-attributes (see section “examined properties” below). Usability
scenarios represent cases of software use and the level of support for each of the
usability attributes, which should be provided by the architecture. The most im-
portant part of SALUTA is the usability framework, connecting patterns (tactics)
included in software architecture with usability sub-attributes affected by these
patterns (for complete treatment, see [56]). These relationships provide a basis for
architecture evaluation.
 Evaluation goals: an assessment of architectural support for software usabil-
ity or a comparison of software architectures in terms of their support for software
usability.
 Examined properties: usability. SALUTA assumes that usability combines
four detailed software “usability attributes”:
 Learnability – how easily users can learn to use the software’s features;
 Effi ciency of use – how quickly tasks can be performed by the users, i.e. what

the users’ performance will be when using the software (how many operations
they can perform per unit of time);

 Reliability in use, error handling and recovery – how many errors users make
while using the software, and how easy it is to recover from or correct them;

 User satisfaction – refl ects the users’ subjective opinions.

 The above components of software usability have been identifi ed on the basis
of the defi nitions presented in research papers and standards (compare [56] for
a comprehensive account).
 Evaluation process: The evaluation process comprises four steps:
1. Create usage profi le – comprises elicitation of usability scenarios and priori-

tising them in order to develop a usage profi le representative for the usage of
a given software and suitable for the purpose of the analysis;

2. Describe provided usability – identifi cation of usability properties and patterns
included in the software architecture.

3. Evaluate scenarios – assessing the level of architectural support for the elicited
usability scenarios.

4. Interpret the results – the outcomes regarding the goals of the analysis are
drawnup on the basis of the evaluated usability scenarios.

 Architecture description: SALUTA requires that the usability patterns and
usability properties (see below) included in a software architecture be identifi ed.
The method does not assume any concrete form of architectural description as
the source of information about usability patterns and properties. The patterns

73 Architecture Evaluation Methods

and properties can be identifi ed by analysing the software architecture, functional
design documentation, interviewing the software architects, etc.
 Representation of evaluated requirements: usability requirements are cap-
tured as usability scenarios, which represent cases of users’ interactions with
the analysed software system. Usability scenarios are modelled as a three-tuple
comprising:
 role (the group of users performing the same duties);
 task (the activity made by users with the software; it refl ects the software’s

functionality);
 context of use (the situation in which the software is used, e.g. use on a desktop

computer, use on a mobile device, regular use or training use).

 Techniques for eliciting requirements: the elicitation of usability scenarios
should start by identifying users’ roles, tasks and contexts of use. Then only valid
tuples of the Cartesian product of the sets of users’ roles, tasks and contexts should
be included in the set of considered usability scenarios. Numbers of scale 1–4
should be assigned to the usability attributes for every elicited scenario. They
should refl ect the relative importance of the usability attributes for meeting us-
ability requirements connected with a given usability scenario. The assignment is
a matter of expert judgement and should be done together with the users.
 Let us consider the following usability scenario: in an accounting system,
the chief accountant performs the annual closing of accounts once a year. This
consists of a number of steps that should receive fi nal approval after verifying
whether the profi t-loss account and balance sheet are correct. The usability at-
tributes for the scenario could be given the following values: satisfaction – 1 (low
importance), learnability – 3 (signifi cant importance, it should be easy to learn
how to perform the annual closing), effi ciency – 1 (low importance, the operation
is done only once a year), reliability – 4 (the correctness of the annual closing is
a very important feature).
 Techniques for prioritising requirements: In order to make an evaluation
feasible, it has been suggested to focus the architectural analysis only on scenarios
that are representative for a system’s use. No strict prioritisation technique has
been indicated in the method’s description [58]. The scenarios’ priorities may de-
pend on the goal of the analysis. The importance of the scenarios may refl ect such
things as the importance of certain scenarios to users, the frequency of performing
certain tasks in certain modes, the evaluated differences between architectures.
The analysts usually chose only the most important scenarios, i.e. those with the
highest priority, for further analysis. The set of such carefully chosen scenarios
has been referred to as the usage profi le.
 Techniques for Evaluating Architecture: the architecture analysis is made
scenario-by-scenario. For every evaluated usability scenario, the sets of usability
patterns and properties affecting a given usability scenario are identifi ed. Identi-

74 Architecture Evaluation Methods

fi ed usability patterns and properties can be related to the usability attributes by
the use of the usability framework (fi gure 10) [58]. This captures the relationships
between:
 usability attributes and the usability properties affecting those attributes,
 usability properties and usability patterns (they are in fact architectural tactics

for usability, compare [16]) that could have been applied in order to implement
certain usability properties.

 The usability framework is the core of the SALUTA method, as it summarises
the knowledge necessary for a usability evaluation of the architectural support.
Let us note that the terms “effi ciency” and “reliability” are used here as attributes
of the interaction with the analysed system, and should not be understood as de-
fi ned in ISO 9126.
 Finally, the level of support for every usability attribute is subject to expert
judgement based on:
1. Usability patterns/properties affecting a certain usability scenario;
2. Usability attribute priorities (importance levels) established while eliciting

scenarios;
3. Knowledge of the architecture analyst.

 The result of the scenario’s evaluation may be expressed as a percentage of
fulfi lment, with a two-level (supported/not supported) or fi ve-level (–, – –, –/+, +,
++) scale, depending on the range and level of detail of available information.

Figure 10. Fragment of the usability framework (prepared on the basis of [58])

 Returning to the example of an accounting system, let us assume that the soft-
ware architecture contains two usability patterns addressing the usability scenario,

75 Architecture Evaluation Methods

namely a wizard that guides through the closing process, and context sensitive
help. Both these usability patterns provide guidance, increasing learnability and
reliability, and have been identifi ed while eliciting usability scenarios as attributes
of the highest priority. In order to assess the level of architectural support for this
usability scenario, a broader knowledge on the closing process is needed. For
every chief accountant, it is obvious that the system should allow trial annual clos-
ings to be made, and to be undone. This important usability pattern has not been
included in the software architecture, which is a major weakness. So the support
for a given scenario can be assessed as partial (e.g. 50% of fulfi lment or –/+).
 Evaluation outcomes: have not been precisely specifi ed or structured. In gen-
eral, the outcomes depend on the goal of the analysis (usability support assess-
ment or comparison of architectures). The outcomes of the evaluation have not
been prescribed or limited by the method’s authors. The evaluation may result
in: information about the level of architectural support for the software usability,
a list of components that require improvement, a list of scenarios usability pat-
terns that should be included in order to ensure the right level of usability support.
 Method validation: three real-world case studies [57].
 Method limitations, discussion: SALUTA’s usability framework is the main
contribution of the method. It summarises knowledge on the architectural ramifi -
cations of software usability. It is both useful for architects, designers and evalua-
tors. The usability framework later evolved into “usability tactics”, compare [16].
As the brief example presented in this section reveals, a successful evaluation
depends on the evaluator’s knowledge and the appropriate participation of users,
as the assessment technique defi nes the framework rather than a precise evalua-
tion recipe.

3.8.3. Performance Assessment of Software Architecture (PASA)

 Method highlights: PASA [155] is aimed at verifying that software architec-
ture suffi ciently supports performance. The architectural assessment is done by
identifying patterns and anti-patterns that may impede performance or by apply-
ing model-based performance analysis techniques.
 Evaluation goals: the goals of the analysis have not been explicitly defi ned,
nor are they supposed to be identifi ed or chosen during the analysis. The method
identifi es “potential areas of risk with respect to performance and other quality
objectives” [155].
 Examined properties: performance.
 Evaluation process. The evaluation process of PASA comprises nine, almost
self-explanatory, steps:
1. Process Overview – PASA is presented to the participants of the evaluation.
2. Architecture Overview – the architecture is presented to the participants.

76 Architecture Evaluation Methods

 3. Identifi cation of Critical Use Cases
 4. Selection of Key Performance Scenarios
 5. Identifi cation of Performance Objectives
 6. Architecture Clarifi cation and Discussion – the participants discuss the archi-

tecture in more detail in order to better understand its components determining
the system’s performance.

 7. Architectural Analysis – is aimed at assessing whether architecture suffi ciently
supports the performance requirements and the discovery of architectural fl aws
that may impede the system’s performance.

 8. Identifi cation of Alternatives – developing corrections to software architecture
in order to correct fl aws detected during the Architectural Analysis. The au-
thors propose some kinds of corrective actions: architecture refactoring aimed
at the removal of detected anti-patterns, the modifi cation of instantiation of
architectural patterns, in order to improve performance and/or modify interac-
tion between the components.

 9. Presentation of Results (and reporting).
10. Economic analysis – its purpose is to produce evidence of the value of every

PASA-based evaluation to its participants. This evidence may comprise a sum-
mary of the costs and effort presented against the list of benefi ts of a PASA-
based evaluation. The value of the benefi ts of the evaluation can be expressed
in terms of the time and money that would have been required to correct dis-
covered architectural fl aws if they had not been found during the architectural
evaluation.

 Architecture description: PASA does not assume any concrete form of archi-
tecture documentation. It also accepts that architectural description may turn out
to be incomplete and informal, so it may be necessary to elicit it directly from the
developers.
 Representation of evaluated requirements: quantitative performance re-
quirements should be identifi ed for every key performance scenario. Key perfor-
mance scenarios are scenarios of interactions with a system, which might have
a prevailing impact on the system’s performance. These requirements may con-
cern response time, throughput and constraints on resource utilisation.
 Techniques for eliciting requirements: The use cases, which determine sys-
tem performance, have been referred to as “critical”. These critical use cases re-
fl ect the responsiveness of a system to the actions of the actors (users), or con-
cern the use cases that are particularly vulnerable to a system’s performance. As
each critical use case may contain a number of alternative interaction scenarios,
it is necessary to choose for the analysis those that have a prevailing impact on
performance, for example alternatives that are rarely executed can be ignored.
Performance requirements connected with the scenarios should be expressed in
quantitative terms.

77 Architecture Evaluation Methods

 Techniques for prioritising requirements: selecting critical use cases and
their most important scenarios, which can be done while eliciting the requirements.
 Architecture Evaluation Techniques: the impact of the software architecture
on performance can be assessed using one of the three proposed techniques:
1. Identifying architectural patterns included in the system’s design and investi-

gating their infl uence on the system’s performance, this is a similar technique
as in ATAM and PBAR (compare section 2.2.5).

2. Identifying performance anti-patterns, i.e. typical architectural structures that
hinder performance [138], [43], [44] that might have been included in the sys-
tem’s design or implementation.

3. Applying quantitative performance analysis techniques – an extensive survey
of such techniques can be found in [12].

 Evaluation outcomes: detected performance issues (detected patterns or anti-
patterns that may impede performance, bottlenecks, quality requirements not met)
proposed architectural corrections.
 Method validation: lack of precise information, in [155] it was said that PASA
is a result of multiple assessments in several software domains over fi ve years.
 Method limitations, discussion: PASA requires from one intensive to several
less-intensive weeks [155]. Evaluation staffi ng has not been precisely specifi ed.
The method is rather sketchy with regard to the evaluation process and analysis
techniques.

3.8.4. Continuous Performance Assessment of Software Architecture
(CPASA)

 Method highlights: CPASA is a lightweight performance evaluation method
that should be applicable in an agile development. The evaluation process of the
PASA method (section 3.8.3) makes it most suitable for elaborative development
processes such as waterfall or the Rational Unifi ed Process [95]. However, the
application of PASA in agile development processes is problematic. CPASA was
developed in order to address the above issue. The method extends iterations of
agile development processes with the evaluation of the architecture’s impact on
the system’s performance. In this way, software architecture support for the per-
formance requirements is permanently monitored.
 Evaluation goals: the continuous assessment of the performance aspects of
the system being developed by the use of an agile methodology.
 Examined properties: performance.
 Evaluation process: CPASA integrates a performance evaluation of software
architecture into an agile development process. Performance evaluation tests are
performed between every two consecutive iterations of the agile development
process. If a performance problem is detected during the evaluation, then design

78 Architecture Evaluation Methods

refactoring should be undertaken in order to resolve the problem. The evaluation
itself comprises two steps:
1. Construction of a performance model;
2. Solving the performance model.

 Architecture description: mainly as UML component diagrams.
 Representation of evaluated requirements: as in PASA (section 3.8.3).
 Techniques for eliciting requirements: as in PASA (section 3.8.3).
 Techniques for prioritising requirements: as in PASA (section 3.8.3).
 Architecture Evaluation Techniques: the method promotes the extensive
re-use of performance models built during earlier development cycles. In [119],
performance analysis techniques and models such as Markov Chains, Queuing
networks, Petri nets (incl. stochastic Petri Nets) and Process algebra (TIPP) have
been mentioned as possible choices. The resolution of performance models built
at preceding agile iterations, altered in order to refl ect the changed conditions or
automatically generated from UML models (UML-JMT tools based on the Ex-
tended Queuing Network model [1] were developed for that purpose; the SPEED
tool [137] can also be used) is promoted as the main means of monitoring whether
architecture keeps supporting the performance requirements. This is supposed to
fi t well into the concept of test-driven development.
 Evaluation outcomes: identifi ed performance issues.
 Method validation: no information.
 Method limitations, discussion: the method’s success relies heavily on the re-
use of performance models built earlier in the course of a project, as well as on tool
support. The general challenge is the validity of parameters fed into those models,
namely execution times or their distributions. If they can be measured directly
on the running software, the application of CPASA makes little sense. If not, the
accuracy of such estimations is generally questionable. This may undermine the
trustworthiness of the outcomes of a performance analysis based on that model.

3.8.5. Architecture Evolvability Analysis (AREA)

 Method summary: AREA [26], [27], [30] was designed to analyse whether
software architecture adequately supports evolution. AREA assumes that evolution
is a controlled and deliberate process, which does not hold true in every case; con-
sider, for example, software evolution in emergent organisations in [22]). Evolv-
ability is a multidimensional attribute that is defi ned by a set of sub-characteristics
(e.g. analysability, changeability, extensibility). The main challenge addressed by
the AREA method is that evolvability sub-characteristics usually have a differ-
ent importance to different stakeholders. So, in order to evaluate software evolv-
ability, it is necessary to start by defi ning what the evolvability of a given piece
of software means. This leads to inevitable trade-offs that have to be achieved

79 Architecture Evaluation Methods

between the expectations of the stakeholders. AREA enables both qualitative and
quantitative evaluations. In a qualitative evaluation, the consensus between the
stakeholders is achieved through an informal discussion of the importance of re-
quirements and of their infl uence on the evolvability of candidate architectural
solutions. In a quantitative evaluation, the process of making these trade-offs is
achieved through the use of Analytical Hierarchical Process (AHP) [128], [129]
for requirements prioritisation and a comparison of architectural solutions.
 Evaluation goals: identifi cation of the weak parts of a system’s architecture
with regard to evolvability, defi ning evolvability requirements, choosing an archi-
tecture’s modifi cations that best suit software evolvability.
 Examined properties: evolvability. Evolvability has been defi ned as the abil-
ity of a software system to accommodate changing requirements. Let us note that
maintainability [117], [74] is a similar notion, with a broader meaning than evolv-
ability, as it defi nes the ability of a software to adapt to changes of any kind (e.g.
error removal, functional extensions, hardware changes, etc.)
 Evolvability is an aggregate of sub-characteristics that may vary among different
domains. The main enablers of evolvability, according to [26], are: analysability, ar-
chitectural integrity, changeability, extensibility, portability, testability, and, domain-
specifi c attributes (e.g. timing properties in the case of hard real-time systems).
 Evaluation process: AREA’s evaluation process comprises four steps:
1. Elicit architectural concerns;
2. Analyse implications of change stimuli – identify the evolvability requirements;
3. Propose architectural solutions;
4. Assess the proposed architectural solutions and present the evaluation’s

outcomes.

 Architecture description: AREA does not promote any concrete form of
architectural description to be used. Instead, it has been indicated that analysis
focuses on architectural constructs (i.e. fragments of architecture, such as compo-
nents and systems) related to the identifi ed problems, as well as on architectural
solutions that should be developed during the analysis in order to respond to the
evolvability requirements. Architectural solutions are equivalent to architectural
decisions (section 2.2). They are defi ned by the following components:
 problem description (the weaknesses of the original architecture),
 new requirements the architecture should support,
 improvement solution resolving the problem
 rationale and architectural consequences of the proposed solution,
 estimated workload needed to carry out the solution.
The above information is gathered during the evaluation.

 Representation of evaluated requirements: the evolvability requirements
are captured as sentences, possibly accompanied by a list of possible refi nement

80 Architecture Evaluation Methods

activities related to these requirements (compare also architectural tactics, which
are a similar concept – section 2.2.5). It should be possible to assign the require-
ments to the appropriate evolvability sub-characteristics.
 Techniques for eliciting requirements: the evolvability requirements should re-
fl ect change stimuli and architectural concerns that have to be identifi ed prior to es-
tablishing the requirements (steps 1 and 2). Change stimulus is an event or a condition
that may require changes to be made to software architecture. Change stimuli usually
refl ect the stakeholders’ concerns relating to evolvability. Requirements are identifi ed
by analysing how change stimuli infl uence software architecture. Let us consider an
example: the company has developed a traveling salesmen application for a certain
PDA model. The company’s management expects this system to become a fl agship
product sold to multiple clients, using various mobile devices and mobile operating
systems. The evolvability requirements would certainly include the following:
R.1. Portability between various hardware platforms
 investigate the available hardware platforms;
 investigate the support for portability provided by the operating systems;
 introduce a hardware abstraction layer in the application.
R.2. Portability between operating systems
 investigate the operating systems used on mobile devices;
 introduce an operating system abstraction layer, implement the function-

ality as a layer above the abstraction layer.

 Techniques for prioritising requirements: requirements prioritisation is
made by a discussion between the evaluation participants (qualitative evaluation),
or through the use of AHP (quantitative evaluation). In the case of a qualitative
evaluation, it is recommended to agree on the prioritisation criteria fi rst, then to
prioritise the requirements.
 Architecture Evaluation Techniques: in response to the evolvability require-
ments, architectural solutions, including architectural modifi cations or refactor-
ings, should be proposed. Then their infl uence on evolvability sub-characteristics
should be assessed, which is done either by discussing the solutions with the par-
ticipants (qualitative evaluation), or through applying AHP with pair-wise com-
parisons of architectural solutions done by the individual participants (quantitative
evaluation). In both cases, the participants should present their expert judgement
on the architectural solutions. The assessed infl uence of an architectural solu-
tion on evolvability sub-characteristics, together with the requirements priorities,
should guide the selection of the most suitable solutions.
 Evaluation outcomes: prioritised architectural requirements; stakeholders’
evolvability concerns; candidate architectural solutions; and the impact of the ar-
chitectural solutions on evolvability. [26].
 Method validation: at least one industrial case study [28].

81 Architecture Evaluation Methods

 Method limitations, discussion: AREA, as presented in [26], is in fact a meth-
od supporting software reengineering by facilitating the choice from among the
alternative architecture modifi cations. Nevertheless, it should also be applicable
for software architecture during the design stage. AREA requires moderate effort
as it is typically performed during three half-day workshops, though with quite
a broad participation of architecture stakeholders (architects, product manager,
key software developers, and evaluator). The identifi cation of stakeholders’ con-
cerns and combining them with change stimuli is a tricky part of the methods,
which relies entirely on the expertise of the participants.
 The quantitative version requires that participants accept that their opinions
are subject to an automated calculation procedure, which derives the basis for
formulating the outcomes of the evaluation. Co-operation between participants is
a necessary precondition for a successful qualitative evaluation. In both versions
of the method, the participants build their opinion on the infl uence of architectural
solutions on the evolvability sub-characteristics using their own expertise.

3.8.6. Software Architecture Reliability Analysis Approach (SARAH)

 Method highlights: SARAH [148] was designed to be used to analyse reli-
ability as perceived by the users of consumer electronics devices. The reliabil-
ity requirements are identifi ed as failure scenarios associating components with
sets of their possible failures. Failures are captured according to a failure domain
model providing a catalogue of possible failures, errors and faults. FTA is used to
model interactions between the failures. This enables critical components caus-
ing or facilitating the majority of failures to be identifi ed, and reliability tactics to
improve their reliability to be applied.
 Evaluation goals: the evaluation is performed to obtain information necessary
for system components to be modifi ed in order to improve a system’s ability to
avoid or tolerate faults.
 Examined properties: reliability, which is defi ned as “the ability to cope with
failures” [148].
 Evaluation process:
Phase 1. Defi nition
 1.1. Describe the architecture
 1.2. Develop failure scenarios (elicit reliability requirements)
 1.3. Derive fault tree set (explore dependencies between failure scenarios)
 1.4. Defi ne severity values in the fault tree set (prioritise failure scenarios)
Phase 2. Analysis
 2.1. Perform architectural level analysis
 2.2. Perform architectural element level analysis
 2.3. Report (summarising the outcomes and the information gathered during

the analysis – domain model, failures scenarios, fault tree set, etc.)

82 Architecture Evaluation Methods

 Additionally, SARAH includes an “Adjustment” phase during which reliabil-
ity tactics should be applied in order to correct the detected architectural fl aws.
 Architecture description: not prescribed, the example in [148] and [140] uses
module or component views; generally coarse-grained level representations are
preferable for a SARAH analysis as the method analyses all the identifi ed archi-
tectural elements (components).
 Representation of evaluated requirements: failure scenarios are “potential
failures that could occur due to internal or external causes within a given context”
[148]. Each failure scenario should be defi ned using the following attributes:
 Failure Identifi er – a unique identifi er for a failure scenario.
 Architectural element identifi er – an acronym identifying the architectural ele-

ment (component) affected by a given failure scenario;
 Fault, Error, Failure – represented according to the failure domain model (see

below).
 This above representation is compliant with the Failure Mode Effect Analysis.

 Techniques for eliciting requirements: reliability requirements are derived in
three steps:
1. Defi ne the failure domain model relevant for the domain of the analysed system.
 Failure is defi ned by three features:
 Fault – characterises the cause of an error, for example, a bug in a software

or a hardware failure;
 Error – characterises how an element fails, the state of the system causing

a failure, for example data corruption, deadlock, livelock, etc.;
 Failure – occurs when a service rendered by a system becomes in any way

distorted. This attribute characterises a system malfunction, especially
those visible to the users. The causal chain is: fault -> error -> failure.

 The failure domain model provides space for available failure scenario de-
scriptions by defi ning a vocabulary of attributes of faults, errors and failures, and
possible values for those attributes. The domain model should be developed by
systematically analysing the domain of the system being evaluated. A domain
model for digital TV software presented in [148] is set out below (possible values
of each of the attributes are given in brackets):
 Faults are characterised with the following attributes: “source” (internal/ex-

ternal/other element), “dimension” (hardware/software) and “persistence”
(persistent/transient)

 Errors are characterised by “type” (data corruption/deadlock/wrong value/
wrong execution path, etc.), “detectability” (detectable/undetectable) and “re-
versibility” (reversible/irreversible)

 Failures are characterised by “type” (timing/behaviour/presentation quality/
wrong value) and “target” (user/other element).

83 Architecture Evaluation Methods

2. Derive failure scenarios.
 Failure scenarios are identifi ed for each of the architectural elements by the

evaluation participants. SARAH does not provide any additional guidance in
this respect.

 Techniques for prioritising requirements: SARAH requirements prioritisa-
tion is performed during step No 1.3 “Derive fault tree set from failure scenarios”
and No 1.4 “Defi ne severity values in fault tree set” (the former is needed to per-
form the latter).
 The failure of one component can cause the failure of another component and so
forth. Fault trees should capture these cause-effect relationships between the fail-
ure scenarios. Failure scenarios affecting users directly should be identifi ed in the
entire set of scenarios. The roots of fault trees of interest should represent failures
observable by users. The leaves of the fault trees defi ne the root causes of failures.
 Severity values are fi rst assigned to the leaves of the fault trees, and then they
are automatically propagated up the trees to their roots, using an algorithm pre-
sented in [148]. This way, the most severe failure scenarios observable by users
are identifi ed.
 SARAH ranks failure scenarios severity using the following scale: 1 – very
low (failure hardly noticeable by the users), 2 – low (failure noticeable but not
annoying), 3 – moderate (annoying), 4 – high (loss of functionality), 5 – very high
(system useless, basic functions unavailable, stops responding). It is also possible
to use a more elaborate model of users’ perception of failures, thought this is
treated as an external input to the method.
 Architecture Evaluation Techniques: The analysis of architecture comprises
the following two steps (compare the “evaluation process” subsection below):
1. Analysis at an architectural level – aims to identify components that have

a prevailing impact on a system’s reliability. This is achieved by prioritising
components according to the percentage of failures connected with a given
component or according to the weighted percentage of failures, i.e. the share of
severity of failures connected with a given element in the sum of all the failure
severities.

2. Analysis at an architectural element-level – the most sensitive architectural el-
ements identifi ed in the previous steps are analysed to establish how they fail.
This can be achieved by analysing the failure scenarios connected with a given
architectural element in order to group them according to the failure domain
model. This way, the most common faults, errors and failures can be identifi ed.
This, in turn, is necessary to adjust software architecture by applying suitable
architectural tactics [16] chosen in order to increase the system’s reliability.

 Evaluation outcomes: list of unreliable and sensitive components, types of
failures that might frequently happen.

84 Architecture Evaluation Methods

 Method validation: single detailed practical example in [148] and [140].
 Method limitations, discussion: although reliability can be analysed with
ATAM, SARAH provides a much more detailed guidance on carrying out the reli-
ability evaluation. The method assumes that the coupling between the components
is low, which may be typical in the case of embedded software for home electronic
devices. The components should also be coarse-grained to make a SARAH-based
evaluation feasible. This allows for a manageable number of failure scenarios to
be captured and for the causal logic of failures to be captured with fault trees. It is
hard to imagine this method being applied for business software. The calculation
of severity values on the basis of the severities of the root causes seems to be prob-
lematic: such a calculation certainly makes sense in the case of propagating fault
probabilities up the fault tree, though severity levels can be assigned directly to
the failures observable by users on the basis of knowledge of the system. In such
a case, the propagation of severity values would not be needed. Another problem
is how failures not directly affecting users can be assessed in terms of the distur-
bance they cause to the users. SARAH does not clarify that issue.

3.8.7. Aspectual Software Architecture Analysis Method (ASAAM)

 Method description: ASAAM [149] is an extension to SAAM, which en-
hances SAAM by identifying aspects and the tangled components related to them.
This indicates components that may require refactoring because overly complex
components may seriously impede a software’s modifi ability.
 Evaluation goals: verifi cation of whether the architecture suffi ciently sup-
ports the separation of concerns. This is achieved by identifying overly complex
(tangled) components.
 Examined properties: coupling and cohesion of software modules that may
infl uence attributes such as modifi ability, maintainability and evolvability.
 Evaluation process: ASAAM extends the SAAM evaluation process in the
following way:
 The step “Individual scenario evaluation and aspect identifi cation” extends the

SAAM step “Perform scenario evaluations” with techniques for the identifi ca-
tion of crosscutting concerns represented by quality scenarios. Heuristic rules
defi ned in [149] classify scenarios into groups of direct scenarios, indirect sce-
narios, aspectual scenarios and architectural aspects.

 The step “Scenario interaction assessment and component classifi cation” ex-
tends the SAAM step “Reveal scenario interaction” with techniques that clas-
sify components into cohesive component, tangled components, composite
components, or ill-defi ned component groups.

 ASAAM’s evaluation process ends with the “Refactoring of architecture” step,
during which the architecture should be modifi ed in order to ensure the proper

85 Architecture Evaluation Methods

separation of concerns. Techniques such as applying design patterns or aspect-
oriented techniques are recommended for that purpose.

 Architecture description: component-connector models, as in SAAM
(section 3.6.1).
 Representation of evaluated requirements: SAAM-style quality scenarios.
 Techniques for eliciting requirements: as in SAAM.
 Techniques for prioritising requirements: n/a.
 Architecture Evaluation Techniques: ASAAM introduces a set of heuristic rules
for classifying scenarios and components (see below). For more detail, see [149].
 Evaluation outcomes:
 quality scenarios classifi ed into groups of direct scenarios (supported by the

existing architecture), indirect scenarios (requiring changes to one or more
components in order to be supported), and aspectual scenarios (support for
a given scenario is distributed among the components and cannot be refactored
into one).

 software components classifi ed into the following groups: cohesive (well-de-
fi ned, supports semantically close scenarios), composite (consists of a number
of cohesive components), tangled (supports the aspectual scenario directly or
indirectly), ill-defi ned (supports semantically distinct scenarios and cannot be
decomposed, or does not support the aspectual scenario);

 architectural aspects corresponding to the identifi ed aspectual scenarios are
also identifi ed.

 Method validation: a single case presented in [149].
 Method limitations, discussion: the coupling and cohesion of software com-
ponents has a strategic value as it generally determines how easy it will be to main-
tain and evolve software. The notion of semantically close or semantically distant
is rather a vague one; therefore, the proper classifi cation of components relies on
a subjective assessment of the evaluator. The general limitation of ASAAM is that
a set of quality scenarios enabling an effective analysis of software modularity
would have to cover the entire software functionality. This is rarely achievable.
In SAAM, scenarios mostly capture expected software modifi cations, but not the
functional requirements already met.
 The refactoring of architecture in order to eliminate all the tangled and ill-
defi ned components will not always be possible, so a compromise will have to be
achieved, which is not addressed by ASAAM.

3.8.8. Cost-Benefi t Analysis Method (CBAM)

 Method highlights: CBAM [82], [15] is actually a supplement to ATAM. It
takes as an input a set of quality scenarios developed during ATAM. The outcome

86 Architecture Evaluation Methods

is information on the Return On Investment (ROI) for a number of considered
architectural strategies. During the evaluation, those quality scenarios that are less
important for achieving business goals are gradually eliminated as the analysis
proceeds.
 Evaluation goals: comparison of architectures (built-in) by the Return on In-
vestment delivered by each of “architectural strategies”.
 Examined properties: as in ATAM, i.e. possibly all the important non-func-
tional quality attributes;
 Evaluation process: The method comprises 9 steps described in detail in [15].
 Step 1. Scenarios gathered during the ATAM evaluation, and some added by
the CBAM participants, are prioritised based on their ability to satisfy business
goals. Out of the entire set, only one third should be left for the refi nement in
step 2.
 Step 2. The levels of response measures are elicited by indicating worst-case,
current, desired, best-case levels for each of the scenarios selected in step 1. These
levels have to be expressed in quantitative terms, e.g. system response time:
100 ms, 50 ms, 20 ms, 10 ms for each of the mentioned levels respectively.
 Step 3. The scenarios are prioritised by the stakeholders with a cumulative
voting technique or just by agreeing the priorities during a discussion. Numbers
of votes obtained by every scenario should be transformed into weights (range
0.0–1.0). The 1.0 weight should be assigned to the scenario that obtained the big-
gest number of votes. The stakeholders should base voting on the response levels
of each scenario, which is desired by them. The votes given for each scenario
should be totalled and the top 50% of the scenarios should be selected for step 4.
The quality attributes that have turned out to be most important to the stakeholders
should be listed.
 Step 4. Utility is assigned for each of the response levels by consensus of the
stakeholders. Worst-case level is assigned a utility of 0, “best-case” of 100; the
utility values for “current” and “desired” levels are decided by the stakeholders.
 Step 5. Architectural strategies should be developed for the scenarios. The
expected attribute response levels for each scenario should be determined. A sin-
gle strategy can infl uence multiple scenarios; hence the expected response levels
should be estimated for all the scenarios affected by an architectural strategy.
 Step 6. The expected utility value of an architectural strategy is estimated us-
ing interpolation.
 Step 7. The total benefi t of an architectural strategy should be calculated as
a normalised sum of the differences between the expected utility of a strategy and
the current utility overall the scenarios and quality attributes. The normalisation fac-
tors should be the numbers of votes that every quality scenario obtained in step 3.
 Step 8. Architectural strategies are selected on the basis of ROI regarding cost
constraints. ROI is calculated as a ratio of “Total benefi t” to “Cost of implement-

87 Architecture Evaluation Methods

ing a strategy”. ROI is a ranking factor for all the strategies. The strategies for
which implementation exceeds cost constraints are rejected.
 Step 9. Confi rm the results with intuition. The results obtained after step 8
should be verifi ed as to whether they are in line with the business goals and intu-
ition. If not, reiterating steps 1-8 should be considered.

 Architecture description: as in ATAM.
 Representation of evaluated requirements: quality scenarios.
 Techniques for eliciting requirements: CBAM is a supplement to ATAM,
hence the scenarios generated during ATAM provide a basis for the analysis; more
scenarios are added by additional brainstorming.
 Techniques for prioritising requirements: cumulative voting technique or
agreeing the priorities during a discussion.
 Architecture Evaluation Techniques: the method relies on expert judgement,
but still enforces an assessment of quality attributes in quantitative terms.
 Evaluation outcomes: Return On Investment (ROI) for each of the considered
architectural strategies
 Method validation: several detailed examples presented, e.g. in [15], [82].
 Method limitations, discussion: CBAM is based on expressing stakeholders’
expectations and analysing system properties in quantitative terms. This is both
a virtue and a vice. The quantitative results are unambiguous and supposedly more
convincing. However, most numbers gathered during CBAM do not result from
a measurement or model-based analysis, but express the intrinsically subjective
opinion of the stakeholders. The authors observed that such a quantitative assess-
ment procedure may sometimes lead to results that contradict the business goals,
and proposed that the outcomes be verifi ed intuitively (step 9).

3.9. APPLICATION DOMAIN-SPECIFIC ARCHITECTURE
EVALUATION METHODS

3.9.1. Holistic Product Line Architecture Assessment (HoPLAA)

 Method highlights: HoPLAA [109], [110] reorganises ATAM (section 3.6.2)
in order to make it more suitable for evaluating product line architectures rather
than single product architecture. The key observation underlying HoPLAA is that
to evaluate product line architecture it is necessary to evaluate both the common
architecture for the entire product line (known as the “core architecture”) as well
as the architectures of the individual products. The former should address the
requirements common to all the products in a product line, while the latter should
include both common and product-specifi c requirements. The main idea delivered
by HoPLAA is to analyse the core architecture fi rst (phase I), then to analyse the

88 Architecture Evaluation Methods

product architectures (phase II) to confi rm whether these preserve the support for
the common requirements while supporting the requirements specifi c to every
individual product. HoPLAA is an extension of ATAM, so the description below
emphasises only the differences between these two methods.
 Evaluation goals: as in ATAM, i.e. established during the analysis.
 Examined properties: HoPLAA can be applied in order to assess product line
architecture against any quality attributes.
 Evaluation process:
Phase I. Core Architecture (CA) evaluation
 Step I.1. Present HoPLAA for phase I
 Step I.2. Present the product line architectural drivers – business goals moti-

vating the product line, its scope as well as commonality and vari-
ability of products, especially concerning quality goals.

 Step I.3. Present the product line architecture – architects present the Core
Architecture.

 Step I.4. Identify architectural approaches
 Step I.5. Generate, classify, brainstorm, and prioritise quality attribute

scenarios.
 Step I.6. Analyse architectural approaches/generic scenarios
 Step I.7. Present results. A report summarising the outcomes of phase I should

be delivered.
Phase II. Product Architecture (PA) evaluation
 Step II.1. Present HoPLAA for phase I
 Step II.2. Present the product architectural drivers
 Step II.3. Present the product architecture
 The presentation should concentrate on the parts of architecture that have been

enhanced through the implementation of variation points.
 Step II.4. Identify architectural approaches
 Step II.5. Generate, classify, brainstorm, and prioritise quality attribute scenarios
 Step II.6. Analyse architectural approaches/generic scenarios
 Step II.7. Present the results. (A report summarising the outcomes of phase I

should be delivered.)

 Architecture description: HoPLAA requires a description of the core archi-
tecture and the product architectures as required by ATAM; in particular, the ar-
chitectural approaches included in an analysed architecture should be identifi ed.
 Representation of evaluated requirements: quality scenarios represented as
in the ATAM (source, stimulus, artefact, environment, response, response mea-
sure). A utility tree should also be developed, similarly to ATAM.
 Techniques for eliciting requirements: quality scenarios are brainstormed in
both phases of HoPLAA. In phase I, both scenarios that are common to the entire

89 Architecture Evaluation Methods

product line (called “generic scenarios”) as well as those specifi c to the individual
products are elicited, while in phase II it is possible to add only the quality sce-
narios that are specifi c to the concrete products.
 Techniques for prioritising requirements: in phase I, core architecture
scenarios are ranked for the analysis according to their generality, signifi cance
and cost using a three-level scale: Low (1), Medium (2), High (3). The sum of
these three numbers gives the priorities. For analysing product line architecture
(phase II), scenarios should be ranked using any prioritisation technique, e.g. vot-
ing, cumulative voting or establishing priorities through discussion.
 Architecture Evaluation Techniques: analysing architectural approaches with
respect to the affected quality scenarios seems to be the main evaluation technique
used in HoPLAA. Nevertheless, the method does not forbid the use of any other
architecture evaluation technique, as with ATAM. Generic scenarios with the high-
est priority are inspected during the evaluation of the core architecture, while both
generic and product specifi c scenarios should be analysed during the analysis of
product line architectures. This allows confi rmation that both common and product
specifi c requirements are supported by the architectures of individual products.
 Evaluation outcomes: the outcomes are generally similar to ATAM and in-
clude lists of architectural approaches, utility tree, generic scenarios, product-
specifi c scenarios identifi ed, areas of risks in the CA, non-risks, sensitivity points,
trade-offs, and risk themes. These should be delivered for the core architecture,
as well as for each of the product architectures. Additionally, evolvability points
and evolvability guidelines should also be produced for the core architecture. An
evolvability point is a sensitivity or trade-off point (compare section 3.6.2) that
contains at least one variation point. An evolvability point denotes part of an ar-
chitecture that can be defi ned individually for each product, and that can infl uence
common quality requirements. Evolvability guidelines should indicate how to de-
velop product architectures without violating common requirements.
 Method validation: several practical examples [110], [109].
 Method limitations, discussion: as HoPLAA extends ATAM, its weaknesses
are similar to ATAM’s. They include the high level of effort required for such
a comprehensive analysis, and the method’s intrinsic complexity, etc. (compare
section 3.6.2 “Discussion”). However, such an assessment performed during the
development phase is particularly valuable in the case of a product line, because
its architecture will be re-used by a family of software products, which will be
evolving over many years.

3.9.2. Early Architecture Evaluation Method (EAEM)

 The presentation of the Early Architectural Evaluation Methods has been de-
veloped by reorganising parts of [169], which extended the evaluation method
sketched out in [171].

90 Architecture Evaluation Methods

 Method highlights: the EAEM was designed to analyse architectures of large-
scale distributed systems very early in the development lifecycle, i.e. in the incep-
tion phase of the Rational Unifi ed Process. Such early architecture is represented
as a set of architectural decisions defi ning the backbone of a large-scale system
referred to as the System Organisation Pattern. This comprises functional decom-
position (e.g. domain, systems and applications), geographical allocation, the or-
ganisation of data input, the organisation of distributed data storage and process-
ing. As many practical examples show, these early architectural decisions often
play a critical role in a development project. They may pose a substantial risk,
which has to be properly managed in order to avoid the development project fail-
ing. The EAEM is aimed at identifying these prevailing risks. These are indicated
by a Goal-Question-Metric (GQM) [14] model that is the core of the method. An
evaluation process has been precisely defi ned in order to ensure that the evalua-
tion is made in a disciplined way.
 Evaluation goals: identifi cation of signifi cant risks.
 Examined properties: buildability, performance, reliability.
 Evaluation process: the evaluation process is summarised in table 12.

Table 12. Summary of the EAEM’s evaluation process

Input Output Roles involved Description
Preparation None or architec-

tural documenta-
tion

Description
of the System
Organisation
Pattern

Architects, evalu-
ators

Elicitation of the
System Organisation
Pattern

Evaluation Description
of the System
Organisation
Pattern

Completed eva-
luation model

Architects, evalu-
ators

Fill-in the GQM sche-
me according to the
System Organisation
Pattern.

Risk identi-
fi cation and
mapping

Completed evalu-
ation model, De-
scription of the
System Organisa-
tion Pattern

Risk list Architects, evalu-
ators

Identify risks by inve-
stigating the critical
metric values.

Risk assess-
ment and
feedback

Assessed risk list Assessed risk list Evaluators, relevant
project stakeholders
(incl. architecture
stakeholders, com-
pare [16])

Assess risk severities
and propose mitiga-
tion tactics.

 Architecture description: EAEM evaluates the System Organisation Pattern,
which has already been presented in section 2.2.6.
 Representation of evaluated requirements: the System Organisation Pattern
should serve at least the following three purposes:

91 Architecture Evaluation Methods

 to avoid overly complex designs that might not be achievable by the develop-
ment team – the goal of “complexity control”;

 to ensure that a system’s architecture is in line with the system’s context (e.g.
the target organisation’s structure, the structure of the controlled installation) –
the goal of “context adequacy”; and

 to provide a robust platform for the entire system being developed, i.e. one that
will not threaten the performance and reliability of the system – the goal of
“satisfactory performance and reliability”.

 These goals universally concern all software systems, especially large-scale
ones, and have to be achieved well before more detailed design goals become
achievable. Therefore, in EAEM, the requirements are represented as goals of
a Goal-Question-Metrics scheme, namely “complexity control”, “context ad-
equacy”, “satisfactory performance and reliability”. System organisation pattern
should enable the achievability of these goals, as they will have to be fi nally ful-
fi lled by the detailed design.
 Techniques for eliciting requirements: a fi xed set of requirements built into
the GQM scheme is evaluated in the EAEM.
 Techniques for prioritising requirements: not needed, the GQM goals are
equally important.
 Techniques for assessing architecture: a Goal-Question-Metric model facili-
tates risk identifi cation in EAEM. The goals refl ect the enabling role of the System
Organisation Pattern (compare section “representation of evaluated requirements”
above). These questions, in turn, explore concrete architectural decisions in order
to identify those that may expose the related goals to any substantial risk. Such de-
cisions that may affect the achievability of any of the above goals are, in ATAM’s
terminology, sensitivity points. Metrics assigned to the questions identify the level
of risk that a certain architectural decision may cause. Scales for all the metrics
have been defi ned: the metric values have been ranked in ascending order (from
the worst to the best). Critical values for each of the metrics have been highlight-
ed, as they indicate that there may be a critical design risk.
 The GQM-based architecture evaluation model is presented below.
GOAL: Complexity Control
– Decomposition into a set of subsystems/applications
 DSA.01. Are the specifi ed subsystems/applications functionally consistent?
 Metric: Level of cohesion.
 Scale: Coincidental, Logical, Temporal, Functional.
 Critical values: Coincidental, Logical.
 Comment: The concepts of coupling and cohesion were proposed in

the 1970s in [141], and in [161]. The cohesion scale adopts the scale
proposed in [161]. The levels of coupling are defi ned as follows:

92 Architecture Evaluation Methods

Coincidental – module (subsystem/application) comprises multiple,
unrelated functions serving a variety of purposes; Logical – mod-
ule contains a set of functions belonging to the same genre, but they
serve various purposes; Temporal – module implements a set of func-
tions whose execution is related in time (e.g. initiation functions);
Functional – module serves only a single purpose (e.g. transmitting
data from/to local subsystems).

 DSA.02. Are the specifi ed subsystems/applications suffi ciently independent?
 Metric: Level of coupling.
 Scale: Content, Common, Control, Data, No coupling.
 Critical values: Content, Common, Control.
 Comment: The above coupling levels are an adaptation of the scale

proposed in [113]. The consecutive coupling levels are defi ned as fol-
lows: Content – two modules (subsystems/applications) are directly
accessing and changing each other’s internal data sets; Common –
two modules refer to the same common data sets; Control – one mod-
ule steers the execution of the other one; Data – modules exchange
data using a communication mechanism; No coupling – modules are
independent of each other;

– Data storage distribution
 DSD.01. Does the data storage distribution, together with functional decompo-

sition, imply the need to transfer data between databases?
 Metric: Level of database dependence;
 Scale: High – there are data storages dependent on each other – on

line synchronisation is needed; medium – data upload/download/
 /transfer between databases has been provisioned for; Low – data-

bases are independent or there is a single database, and so synchroni-
sation between databases is not needed.

 Critical values: High.
– Data processing organisation.
 DPO.01. Is advanced local data storage needed for the client application?
 Metric: Kind of client application.
 Scale: Thick, Hybrid, Thin.
 Critical values: Thick.
 Comment: Only a thick client contains advanced local data storage (e.g.

relational database), which can give rise to problems with long transac-
tions and/or data synchronisation between local and central storages.

 DPO.02. What is the duration of transactions necessary to manage the data
storage of a client application?

 Metric: Length of transactions.
 Scale: Unknown, Long, Short.

93 Architecture Evaluation Methods

 Critical values: Unknown, Long.
 Comment: This question encompasses the case of client storage in

a multi-tier application.
 DPO.03. Will ‘central’ data be uploaded/downloaded from/onto local

applications/subsystems?
 Metric: The existence of the need for local data upload/download.
 Scale: Exists/Does not exist.
 Critical values: Exists.
– Management of distributed data storage.
 DSM.01. What is the confi dence in the chosen database synchronisation/data

upload solutions?
 Metric: Level of confi dence.
 Scale: Low – the synchronisation will be implemented entirely by the

development team; high – the synchronisation will base on proven
commercial or proven open source solutions.

 Critical values: Low.
– Transaction management framework.
 TMF.01. What is the confi dence in the selected long transaction management

framework?
 Metric: Level of confi dence.
 Scale: None –pp.problems with long transactions have been noticed,

low – the long transaction management will be designed by the de-
velopment team, high – proven solutions will be used (e.g. commer-
cial transaction monitor)

 Critical values: None, Low.
– Communication framework.
 CF.01. Do the development technologies of choice provide a uniform com-

munication framework ensuring data exchange between equivalent
software units (e.g. processes, distributed objects, etc.)?

 Metric: The existence of uniform communication mechanisms for the
whole software.

 Scale: No, Yes.
 Critical values: No.
 CF.02. Is the communication between the system entities uniform from the

software developer’s point of view?
 Metric: Number of protocols that the developer has to be aware of?
 Critical values: Greater than one.
GOAL: Context Adequacy
– Geographical and organisational allocation of the subsystems/applications.
 GOA.01. Is the allocation of subsystems/applications to the organisation’s

units adequate for the organisation’s structure?

94 Architecture Evaluation Methods

 Metrics: a) Number of organisational units where necessary functions
are unavailable; b) number of organisational units to which superfl u-
ous applications/subsystems have been allocated.

 Critical value: a) Any higher than 0; b) not specifi ed.
 GOA.02. Is the geographical allocation of subsystems/applications adequate

for the geographical distribution of a given organisation?
 Metrics: a) Number of locations where necessary functions are un-

available; b) number of locations where superfl uous applications/
subsystems have been allocated.

 Critical value: a) Any higher than 0; b) not specifi ed.
– Organisation of data input
 ODI.01. Are the physical data input points (scanning devices, typing stations,

sensors) placed at points nearest to the data sources?
 Metrics: a) Time need to move the documents from source to the data

input point; b) distance between source and data input points.
 Critical value: To be established individually.
 ODI.02. Is the electronic data input accessible to the users or systems entering

data?
 Metrics: Share of users or external systems that cannot input data

electronically being adequately equipped.
 Critical value: To be established individually.

GOAL: Satisfactory Performance and Reliability
– The questions below refer by analogy to the respective System Organisation

Pattern components indicated above.
 DSA.01. Defi ned earlier.
 TMF.01. Defi ned earlier.
 DSM.01. Defi ned earlier.
 DPO.02. Defi ned earlier.
 CF.03. Is the communication mechanism planned for distant data transfer

capable of coping with a varying intensity of data load?
 Metric: Level of suitability for a varying data load.
 Scale: Weak – only synchronous communication has been planned;

Strong – asynchronous communication, including queuing services,
has been provisioned for.

 Critical values: Weak.
 CF.04. Does the communication mechanism planned for distant data transfer

guarantee suffi cient communication reliability?
 Metric: Confi dence in the communication mechanism; failure ratio;

ratio of the number of negative application report to the total number
of applications.

95 Architecture Evaluation Methods

 Critical value: Low, high (for confi dence metric); to be established
individually (other metrics).

 ODI.03. Is the data entering the system accurate enough?
 Metrics: Inaccuracy of data input devices; level of disturbances (e.g.

noise) in the system’s environment.
 Scale: Low, medium, high (both metrics), unknown;
 Critical value: High, unknown.
 Comment: The question applies only to systems using scanning or

sensor devices for data input.
 ODI.04. Has the reliability of data input and transfer through the system’s

entities been accounted for?
 Metrics: Number of data entry points, number of routes through

which data is transferred from input devices to system entities.
 Critical value: One (for both questions).

 The critical value of a metric indicates a critical architectural decision that
may endanger the achievability of related goals. In order to identify concrete
risks, the infl uence of the critical architectural decision on related goals and
other system elements should be considered. For example, the choice to imple-
ment a database synchronisation mechanism from scratch may turn out to be too
complex to be properly implemented and tested within the project’s schedule,
which may endanger the goal of “complexity control”. At the same time, there
is a risk that the implemented mechanism may turn out to be defective, endan-
gering the goal of “satisfactory performance and reliability”, and that failures
of database synchronisation may result in failures of the subsystems using this
mechanism.
 In general, the risks themes connected with the evaluated goals are typically:
 in the case of “Complexity control” – the ability of the project team to deliver

features defi ned by the “sensitive” architectural decisions, or features that re-
quire those mechanisms;

 in the case of “Context adequacy” – access to the system not delivered to ap-
propriate organisation entities (departments, geographic locations, or individu-
als), and problems with feeding external data into the system, e.g. inaccurate,
distorted or partially missing data;

 in the case of “Suffi cient performance and reliability” – failures of the mech-
anisms defi ned by the critical architectural decisions, or their inadequate
performance.

 Identifi ed risks should be assessed in order to estimate the actual level of risk,
which is determined by the product of the probability of occurrence and risk im-
pact. The choice of scale is at the discretion of the organisation, though three-level
scales like: low, medium, high, are usually the least confusing and easiest to use.

96 Architecture Evaluation Methods

 The risk level assessment has to be done on the basis of knowledge on the
context of a project, e.g. the skills and experience of the development team, the
experience of the maintenance organisation, the scope and schedule of the proj-
ect, environmental factors (such as the level of electromagnetic noise), dependen-
cies between the system’s entities etc. For example, the probability that database
synchronisation will not be completed within the project schedule can be high if
the development team has no experience in this, and if there are short deadlines,
which can be quite the opposite in the case of an experienced team.
 Evaluation outcomes: list of risks and suggested mitigation tactics.
 Method validation: seven real-life examples of large-scale systems – all the
details are included in [169]. Two illustrate how the Early Architecture Evaluation
Method works let us consider again an example of an interbank clearing system
(section 2.2.6). Consecutive steps of the Early Architecture Evaluation Method
applied have been presented in detail below.

Step 1. Preparation
 The elicited description of the System Organisation Pattern has been sum-
marised in table 13.
Table 13. Description of the System Organisation Pattern of interbank clearing system

Component of the System Organi-
sation Pattern Architectural Decision

Decomposition into a set of sub-
systems/applications

Clearing processing system – processes wire transfer data.
FTP gateway – receives packages of wire transfers data sent
from client applications and makes them accessible for the
clearing processing system
The client application – verifi es the wire transfer data
entered from the bank’s systems before the clearing process,
sends and receives data from the FTP gateway.

Data storage distribution There are no distributed data stores. Each subsystem is equ-
ipped with its own database but only for its internal use.

Data processing organisation Local subsystems follow hybrid client architecture.
Management of distributed data
storage

Distributed data management is not needed.

Transaction management framework Long transactions are not processed by the system.
Communication framework Asynchronous communication between the client applica-

tion and the FTP gateway over the FTP protocol. A similar
situation occurs in the case of communication between the
FTP gateway and the clearing system.

Geographical and organisational
allocation of the subsystems/ap-
plications

The central subsystem is situated in the premises of the
headquarters. Over 50 local subsystems are located in banks
across Poland.

Organisation of data input The data is automatically entered into local subsystems
from the bank’s systems.

97 Architecture Evaluation Methods

Step. 2. Evaluation
 The System Organisation Pattern presented in table 13 has been refl ected in the
completed GQM assessment model depicted in tables 14 and 15.

Table 14. Risk identifi cation and mapping for the “complexity control” goal for interbank clearing
system

Question Metric Metric
Value Risk

DSA.01. Are the specifi ed sub-
systems/applications functionally
consistent?

Level of cohesion Functional –

DSA.02 Are the specifi ed subsystems/
applications suffi ciently independent?

Level of coupling Data –

DSD.01 Is it necessary to transfer
data between databases

Level of database
dependence

Low –

DPO.01 Is advanced local data stor-
age needed for the client application?

Kind of client
application

Hybrid –

DPO.02 What is the duration of trans-
actions necessary to manage the data
storage of a client application?

Length of transac-
tions

Short –

DPO.03 Will ‘central’ data be up-
loaded/downloaded from/onto local
applications/subsystems?

Existence of the
need for local data
upload/download

Exists R.1. The
data down-
load/upload
mechanism
will not be
implemented
on time?

DSM.01 What is the confi dence in the
chosen database synchronisation/data
upload solutions?

Level of confi dence High –

TMF.01 What is the confi dence in the
selected long transaction management
framework?

Level of confi dence N/A –

CF.01 Do the development technolo-
gies of choice provide a uniform com-
munications framework ensuring data
exchange between equivalent soft-
ware units (e.g. processes, distributed
objects, etc.)?

Existence of
uniform commu-
nication mechani-
sms for the whole
software

Yes –

CF.02 Is the communication between
the system entities uniform from the
software developer’s point of view?

Number of
protocols that the
developer has to be
aware of?

1 –

98 Architecture Evaluation Methods

Table 15. Risk identifi cation and mapping for “suffi cient performance” goal (interbank clearing
system)

Question Metric Metric’s value Risks
DSA.01. Are the specifi ed subsystems/
applications functionally consistent?

Level of cohe-
sion

Functional –

TMF.01 What is the confi dence in the
selected long transaction management
framework?

Level of confi -
dence

N/A N/A

DSM.01 What is the confi dence in the
chosen database synchronisation/data
upload solutions?

Level of confi -
dence

High –

DPO.02 What is the duration of transac-
tions necessary to manage the data
storage of a client application?

Length of trans-
actions

Short –

CF.03 Is the communication mechanism
planned for distant data transfer capable
of coping with a varying intensity of
data load?

Level of suitabi-
lity for a varying
data load

N/A N/A

CF.04 Does the communication mecha-
nism planned for distant data transfer
guarantee suffi cient communication
reliability?

Confi dence in
the communica-
tion mechanism

High –

ODI.03 Is the data entering the system
accurate enough?

N/A N/A N/A

ODI.04 Has the reliability of data input
and transfer through the system’s enti-
ties been accounted for?

Number of data
entry points

2 – FTP Gateway
and emergency
mechanism by an
external web portal.

–

Step. 3. Risk identifi cation and mapping
 There is only 1 critical metric value in the completed architecture evaluation
model. No wonder, the list of identifi ed risks is rather short.

Step. 4. Risk assessment and feedback
 Table 16 (risk register) contains only one risk item and its recommended treat-
ment. Let us note that this recommends that this suggests that the considered in-
terbank clearing system was developed on a sound System Organisation Pattern.

Table 16. Risk assessment and proposed treatment (interbank clearing system)

Risks Probability/impact Recommended risk mitigation tactic
R.1. Data download/upload
mechanism will not be im-
plemented?

Low/High Contingency – ensure manual data exchange
via FTP, or even hard media

99 Architecture Evaluation Methods

 Method limitations, discussion: The Early Architecture Evaluation Method
does not require advanced architecture documentation, but it can be applied as soon
as any form of System Organisation Pattern description is available. Thanks to that,
it can be applied much earlier than the Architecture Trade-off Analysis Method, i.e.
in the inception phase of the Rational Unifi ed Process. In reality, the System Or-
ganisation Pattern is often defi ned at pre-project stages, and then it becomes a kind
of architectural skeleton for the subsequently initiated development project. The
method seamlessly integrates with project management by feeding assessed risks
and recommended mitigation tactics into risk management procedures contained in
every project management methodology, such as Prince2 or PMBoK.
 ATAM is a general-purpose, business-goal driven architecture assessment
method. Analysis goals, focus, examined properties and priorities are all estab-
lished during the assessment, with the active involvement of the architecture
stakeholders. This versatility is achieved at the expense of an elaborate assess-
ment procedure, as well as the skills and knowledge needed to facilitate such a full
analysis process.
 The Early Architecture Evaluation Method does not impose a complicated as-
sessment procedure, its context is limited to the System Organisation Pattern, and
its goal is to identify substantial design risks. Achieving these general goals is
a necessary precondition for meeting more concrete quality requirements sup-
porting specifi c business goals. As business goals are not investigated throughout
the analysis, it is assumed that there already exists a business case for the devel-
opment of the system subject to the evaluation. This helps avoid the complexity
generated by tracing business goals throughout the evaluation process, at the cost
of limited versatility and scope of analysis.
 The pattern-based assessment advocated in [66], overcomes many of the limita-
tions of ATAM. However, two basic factors limit the application of their approach
to the System Organisation Pattern: the fi rst is that the assessment is carried out on
a kind of implemented architecture prototype, known as a “walking skeleton”, which
is a rare case in the development of large-scale systems; the second is that the early,
organising decisions often do not provide suffi cient information on architectural pat-
terns included in the design, which makes pattern-based reasoning impossible.

3.10. DISCUSSION: STATE OF ART AND PRACTICE IN
ARCHITECTURE EVALUATION

 This section summarises the survey of architecture evaluation methods pre-
sented in sections 3.6–3.9 and describes state of the art and practice. On this foun-
dation, further research needed to overcome the limitations of the existing meth-
ods has been envisaged – section 3.11.

100 Architecture Evaluation Methods

3.10.1. Evaluation goals, examined properties, form of architecture
description

 Architecture evaluation methods can be characterised according to many prop-
erties (compare section 3.4). This section summarises the survey with respect to
important features of the presented methods.
 Evaluation goals: architecture evaluation methods have been designed to
serve the following goals:
 Risk analysis;
 Verifi cation of architectural support for business goals;
 Comparison of architectures with respect to some characteristics;
 Prediction of the cost of modifi cations;
 Detecting architectural fl aws or requirements not met.

 Examined properties: in fact, the support for almost every non-functional
quality requirement can be subject to the evaluation. A complete list of quality
attributes with methods suitable for analysing them can be found in section 3.3.
 Architecture description: architecture evaluation methods use various forms
of architecture description – see table 17.

Table 17. Forms of architecture description used by the architecture evaluation methods

Form of architecture description Method acronym
Architectural decisions EAEM
Component-connector models SAAM, ALMA, SARAH, COSAAM, ASAAM,
Full architecture description (views) ATAM, APTIA, CBAM, Lightweight-ATAM, HoPLAA
Architectural patterns, tactics, approach-
es, solutions, constructs etc.

ATAM, PBAR, PASA, AREA, SALUTA, HoPLAA

No particular form of architectural docu-
mentation assumed, elicitation of archi-
tectural description during the analysis,
partial description

AREA, ARID, PBAR, TARA, SHADD,

3.10.2. Architecturally Signifi cant Requirements: Representation, Eliciting,
Prioritising

 Representation of evaluated requirements: scenarios are the main form of
capturing architecturally-relevant requirements, though they may differ in detail,
hence, the following types of scenarios have been defi ned:
 Non-formalised scenarios – SAAM, ASAAM, COSAAM, ALMA, AREA;
 Full quality scenarios, introduced by ATAM and used by its derivatives: AP-

TIA, Lightweight ATAM, CBAM, HoPLAA;
 Failure scenarios – represent failures of the components described by fault,

error and failure, compare SARAH in section 3.8.6;

101 Architecture Evaluation Methods

 Usability scenarios – capture users, their tasks and context of use as well as
expected levels of usability attributes, for details see: SALUTA, section 3.8.2;

 Performance scenarios – key performance scenarios defi ned with regard to the
critical use cases and their most frequently used interaction alternatives.

 Eliciting relevant requirements and prioritising them belong to the activities
that have to be included in the evaluation methods representing the “assessment
against requirements” paradigm (compare section 3.1). The majority of such
methods employ brainstorming as a technique for eliciting requirements. In most
cases requirements are represented as scenarios. Architecture evaluation methods
facilitate elicitation by:
 Defi ning templates for the scenario’s content and its structure, compare ATAM,

HoPLAA, SALUTA, SARAH;
 Defi ning the structure of a domain model whose instantiation will be used for

specifying requirements, compare SALUTA, SARAH;
 Providing appropriated guidance, which can take the form of:
 o patterns of the scenarios for specifi c quality attributes, compare ATAM;
 o indicating how and where to search for the quality scenarios, compare

ALMA, PASA, HoPLAA.

 An interesting observation seems to be that only PBAR assumes requirements
specifi cation as a possible source of the relevant requirements for an architecture
evaluation. It is even more surprising if one considers that the majority of archi-
tecture evaluation methods are supposed to be applied when some form of a soft-
ware design is ready. At such an advanced stage, the most important requirements
should already have been identifi ed.
 The prioritisation techniques included in the architecture verifi cation methods are:
 cumulative voting – SAAM, ATAM and its successors, namely HoPLAA,

CBAM, APTIA,;
 classifying scenarios – SAAM (used together with cumulative voting), ALMA;
 analysing failure severities (SARAH);
 Analytical Hierarchical Process (AREA);
 By using some form of expert judgement (SALUTA, AREA, PASA).

 None of the architecture evaluation methods employs Must-Should-Could-
Won’t have technique (MoSCoW) [99], [69] prioritisation technique, which is
very popular in practice.

3.10.3. Architecture Evaluation Techniques

 A careful analysis of the survey of architecture evaluation methods leads to the
conclusion that they are generally not very prescriptive with respect to the analysis
techniques recommended for analysing architecture’s properties. In general, most

102 Architecture Evaluation Methods

of the employed analysis techniques facilitate gathering information necessary
to be resolved by experience-based reasoning, or support some of the activities
needed to reach evaluation’s conclusion (compare, for example, the use of AHP
in AREA method, section 3.8.5, or the description of techniques for architecture
analysis in SALUTA). Table 18 contains a catalogue of analysis techniques em-
ployed by the methods presented in this monograph.

Table 18. Architecture evaluation techniques employed by the architecture evaluation methods

Technique for analysing architecture Methods employing a given technique
Analysing component/component-concern depen-
dencies

COSAAM, ASAAM

Analytical Hierarchical Process AREA
Effort calculation model ALMA
Experience-based reasoning In fact: all the methods.
Fault Tree Analysis SARAH
Goal Question Metric SAEM, EAEM
Identifi cation of parts of architectures responsible
for certain properties

SAAM, ALMA, SHADD

Mathematical model-based analysis CPASA (queuing networks)
Metrics TARA
No detailed recommendation ATAM, APTIA, ARID, Lightweight ATAM
Reasoning based on the identifi ed anti-patterns or
architectural bad smells based [62], [125]

PASA

Reasoning based on the infl uence of identifi ed ar-
chitectural patterns and tactics on quality attributes

PBAR, ATAM, Light-weight ATAM, APTIA

System/project log analysis TARA
Usability framework SALUTA

 Although there are many models and methods for analysing software proper-
ties that can also be applied at an architectural level, evaluation methods seldom
recommend them as suitable Architecture Evaluation Techniques. Nevertheless,
there are methods, such as ATAM, that do not exclude the use of any analysis
technique.

3.10.4. Properties of Architecture Evaluation Methods Resulting from their
Design

 Stage of applicability: table 19 contains a classifi cation of architecture evalu-
ation methods by the typical stage of their applicability.

103 Architecture Evaluation Methods

Table 19. Typical stages at which architecture evaluation methods can be applied

Development stage Methods, for which given development stage is a typically stage of ap-
plication

Inception(1) EAEM
Elaboration(1) ARID, PBAR, ATAM, Lightweight-ATAM, SHADD, APTIA, PASA, CPA-

SA, SARAH, SAAM, ASAAM, COSAAM, HoPLAA
Post-deployment TARA, AREA

(1) phases of the Rational Unifi ed Process [95]

 Method validation: the architecture evaluation methods have been classifi ed
according to the available record of their validation in table 20. The following
scale for the extent of validation record has been assumed:
 Scarce – there is at most a single example of a method’s application, whose

content may be sketchy;
 Small – there is at least one detailed example of a method’s application, the

total number of documented applications does not exceed three.
 Signifi cant – there are more than four examples, at least some of them have

been presented in detail;
 Extensive – there are more than 10 documented examples of a method’s

application.

Table 20. Validation of the architecture evaluation methods

Validation Methods
Scarce APTIA, SHADD, ASAAM, COSAAM, Lightweight-ATAM, SARAH, CPASA
Small AREA, SALUTA, PASA, CBAM
Signifi cant ALMA, PBAR, EAEM
Extensive ATAM, SAAM (together with its early variations – see section 3.6.1)

3.10.5. Architecture Evaluation: State-of-Practice

 The state of industrial practice in the area of architecture evaluation has been
surveyed in [7]. Data obtained from 86 software industry respondents revealed the
following main facts:
 Architecture assessment methods developed by the research community are

hardly recognised by practitioners (24% were aware of ATAM, 17% of PASA,
6% of ALMA);

 Architecture assessment methods are hardly ever used by practitioners (5%
of the respondents declared the organisation is using ATAM and SAAM, 1%
– PASA and ALMA). However, these methods are not used as out of the
box tools, but the organisations’ processes are derived from the academic
methods;

104 Architecture Evaluation Methods

 Most popular Architecture Evaluation Techniques are: experience-based rea-
soning (83%), prototyping (70%), scenarios (56%) and checklists (40%), while
metrics (15%) and mathematical models (5%) are rarely employed in practical
engineering;

 Architecture reviews are performed at the early stages of development by 80%
of respondents, at middle stage – by 34%, at post-deployment stage – by 15%,
at re-engineering stage – by 28%, for system acquisition – by 11%;

 The existence of a formal architecture review process was reported by 41% of
the participants, while 56% indicated an informal review process.

 Therefore, the obvious conclusion is that the research developments still re-
main far away from the industrial practice. According to the survey’s authors, this
condition is rooted in:
 The lack of a convincing business case showing the benefi ts and surplus result-

ing from architecture assessment;
 Problems with porting the architecture assessment methods onto industrial

ground, supposedly caused by the lack of tool support, problems with includ-
ing architectural evaluation into the established development processes as well
as problems with know-how transfer.

3.11. STATUS AND PROSPECTS OF ARCHITECTURE EVALUATION

 Since the fi rst architecture evaluation method appeared in 1994, more than
twenty fi ve such methods have been developed. Newer and newer methods are
still emerging. It is a noticeable fact that since 2010 alone, at least six new meth-
ods have been presented (AREA, TARA, PBAR, CPASA, SHADD, EAEM). The
state of practice described in section 3.10.5 indicates that the research achieve-
ments are still far from shaping the industrial practice. Apart from the reasons
for this condition, as presented in section 3.10.5, there are also important issues
inherent to the internal design of the methods developed to date, which generally
limit their usefulness and proliferation in practice:
1. Most of the architecture evaluation methods organise and facilitate an evalu-

ation rather than providing models and techniques for drawing conclusions
regarding the properties of a software architecture. These methods defi ne the
evaluation processes and support for their activities (mainly the elicitation and
prioritisation of requirements); however, the very architectural analysis is done
by the experience-based reasoning of the evaluator;

2. The “architectural wisdom” [169] needed to establish the outcomes of an eval-
uation is rarely “sold” together with the method (SALUTA and EAEM are
exceptions to that general rule). In most cases, it has to be already in the pos-

105 Conclusion

session of some of the company’s employees, or has to come with an external
expert;

3. The existing architecture evaluation methods analyse architectures document-
ed informally, or semi-formally at best. It implies that the architecture analysis
has to be performed by an informal reasoning of the expert (evaluator) or other
participants of the evaluation.

4. The proliferation of the use of informal architecture models hinders the use
of model-based evaluation techniques, which can deliver decisive, objective
conclusions.

 In order to overcome the limitations of the existing architecture evaluation
methods, further research is needed in the following directions:
 Reconstructing existing architecture evaluation methods or developing new

ones that seamlessly integrate with the established software development
methodologies, such as the Rational Unifi ed Process, waterfall or agile;

 Developing “self-contained” architecture evaluation methods that deliver pro-
cesses, models and the architectural wisdom needed to perform an evaluation.
Architectural wisdom would have to be provided in the form of a knowledge
base that could be used during an architecture evaluation;

 Integrating established mathematical models into architecture evaluation
methods. The list of such models includes: queuing networks and other sto-
chastic models (e.g. Markov chains), real-time analysis, temporal logic, formal
systems enabling theorem proving or model checking, concurrency models
(process calculi, Petri nets). This also means that formal models should be-
come more popular in the area of architectural modelling;

 The development of architecture evaluation methods suitable for specifi c do-
mains of applications, e.g. for service-oriented architectures, real-time systems
or distributed systems. Let us note that the number of domain-specifi c methods is
rather small, as section 3.3 shows. The same applies to attribute-specifi c methods
– most attributes are addressed by just a single architecture evaluation method.

4. CONCLUSION

 Brooks’ famous paper on silver bullets [31] indicates that the general challenge
of software engineering is to deliver means of coping with software complexity.
Research on software architecture, which has been thriving since the early 1990s,
is another effort to develop such means. This work takes an overview and dis-
cusses the state of the art in modelling and evaluating software architectures.

106 Conclusion

 The survey of approaches to architectural modelling, presented in chapter 2, in-
dicates clearly that not all developments in this area support that general purpose.
Large sets of architectural decisions tend to produce complexity of their own,
rather than help to manage the complexity of the design. Organising architecture
descriptions around a set of architectural viewpoints brings the challenge of defi n-
ing correspondence and ensuring consistency between models belonging to dif-
ferent views. At the same time, the usefulness of the comprehensive and elaborate
documentation is generally questioned by the agile development community.
 The concept of the System Organisation Pattern shows that architectural deci-
sions can effi ciently capture complex design concepts, while modelling languages
such as SysML and ArchiMate still require broader validation in practice. The
other issues raised above comprise challenges that will have to be addressed by
future research.
 Research on architecture evaluation methods was carried out in parallel with
that on architectural modelling. As a result, more than 25 such methods have
been developed during the last twenty years. Eighteen state-of-the-art architec-
tural evaluation methods have been covered by this monograph, and an additional
seven legacy architecture evaluation methods have also been briefl y character-
ised. The taxonomy shows that new evaluation methods should be developed for
specifi c domains of application, as well as for certain quality attributes (esp. per-
formance and reliability). The Early Architecture Evaluation Method proves that
such specialised methods can deliver substantial value by minimising the risk
of the development failing. This could provide a convincing business case for
a wider industrial adoption of architecture evaluation methods.
 The survey and discussion of the state of the art in architecture modelling and
evaluation, presented in this dissertation, reveals constant progress observable
in this research domain. The author’s contribution was aimed at overcoming the
limitations of the existing achievements and comprises:
 Diagrammatic model of architectural decisions, known as Maps of Architec-

tural Decisions (MAD), suitable for documenting the evolution of rapidly
evolving systems;

 The System Organisation Pattern shows how architectural decisions can tersely
and comprehensibly represent architectures of large-scale distributed systems,
facilitating the management of software complexity;

 The taxonomies of architecture evaluation paradigms and architecture evalua-
tion methods;

 Early Architecture Evaluation Method – an original architecture evaluation
method, applicable at the earliest development stages of large-scale distributed
systems.

 The research achievements in architectural modelling and architecture eval-
uation have not yet become pervasive for the software industry. However, the

107 Bibliography

transition of information technologies into widespread use usually takes 15-20
years [122]. Hence, a wider adoption of the achievements of software architec-
ture research is likely to be seen in the years to come. This hypothesis is partially
confi rmed by the increasingly widespread use of the word ‘architecture’ as being
synonymous with ‘design’, by including the concepts of stakeholders’ concerns,
viewpoints and views into the ISO 42010:2011 international standard of architec-
ture description, as well as by the appearance of architecture modelling notation
(ArchiMate) that are compliant with that standard.

BIBLIOGRAPHY

 [1] Abdullatif A.A. and Pooley R.J.: UML-JMT: a Tool for Evaluating Performance Requirements.
17th IEEE International Conference and Workshops on Engineering of Computer-Based Sys-
tems. IEEE, 2009.

 [2] Abowd G., Bass L., Clements P., Kazman R., Northrop L., Zaremski A.: Recommended Best
Industrial Practice for Software Architecture Evaluation. CMU/SEI-96-TR-025. Carnegie Mel-
lon University, 1997.

 [3] Alexander Ch. Notes on the synthesis of form. Harvard University Press, Cambridge, Massa-
chusetts, 1964.

 [4] Alexander Ch., Ishikava S., Silverstein M., et al. A Pattern Language: towns, building, con-
struction. Oxford University Press, New York, 1977.

 [5] Arsanjani A., Ghosh S., Allam A., Abdollah T., Ganapathy S., Holley K.: SOMA: A method for
developing service-oriented solutions. IBM Systems Journal, vol. 47, No 3, pp. 377-396. IBM
2008.

 [6] Babar M.A., Dingsøyr T., Lago P., van Vliet H.: Architecture knowledge management. Theory
and Practice. Springer-Verlag, Berlin Heidelberg, 2009.

 [7] Babar M.A., Gorton I. Software Architecture Review: The State of Practice. Computer 42,
No 7, pp. 26-32, IEEE 2009.

 [8] Babar M.A., Zhu L., Jeffery R.: A framework for classifying and comparing software archi-
tecture evaluation methods. Australian Software Engineering Conference, 2004, pp. 309-318,
IEEE 2004.

 [9] Baldwin C.Y. and Clark B.K.. Design Rules, Vol. 1: The Power of Modularity. First Edition.
The MIT Press, 2000. ISBN: 0262024667.

[10] Baldwin C.Y. and Woodard C. J.: Competition in Modular Clusters. Harvard Business School,
2007. (available online at http://hbswk.hbs.edu/item/5842.html)

[11] Baldwin C.Y., and Clark K.B. Sun wars: Competition within a modular cluster, 1985–1990.
In D.B. Yoffi e (Ed.), Competing in the age of digital convergence: 123-158. Harvard Business
School Press. Boston, 1997.

[12] Balsamo S., Di Marco A., Inverardi P., Simeoni M.: Model-based performance prediction in
software development: a survey. IEEE Transactions on Software Engineering, vol. 30, No 5,
pp. 295-310, IEEE 2004.

108 Bibliography

[13] Barcelos R. and Travassos G.: Evaluation approaches for software architectural documents:
a systematic review. In Ibero-American Workshop on Requirements Engineering and Software
Environments (IDEAS’06), 2006.

[14] Basili V.R., Caldiera G., Rombach H.: The Goal Question Metric Paradigm in: J.J. Marcin-
iak (Ed.), Encyclopedia of Software Engineering, John Wiley & Sons, Inc., New York, 1994,
pp. 528-532.

[15] Bass L., Clements P., Kazman R.: Software Architecture in Practice, second edition. Addison-
Wesley, 2003. ISBN 0-321-15495-9.

[16] Bass L., Clements P., Kazman R.: Software Architecture in Practice, third edition. Addison-
Wesley, 2012. ISBN 0-321-81573-4.

[17] Bass L., Nord R., Wood W., Zubrow D., Ozkaya I.: Analysis of architecture evaluation data.
Journal of Systems and Software, Sep. 2008, vol. 81, iss. 9, pp. 1443-1455; Elsevier, 2008.

[18] Bass L., Nord R., Wood W., Zubrow D.: Risk Themes Discovered Through Architecture Evalu-
ations. TECHNICAL REPORT CMU/SEI-2006-TR-012 ESC-TR-2006-012. Carnegie Mellon
University, 2006.

[19] Bengtsson P., Lassing N., Bosch J., van Vliet H.: Architecture-level modifi ability analysis
(ALMA). Journal of Systems and Software, Volume 69, Issues 1-2, 1 January 2004, pp. 129-147.
Elsevier 2004.

[20] Bengtsson P.O. and Bosch J.: Architecture Level Prediction of Software Maintenance, Proc.
Third European Conf. Software Maintenance and Reeng., pp. 139-147. IEEE 1999.

[21] Bengtsson P.O. and Bosch J.: Scenario-Based Architecture Reengineering, Proc. Fifth Int’l Conf.
Software Reuse (ICSR 5), pp. 308-317. IEEE, 1998.

[22] Bennett K.H. and Rajlich V. T.: Software maintenance and evolution: a roadmap. In Proceed-
ings of the Conference on The Future of Software Engineering (ICSE ‘00). ACM, New York,
NY, USA, pp. 73-87, ACM 2000.

[23] Bertalanffy L.. System Theory: Foundations, Development, Applications. George Braziller,
Inc., New York, 1968.

[24] Booch G., Maksimchuk R.A., Engel M.W., Young B.J., Conallen J., Houston K. A.: Object-
Oriented Analysis and Design with Applications. 3rd edition Addison-Wesley Professional,
2007. ISBN-10: 020189551X

[25] Boucke N., Holvoet T., Lefever T., Sempels R., Schelfthout K., Weyns D., Wielemans J.: Ap-
plying the architecture tradeoff analysis method (ATAM) to an industrial multi-agent system
application. Report CW 431, Department of Computer Science, Katholieke Universiteit Leu-
ven, Leuven, Belgium (Dec. 2005).

[26] Breivold H.P., Crnkovic I., Larsson M.: Software architecture evolution through evolvability
analysis. Journal of Systems and Software, Volume 85, Issue 11, November 2012, pp. 2574-2592.
Elservier, 2012.

[27] Breivold H.P., Crnkovic I., Eriksson P.J.: Analyzing Software Evolvability. In: 32nd Annual IEEE
International Computer Software and Applications Conference, COMPSAC ‘08, pp. 327-330.
IEEE 2008.

[28] Breivold H.P., Crnkovic I., Land R., Larsson M.: Analyzing Software Evolvability of an In-
dustrial Automation Control System: A Case Study. The Third International Conference on
Software Engineering Advances (ICSEA ‘08), pp. 205-213. IEEE 2008.

[29] Breivold H.P., Crnkovic I.: A Systematic Review on Architecting for Software Evolvabil-
ity. 21st Australian Software Engineering Conference (ASWEC), 6-9 April 2010, pp. 13-22,
IEEE 2010.

109 Bibliography

[30] Breivold H.P., Crnkovic I.: Analysis of Software Evolvability in Quality Models. 35th Eu-
romicro Conference on Software Engineering and Advanced Applications, 2009. SEAA ‘09,
pp. 279-282, 27-29 Aug. 2009.

[31] Brooks F.P.: No Silver Bullet – Essence and Accidents of Software Engineering. IEEE Com-
puter 20 (4), pp. 10-19. IEEE 1987.

[32] Buschmann F., Henney K., Schmidt D.C.: Pattern Oriented Software Architecture Volume 4:
A Pattern Language for Distributed Computing, John Wiley&Sons, 2007. ISBN 0470059028.

[33] Buschmann F., Henney K., Schmidt D.C.: Pattern Oriented Software Architecture Volume 5:
On Patterns and Pattern Languages, John Wiley&Sons, 2007. ISBN 0471486485.

[34] Buschmann F., Meunier R., Rohnert H., Peter S., Stal M.: Pattern-Oriented Software Architec-
ture Volume 1: A System of Patterns. John Wiley&Sons, 1996. ISBN-10: 0471958697

[35] Capilla R., Zimmermann O., Zdun U., Avgeriou P., Küster J.M.: An Enhanced Architectural
Knowledge Metamodel Linking Architectural Design Decisions to other Artifacts in the Soft-
ware Engineering Lifecycle. Proceedings of 5th European Conference on Software Architec-
ture (ECSA 2011). LNCS, vol. 6903, pp. 303-318. Springer-Verlag, 2011.

[36] Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transactions
on Software Engineering. vol. 20, iss. 6, pp. 476-493. IEEE 1994

[37] Clements P. and Bass L., 2010. The Business Goals Viewpoint. IEEE Software. Nov.-Dec.
2010, vol. 27, No 6, pp. 38-45. IEEE 2010.

[38] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R., Merson P., Nord R., Staf-
ford J.: Documenting Software Architectures: Views and Beyond (2nd edition). Addison-Wesley
Professional, 2010. ISBN 0321552687.

[39] Clements P., Kazman R., and Klein M.: Evaluating Software Architectures: Methods and Case
Studies, Addison-Wesley, 2002. ISBN 0-201-70482-X.

[40] Clements P.: Active Reviews for Intermediate Designs. CMU/SEI-2000-TN-009. SEI, Carn-
egie Mellon University, 2000.

[41] Cockburn A.: Agile Software Development: The Cooperative Game. 2nd edition (October 29,
2006). Addison-Wesley Professional, 2006. ISBN-10: 0321482751.

[42] Coplien J., Bjørnvig G.: Lean Architecture: For Agile Software Development. Wiley. Hoboken,
NJ, USA, 2010. eISBN: 9780470665039

[43] Cortellessa V., Di Marco A., Eramo R., Pierantonio A., Trubiani C.: Digging into UML models
to remove performance antipatterns. In Proceedings of the 2010 ICSE Workshop on Quantita-
tive Stochastic Models in the Verifi cation and Design of Software Systems (QUOVADIS ‘10),
pp. 9-16. ACM, New York, NY, USA, 2010.

[44] Cortellessa V., Martens A., Reussner R., Trubiani C.: Towards the identifi cation of “Guilty”
performance antipatterns. In Proceedings of the fi rst joint WOSP/SIPEW international confer-
ence on Performance engineering (WOSP/SIPEW ‘10), pp. 245-246. ACM, New York, NY,
USA, 2010.

[45] de Boer R.C., Lago P., Telea A., Van Vliet H. Ontology-driven visualization of architectural
design decisions. Joint Working IEEE/IFIP Conference on Software Architecture 2009 & Eu-
ropean Conference on Software Architecture (WICSA/ECSA 2009), pp.51,60, IEEE 2009.

[46] de Silva L. and Balasubramaniam D.: Controlling software architecture erosion: A survey, Journal
of Systems and Software, Volume 85, Issue 1, January 2012, pp. 132-151. Elservier, 2012

[47] Dijkstra E.W.: Letters to the editor: go to statement considered harmful. Communications of
the ACM. Vol. 11, Issue 3 (March 1968), pp. 147-148, ACM 1968.

110 Bibliography

[48] Dijkstra E.W.: The structure of the \“THE\”-multiprogramming system. Communications of
the ACM. Vol. 11, issue 5 (May 1968), pp. 341-346. ACM, 1968

[49] Dobrica L. and Niemelä E.: A survey on software architecture analysis methods. IEEE Transac-
tions on Software Engineering, Jul. 2002, vol. 28, No 7, pp. 638-653. IEEE 2002.

[50] DoDAF 2.02. Department of Defense Architecture Framework (DoDAF), Version 2.0. Avail-
able on-line: http://dodcio.defense.gov/dodaf20.aspx. US Department of Defence, 2010.

[51] Dueñas J.C., de Oliveira W.L., de la Puente J.N.: A Software Architecture Evaluation Model.
LNCS, vol. 1429, pp. 148-157. Springer-Verlag 1998.

[52] Ethiraj S. and Levinthal D.: Modularity and innovation in complex systems. Management Sci-
ence, vol. 50, No 2, pp. 159-173, February, 2004.

[53] Falessi, D., Cantone, C., Kazman, R., Kruchten, P.: Decision-making techniques for software
architecture design: A comparative survey. ACM Computing Surveys, vol. 43, iss. 4, October
2011.

[54] Ferber S., Heidl, Lutz P.: Reviewing product line architectures: experience report of ATAM in
an automotive context. in: Revised Papers from the 4th Int. Workshop on Software Product-
Family Engineering (PFE’01). LNCS Volume 2290, pp. 364-382. Springer-Verlag, 2002.

[55] Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., Goedicke M.: Viewpoints: A framework
for integrating multiple perspectives in system development. Int. Journal of Software Engineer-
ing and Knowledge Engineering, 2(1): pp. 31-58, World Scientifi c, 1992.

[56] Folmer E., Bosch J.: Architecting for usability: a survey. Journal of Systems and Software,
Volume 70, Issues 1–2, February 2004, pp. 61-78. Elsevier, 2004.

[57] Folmer E., Bosch J.: Case studies on analyzing software architectures for usability. 31st EURO-
MICRO Conference on Software Engineering and Advanced Applications, 2005, pp. 206- 213.
IEEE 2005.

[58] Folmer E., van Gurp J., Bosch J.: Software Architecture Analysis of Usability. Proc EHCI-
DSVIS2004, Springer, LNCS, vol. 3425. Springer-Verlag 2005.

[59] Folmer E.: Software Architecture Analysis of Usability. Ph.D. thesis. Rijksuniversiteit Gronin-
gen. PrintPartners Ipskamp, Enschede, 2004. ISBN 90-367-2361-2.

[60] Gacek C., Abd-Allah A., Clark B., Boehm B.: On the Defi nition of Software System Architec-
ture. Proceedings of the First International Workshop on Architectures for Software Systems.
School of Computer Science, Carnegie Mellon University, 1995. [Available as Technical Re-
port USC/CSE-95-TR-500, April 1995].

[61] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994. ISBN-10: 0-201-63361-2.

[62] Garcia J., Popescu D., Edwards G., Medvidovic N.: Identifying architectural bad smells.
In Proc. 13th European Conf. on Software Maintenance and Reengineering (CSMR’09),
pp. 255-258. IEEE, 2009.

[63] Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Systems: The Complete Book. Pren-
tice-Hall, Englewood Cliffs, 2001.

[64] Garlan D., Barnes J.M., Schmerl B., Celiku O.: Evolution styles: Foundations and tool support
for software architecture evolution. Proceedings of WICSA/ECSA 2009, pp. 131-140. IEEE
2009.

[65] Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural Decisions.
IEEE Software, vol. 24, iss. 4, pp. 38-45. IEEE 2007

111 Bibliography

[66] Harrison, N., Avgeriou, P.: Pattern-Based Architecture Reviews, IEEE Software, vol. 28, iss. 6,
pp. 66-71. IEEE 2011.

[67] Harrison, R., Counsell, S., Nithi. R.: An Evaluation of the MOOD Set of Object-Oriented Soft-
ware Metrics. IEEE Transactions on Software Engineering. vol. 24, iss. 6, pp. 491-496. IEEE
1998.

[68] Hatley D.J., Pribhai L.A.: Strategies for real-time systems specifi cations. Dorset House, New
York., 1987.

[69] Hatton S.: Choosing the Right Prioritisation Method. 19th Australian Conference on Software
Engineering (ASWEC 2008), pp. 517-526, IEEE 2008.

[70] Hoare C.A.R.: Communicating sequential processes. Communications of ACM, vol. 21, issue
8, pp. 666-677. ACM, 1978.

[71] ISO/IEC 10746-1, 2, 3, 4. Open Distributed Processing – Reference Model: overview, founda-
tions, architecture, architectural semantics. ISO/IEC 1998.

[72] ISO/IEC 19505. Information technology – Object Management Group Unifi ed Modeling Lan-
guage (OMG UML), Infrastructure, (ISO/IEC 19505-2:2012). Information technology – Ob-
ject Management Group Unifi ed Modeling Language (OMG UML), Superstructure (ISO/IEC
19505-2:2012).

[73] ISO/IEC 25010:2011. Systems and software engineering -- Systems and software Quality Re-
quirements and Evaluation (SQuaRE) -- System and software quality models. ISO/IEC 2011.

[74] ISO/IEC 9126-1, Software engineering – product quality – Part 1: Quality Model, fi rst ed.:
2001-06-15.

[75] ISO/IEC/IEEE 24765:2010(E), 2010. Systems and software engineering – Vocabulary.
[76] ISO/IEC/IEEE 42010:2007, IEEE 1471. Systems and software engineering – Recommended

practice for architectural description of software-intensive systems. ISO/IEC 2011, IEEE 2007.
[77] ISO/IEC/IEEE 42010:2011. Systems and software engineering – Architecture description.

ISO/IEC 2011, IEEE 2011.
[78] Jansen A. and Bosch J.: Software Architecture as a Set of Architectural Design Decisions.

Proceedings of 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05),
pp. 109-120. IEEE 2005.

[79] Jarczyk A.P.J., Löffl er P., Shipman F.M.: Design Rationale for Software Engineering: A Survey.
In Proceedings of the 25th Hawaii International Conference on System Sciences, 1992, Vol. 2,
pp. 577-586, IEEE, 1992.

[80] Jensen K.: Coloured Petri nets. Advances in Petri Nets 1986, Part I Proceedings of an Advanced
Course Bad Honnef, pp. 248-299. Springer-Verlag, 1986.

[81] Jones L.G., Lattanze A.J.: Using the architecture tradeoff analysis method to evaluate a wargame
simulation system: a case study. CMU SEI Technical Report CMU/SEI-2001-TN-022. Soft-
ware Engineering Institute, Pittsburgh, PA (Dec. 2001).

[82] Kazman R., Asundi J., Klein M.: Quantifying the costs and benefi ts of architectural deci-
sions. Proceedings of the Twenty-Third International Conference on Software Engineering,
pp. 297- 306. IEEE, 2001,

[83] Kazman R., Bass L., Abowd G., Webb M.: SAAM: A Method for Analyzing the Properties of
Software Architectures, Proc. 16th Int’l Conf. Software Eng., pp. 81-90, ACM 1994.

[84] Kazman R., Bass L., Klein M., Lattanze T., Northrop L.: A Basis for Analyzing Software Ar-
chitecture Analysis Methods. Software Quality Journal, vol. 13, pp. 329-355. Springer 2005.

112 Bibliography

 [85] Kazman R., Bass L., Klein M.: The essential components of software architecture design and
analysis. Subscribed Journal The Journal of Systems & Software, Vol: 79, Issue: 8, August,
2006, pp. 1207-1216. Elsevier, 2006.

 [86] Kazman R., G. Abowd, L. Bass, and P. Clements, 1996. Scenario-Based Analysis of Software
Architecture. IEEE Software, pp. 47-55, Nov. 1996.

 [87] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., Carriere J.: The architecture
tradeoff analysis method. Fourth IEEE International Conference on Engineering of Complex
Computer Systems, 1998. pp. 68-78.

 [88] Kircher M., Jain P.: Pattern-Oriented Software Architecture Volume 3: Patterns for Resource
Management. John Wiley&Sons, 2004. ISBN 0470845252.

 [89] Klein M., Ralya T., Pollak B., Obenza R., Harbour M.G.: Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluver Academic
Publishers, 1993. ISBN 0-7923-9361-9.

 [90] Koziolek H.: Sustainability evaluation of software architectures: a systematic review. QoSA-
ISARCS 2011. ACM SIGSOFT 2011.

 [91] Kruchten P., Capilla R., Dueñas J.C.: The Decision View’s Role in Software Architecture
Practice. IEEE Software, vol.26, No 2, pp.36-42. IEEE 2009.

 [92] Kruchten P., Lago P., van Vliet H.: Building Up and Reasoning About Architectural Knowl-
edge. QoSA 2006, LNCS 4214, pp. 43-58. Springer, 2006.

 [93] Kruchten P.: An Ontology of Architectural Design Decisions in Software-Intensive Systems.
In 2nd Groningen Workshop Software Variability (October 2004), pp. 54-61.

 [94] Kruchten P.: The 4+1 View Model of Architecture. IEEE Software, Issue 6, Volume 12,
pp. 42-50. IEEE 1995.

 [95] Kruchten P.: The Rational Unifi ed Process: An Introduction, Third Edition. Boston, MA: Ad-
dison-Wesley, 2004.

 [96] Kunz W. and Rittel H. W. J.: Issues as elements of information systems. Working Paper
No 131. Studiengruppe für Systemforschung, Heidelberg, Germany, 1970.

 [97] Lassing N., Bengtsson P., van Vliet H., Bosch J.: Experiences with ALMA: Architecture-
Level Modifi ability Analysis, Journal of Systems and Software, Volume 61, Issue 1, pp. 47-
57, Elservier, 2002.

 [98] Lassing N., Rijsenbrij D., and H. van Vliet: Software Architecture Analysis of Flexibility,
Complexity of Changes: Size Isn’t Everything. Proc. Second Nordic Software Architecture
Workshop (NOSA ‘99), pp. 1103-1581, 1999.

 [99] Leffi ngwell D. and Widrig D.: Managing software requirements: A Use Case Approach, 2nd ed.
Addison-Wesley, Boston, 2003.

[100] Logrippo L., Faci M., Haj-Hussein M.: An introduction to LOTOS: learning by examples.
Computer Networks and ISDN Systems, Volume 23, Issue 5, February 1992, pp. 325-342,
Elsevier.

[101] Lung C., Bot S., Kalaichelvan K., and Kazman R.: An Approach to Software Architecture
Analysis for Evolution and Reusability. Proc. CASCON ‚97. ACM 1997.

[102] Lyu M.R. (editor). Handbook of Software Reliability Engineering. Handbook of Software Re-
liability Engineering. McGraw-Hill, 1996. ISBN 0070394008. (available on-line http://www.
cse.cuhk.edu.hk/~lyu/book/reliability/)

[103] Malan R., Bredemeyer D.: Less is more with minimalist architecture. IT Professional, vol. 4,
No 5, pp. 48, 46- 47, IEEE 2002.

113 Bibliography

[104] Medvidovic N. and Taylor R.N.: A Classifi cation and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering, vol. 26,
No 1, pp. 70-93, January 2000.

[105] Medvidovic N., Rosenblum D.S., Redmiles D.F., and Robbins J.E.:. Modeling software archi-
tectures in the Unifi ed Modeling Language. ACM Trans. Softw. Eng. Methodol. 11, 1 (Janu-
ary 2002).

[106] Molter G.: Integrating SAAM in Domain-Centric and Reuse-Based Development Processes,
Proc. Second Nordic Workshop Software Architecture (NOSA ‘99), pp. 1103-1581, 1999.

[107] Murali Ch.: Mastering Software Quality Assurance: Best Practices, Tools and Technique for
Software Developers. J. Ross Publishing Inc., 2011. ISBN 978-1-60427-032-7.

[108] Naur P. and Randell B. (Eds.): Software Engineering: Report of a conference sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientifi c Affairs
Division, NATO, 1969.

[109] Olumofi n F.G. and Misic V.B.: A holistic architecture assessment method for software prod-
uct lines. Journal of Information and Software Technology. Volume 49, Issue 4, pp. 309-323.
Elsevier, 2007.

[110] Olumofi n F.G. and Misic V.B.: Extending the ATAM Architecture Evaluation to Product Line
Architectures”, Technical report TR 05/02 Department of computer science, university of
Manitoba Winnipeg, Manitoba, Canada R3T 2N2, June 2005.

[111] OMG: Business Process Model and Notation (BPMN). Version 2.0. Object Modeling Group,
2011.

[112] OMG: Systems Modeling Language (OMG SysML™), Version 1.3. Object Modelling Group
2012. (available on-line at http://www.omg.org/spec/SysML/1.3/).

[113] Page-Jones M.: The practical guide to structured system design. Second Edition. Prentice
Hall, 1988. ISBN-0136907695.

[114] Parnas D.L., Darringer J.A.: SODAS and a methodology for system design. AFIPS Fall Joint
Computing Conference, pp. 449-474. ACM, 1967.

[115] Parnas D.L., Weiss D.M.: Active design reviews: principles and practices. In Proceedings
of the 8th international conference on Software engineering (ICSE ‘85), pp. 132-136. IEEE
1985.

[116] Parnas D.L.: On the Criteria To Be Used in Decomposing Systems into Modules. Commun.
ACM 15(12): 1053-1058, 1972.

[117] Peercy D.E.: A Software Maintainability Evaluation Methodology. IEEE Transactions on
Software Engineering, vol.SE-7, No 4, pp. 343- 351, July 1981.

[118] Perry D.E. and Wolf A.L.: Foundations for the Study of Software Architecture. ACM SIG-
SOFT. Software Engineering Notes vol. 17 No 4. ACM 1992.

[119] Pooley R.J.; Abdullatif A.A.L.: CPASA: Continuous Performance Assessment of Software
Architecture. 17th IEEE International Conference and Workshops on Engineering of Com-
puter Based Systems (ECBS), pp.79-87. IEEE 2010.

[120] Ramachandran P., Adve, S.V., Bose P., Rivers J.A.: Metrics for Architecture-Level Lifetime
Reliability Analysis. IEEE International Symposium on Performance Analysis of Systems and
software, ISPASS 2008, pp. 202-212. IEEE 2008.

[121] Randell B. and Buxton J.N. (Eds.): Software Engineering Techniques: Report of a conference
sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct. 1969, Brussels, Scien-
tifi c Affairs Division, NATO, 1970.

114 Bibliography

[122] Redwine S.T. Jr., Riddle W.E.: Software technology maturation. In Proceedings of the 8th
international conference on Software engineering (ICSE ‘85), pp. 189-200. IEEE 1985.

[123] Reijonen V., Koskinen J., and Haikala I.: Experiences from scenario-based architecture evalu-
ations with ATAM. In Proceedings of the 4th European conference on Software architecture
(ECSA’10). LNCS, vol. 6285, pp. 214-229. Springer-Verlag 2010.

[124] Riaz M., Mendes E., Tempero E.: A systematic review of software maintainability prediction
and metrics. In Proceedings of the 2009 3rd Symposium on Empirical Software Engineering
and Measurement (ESEM ’09), pp. 367-377. IEEE 2009.

[125] Roock S. and Lippert M.: Refactoring in Large Software Projects: Performing Complex Re-
structurings Successfully. John Wiley & Sons, 2005.

[126] Ross D.T. and Schoman Jr. K.E.: Structured analysis for requirements defi nition. IEEE Trans-
actions on Software Engineering, SE-3(1), January 1977.

[127] Roy B., Graham T.: Methods for Evaluating Software Architecture: A Survey. Technical Re-
port 545, Queen’s University at Kingston, Ontario, Canada, Kingston, 2008.

[128] Saaty T.L.: Fundamentals of Decision Making and Priority Theory with the Analytic Hierar-
chy Process. RWS Publications. Pittsburgh, 2000.

[129] Saaty T.L.: The Analytic Hierarchy Process: McGraw-Hill 1980.
[130] Sandler C., Myers G.J., Badgett T.: The Art of Software Testing. Second edition. John Wiley

& Sons, 2004. ISBN: 0-471-46912-2.
[131] Schmidt D., Stal M., Rohnert H., Buschmann F.: Pattern-Oriented Software Architecture

Volume 2: Patterns for Concurrent and Networked Objects. John Willey & Sons, 2000.
ISBN 047160695.

[132] Schulmeyer G.G.: Handbook of Software Quality Assurance, Artech House Norwood, MA,
USA, 2007.

[133] Shahin M., Liang P., Khayyambashi M.R.: Improving understandability of architecture design
through visualization of architectural design decision. ICSE Workshop on Sharing and Reus-
ing Architectural Knowledge, pp. 88-95. ACM 2010.

[134] Shahin M., Peng Liang, Khayyambashi M.R.: Architectural design decision: Existing models
and tools. Joint Working IEEE/IFIP Conference on Software Architecture, 2009 & European
Conference on Software Architecture. WICSA/ECSA 2009., pp. 293-296.

[135] Sharafi S.M.: SHADD: A scenario-based approach to software architectural defects detection.
Advances in Engineering Software, vol. 45, issue 1, March 2012, pp. 341-348. Elsevier, 2012.

[136] Simon H.A.: The Architecture of Complexity, Proceedings of the American Philosophical
Society, vol. 106, No 6., pp. 467-482, Dec. 12, 1962.

[137] Smith C.U. and Williams L.G.: Performance Engineering Evaluation of Object-Oriented Sys-
tems with SPE*ED. Proceedings of the 9th International Conference on Computer Perfor-
mance Evaluation: Modelling Techniques and Tools, pp. 135-154. Springer-Verlag, 1997.

[138] Smith C.U. and Williams L.G.: Software performance antipatterns. In Proceedings of the 2nd
international workshop on Software and performance (WOSP ‘00), pp. 127-136. ACM 2000.

[139] Smith D., Merson P.: Using architecture evaluation to prepare a large web based system for evo-
lution. Proc. Fifth IEEE International Workshop on Web Site Evolution, pp. 85-92. IEEE 2003.

[140] Sozer H., Tekinerdogan B., Aksit M.: Extending Failure Modes and Effects Analysis Ap-
proach for Reliability Analysis at the Software Architecture Design Level. In: Architecting
dependable systems IV. LNCS 4615, pp. 409-433. Springer 2007.

115 Bibliography

[141] Stevens W.P., Myers G.J., Constantine L.L., 1974: Structured Design. IBM Systems Journal,
vol. 13, pp. 115-139.

[142] Suntae K., Dae-Kyoo K., Lunjin L., Sooyong P.: Quality-driven architecture development us-
ing architectural tactics. Journal of Systems and Software, Volume 82, Issue 8, August 2009,
pp. 1211-1231. Elsevier 2009.

[143] Szlenk M., Zalewski A., Kijas S.: Modelling architectural decisions under changing require-
ments. Proceedings of the Joint 10th Working Conference on Software Architecture & 6th
European Conference on Software Architecture, pp. 211-214. IEEE Computer Society (2012).

[144] Tang A., Avgeriou P., Jansen A., Capilla R., and Babar M.A.: A comparative study of archi-
tecture knowledge management tools. Journal of Systems and Software. Vol. 83, Issue 3,
pp. 352-370. Elsevier, 2010.

[145] Tang A., Kuo F.-C., Lau M.F., 2008. Towards Independent Software Architecture Review.
LNCS, Volume 5292, pp. 306-313. Springer-Verlag 2008.

[146] Tekinerdogan B. and Sözer H., 2012: Variability viewpoint for introducing variability in soft-
ware architecture viewpoints. In Proceedings of the WICSA/ECSA 2012, pp. 163-166. ACM,
New York, NY, USA.

[147] Tekinerdogan B., Scholten F., Hofmann Ch., Aksit M.: Concern-oriented analysis and refac-
toring of software architectures using dependency structure matrices. In Proceedings of the
15th workshop on Early aspects (EA ‘09), pp. 13-18,. ACM, New York, NY, USA, 2009.

[148] Tekinerdogan B., Sozer H., Aksit M.: Software architecture reliability analysis using failure
scenarios. Journal of Systems and Software, Volume 81, Issue 4, April 2008, pp. 558-575.
Elsevier 2008.

[149] Tekinerdogan B.: ASAAM: aspectual software architecture analysis method. Proceedings of
Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), pp. 5-14.
IEEE, 2004.

[150] The Open Group: ArchiMate® 2.0 Specifi cation. 2009-2012 The Open Group. Available on-
line. The Open Group 2012.

[151] The Open Group: The Open Group Architecture Framework (TOGAF®) Version 9.1. Avail-
able on-line at http://pubs.opengroup.org/architecture/togaf9-doc/arch/.

[152] Tyree J., Akerman A.: Architecture Decisions: Demystifying Architecture. IEEE Software,
Mar.-Apr. 2005, pp. 19-27.

[153] van Heesch U., Avgeriou P., Hilliard R.: Forces on Architecture Decisions – A Viewpoint.
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Con-
ference on Software Architecture (ECSA), pp. 101-110. IEEE 2012.

[154] van Heesch U., Avgeriou P., Hilliard R.: A documentation framework for architecture deci-
sions. Journal of Systems and Software, Volume 85, Issue 4, pp. 795-820. Elsevier, 2012.

[155] Williams L., Smith C.: PASASM: A Method for the Performance Assessment of Software
Architectures. Proceedings of the 3rd international workshop on Software and performance
(WOSP ‘02), pp. 179-189. ACM, 2002.

[156] Wirth N., 2008, A Brief History of Software Engineering, Annals of the History of Comput-
ing, IEEE, vol. 30, No 3, pp. 32-39, July-Sept. 2008.

[157] Woods E.: Industrial Architectural Assessment Using TARA. 9th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA’11), pp. 56-65. IEEE, 2011.

[158] Woods E.: Industrial architectural assessment using TARA. Journal of Systems and Software,
Volume 85, Issue 9, September 2012, pp. 2034-2047. Elsevier 2012.

116 Bibliography

[159] Yacoub S.M., Ammar H.H.: A methodology for architecture-level reliability risk analysis.
IEEE Transactions on Software Engineering, vol. 28, No 6, pp. 529-547. IEEE 2002.

[160] Yen J, Langari R.: Fuzzy logic: intelligence, control, and information. Prentice-Hall, Upper
Saddle River, NJ, 1999.

[161] Yourdon E., Constantine, L., 1979. Structured Design: Fundamentals of a Discipline of Com-
puter Program and Systems Design. Prentice Hall, 1979. ISBN 0138544719.

[162] Yourdon E.: Modern Structured Analysis. Prentice Hall, 1988. ISBN 0135986249. (Polish
edition also available)

[163] Zachman J.A., 1987. Framework for Information Systems Architecture. IBM Systems Jour-
nal, vol. 26, No 3, pp. 276-292, 1987.

[164] Zadeh L.A.: Fuzzy sets, Information and Control, Volume 8, Issue 3, June 1965, pp. 338-353.
Elsevier 1965.

[165] Zalewski A. and Kijas S.: Feature-Based Architecture Reviews, ISAT 2012. Information Sys-
tems Architecture and Technology. Networks Design and Analysis. Ofi cyna Wydawnicza Po-
litechniki Wrocławskiej, Wrocław 2012, ISBN 978-83-7493-702-3. pp. 81-96, 2012.

[166] Zalewski A. and Kijas S.: Towards the Competitive Software Development. 12th Confer-
ence on Product-Focused Software Process Improvement, PROFES 2011. LNCS, vol. 6759,
pp. 103-112. Springer-Verlag 2011.

[167] Zalewski A., Kijas S., Sokołowska D.: Capturing Architecture Evolution with Maps of Ar-
chitectural Decisions 2.0. ECSA 2011, Essen, Germany. LNCS, Volume 6903, pp. 83-96.
Springer-Verlag 2011.

[168] Zalewski A., Kijas S.: Architecture Decision-Making in Support of Complexity Control.
Software Architecture, 4th European Conference, ECSA 2010, Copenhagen, Denmark, Au-
gust 23-26, 2010, Proceedings. LNCS, vol. 6285, pp. 501-504. Springer-Verlag 2010.

[169] Zalewski A., Kijas S.: Beyond ATAM: Early Architecture Evaluation Method for Large-Scale
Distributed Systems. Journal of Systems and Software. Journal of Systems and Software,
Volume 86, Issue 3, March 2013, pp. 683-697. Elsevier 2013.

[170] Zalewski A., Ludzia M.: Diagrammatic Modeling of Architectural Decisions. Software Archi-
tecture, Second European Conference, ECSA 2008 Paphos, Cyprus, September 29–1 October,
2008 Proceedings. LNCS, vol. 5292, pp. 350-353. Springer-Verlag 2008.

[171] Zalewski A.: Beyond ATAM: Architecture Analysis in the Development of Large Scale Soft-
ware Systems. Software Architecture, First European Conference, ECSA 2007 Aranjuez,
Spain, September 24-26, 2007 Proceedings. LNCS, vol. 4758, pp. 92-105. Springer-Verlag
2007.

[172] Zimmermann O., Koehler J., Leymann F., Polley R., Schuster N.: Managing architectural de-
cision models with dependency relations, integrity constraints, and production rules. Journal
of Systems and Software, Volume 82, Issue 8, pp. 1249-1267. Springer 2009.

[173] Zimmermann O., Zdun U., Gschwind T., Leymann F.: Combining Pattern Languages and
Reusable Architectural Decision Models into a Comprehensive and Comprehensible Design
Method. WICSA 2008, pp. 157-166, 18-21 Feb. 2008, IEEE 2008.

TABLE OF CONTENTS

1. Introduction . 4
2. Software Architecture Modelling . 6
 2.1. Models of Software Structure . 7
 2.1.1. Structured Models . 9
 2.1.2. Block Diagrams . 9
 2.1.3. UML and SysML. 9
 2.1.4. ArchiMate . 12
 2.2. Architectural Decisions and Architectural Knowledge . 14
 2.2.1. Concept of Architectural Decisions . 15
 2.2.2. Capturing Architectural Knowledge with Architectural Decisions 17
 2.2.3. Extending Models of Architectural Decisions with Decision-Making Support 19
 2.2.4. Maps of Architectural Decisions . 24
 2.2.5. Architectural Patterns . 30
 2.2.6. System Organisation Pattern for Large-scale Distributed Systems 31
 2.2.7. Limitations of Architectural Decision-Based Modelling. 34
 2.3. Models of Architectural Descriptions . 35
 2.3.1. Standard ISO/IEC/IEEE 42010:2011 . 36
 2.3.2. Four Plus One Views of Software Architecture. 37
 2.3.3. Zachman’s Framework . 38
 2.3.4. Recent Achievements in Viewpoint-based Architecture Modelling 39
 2.4. Discussion: State-of-the-art Architectural Modelling . 40
3. Architecture Evaluation Methods. 42
 3.1. Paradigms of Architectural Evaluation . 43
 3.2. Taxonomies of Architecture Evaluation Methods . 46
 3.3. Application Area-based Taxonomy of Architecture Evaluation Methods. 47
 3.4. Characterising Architecture Evaluation Methods . 48
 3.5. Note on the Legacy Architectural Evaluation Methods . 50
 3.6. Survey of Comprehensive General-purpose Architecture Evaluation Methods 51
 3.6.1. Software Architecture Analysis Method (SAAM). 51
 3.6.2. Architecture Trade-Off Analysis Method (ATAM) . 53
 3.6.3. Analytic Principles and Tools for the Improvement of Architectures (APTIA) 58
 3.7. General-purpose lightweight architecture evaluation methods . 60
 3.7.1. Active Reviews for Intermediate Designs (ARID) . 60
 3.7.2. Pattern-Based Architecture Reviews (PBAR) . 61
 3.7.3. Tiny Architectural Review Approach (TARA) . 63
 3.7.4. Lightweight ATAM . 64
 3.7.5. Scenario-based Approach to Software Architectural Defects Detection (SHADD) . 66
 3.8. Attribute-Specifi c Architecture Evaluation Methods . 68
 3.8.1. Architecture-Level Modifi ability Analysis (ALMA). 68
 3.8.2. Scenario-based Architecture Level Usability Analysis (SALUTA) 72
 3.8.3. Performance Assessment of Software Architecture (PASA) 75

118 Table of Contents

 3.8.4. Continuous Performance Assessment of Software Architecture (CPASA). 77
 3.8.5. Architecture Evolvability Analysis (AREA). 78
 3.8.6. Software Architecture Reliability Analysis Approach (SARAH) 81
 3.8.7. Aspectual Software Architecture Analysis Method (ASAAM) 84
 3.8.8. Cost-Benefi t Analysis Method (CBAM). 85
 3.9. Application Domain-Specifi c Architecture Evaluation Methods 87
 3.9.1. Holistic Product Line Architecture Assessment (HoPLAA) 87
 3.9.2. Early Architecture Evaluation Method (EAEM). 89
 3.10. Discussion: State of Art and Practice in Architecture Evaluation. 99
 3.10.1. Evaluation goals, examined properties, form of architecture description. 100
 3.10.2. Architecturally Signifi cant Requirements: Representation, Eliciting, Prioritis-

ing . 100
 3.10.3. Architecture Evaluation Techniques . 101
 3.10.4. Properties of Architecture Evaluation Methods Resulting from their Design . . 102
 3.10.5. Architecture Evaluation: State-of-Practice . 103
 3.11. Status and Prospects of Architecture Evaluation. 104
4. Conclusion . 105
Bibliography . 107

