
e
cc
p

Writing Message-Passing
Parallel Programs with

MPI
A two-day course

Course Notes

Neil MacDonald, Elspeth Minty, Tim Harding,
Simon Brown

Edinburgh Parallel Computing Centre

The University of Edinburgh

Edinburgh Parallel Computing Centre iii

Table of Contents

1 Getting Started ...7
1.1 The message-passing programming model 7
1.2 Messages... 9
1.3 Access.. 10
1.4 Addressing... 10
1.5 Reception.. 10
1.6 Point to Point Communication ... 10
1.7 Collective Communications .. 12
1.8 Introduction to MPI .. 14
1.9 Goals and scope of MPI.. 14

2 MPI Programs ...17
2.1 Preliminaries.. 17
2.2 MPI Handles .. 17
2.3 MPI Errors.. 17
2.4 Bindings to C and Fortran 77 .. 17
2.5 Initialising MPI.. 18
2.6 MPI_COMM_WORLD and communicators......................... 18
2.7 Clean-up of MPI .. 19
2.8 Aborting MPI... 19
2.9 A simple MPI program .. 19

2.10 Exercise: Hello World - the minimal MPI program............. 20

3 What’s in a Message? ...23

4 Point-to-Point Communication ...25
4.1 Introduction ... 25
4.2 Communication Modes.. 25
4.3 Discussion .. 30
4.4 Information about each message: the Communication Enve-

lope 31
4.5 Rules of point-to-point communication................................. 32
4.6 Datatype-matching rules ... 33
4.7 Exercise: Ping pong... 33

5 Non-Blocking Communication ...35
5.1 Example: one-dimensional smoothing 35
5.2 Motivation for non-blocking communication....................... 36

Writing Message Passing Parallel Programs with MPI

iv Course notes

5.3 Initiating non-blocking communication in MPI................... 37
5.4 Testing communications for completion............................... 39
5.5 Exercise: Rotating information around a ring. 42

6 Introduction to Derived Datatypes ..43
6.1 Motivation for derived datatypes .. 43
6.2 Creating a derived datatype ... 45
6.3 Matching rule for derived datatypes 47
6.4 Example Use of Derived Datatypes in C............................... 47
6.5 Example Use of Derived Datatypes in Fortran 50
6.6 Exercise... 54

7 Convenient Process Naming: Virtual Topologies55
7.1 Cartesian and graph topologies.. 56
7.2 Creating a cartesian virtual topology 56
7.3 Cartesian mapping functions.. 56
7.4 Cartesian partitioning .. 58
7.5 Balanced cartesian distributions... 58
7.6 Exercise... 59

8 Collective Communication ..61
8.1 Barrier synchronisation.. 61
8.2 Broadcast, scatter, gather, etc.. 62
8.3 Global reduction operations (global sums etc.) 63
8.4 Exercise... 69

9 MPI Case Study ..71
9.1 A predator-prey simulation .. 71
9.2 The sequential ECO program ... 73
9.3 Toward a parallel ECO program.. 73
9.4 Extra exercises ... 74

10 Further topics in MPI ..77
10.1 A note on error-handling... 77
10.2 Error Messages.. 77
10.3 Communicators, groups and contexts................................... 77
10.4 Advanced topics on point-to-point communication 80

11 For further information on MPI ..83

12 References ...85

Edinburgh Parallel Computing Centre v

A EPCC’s MPI Implementation ..87
A.1 How to compile and run MPI code .. 87
A.2 Modifying your environment ... 87
A.3 Compiling MPI Code.. 87

B Machine Specific Information ...91
B.1 Requesting Resources... 92

Writing Message Passing Parallel Programs with MPI

vi Course notes

Getting Started

Edinburgh Parallel Computing Centre 7

1 Getting Started

1.1 The message-passing programming
model

The sequential paradigm for programming is a familiar one. The programmer has a
simplified view of the target machine as a single processor which can access a certain
amount of memory. He or she therefore writes a single program to run on that proces-
sor. The paradigm may in fact be implemented in various ways, perhaps in a time-
sharing environment where other processes share the processor and memory, but the
programmer wants to remain above such implementation-dependent details, in the
sense that the program or the underlying algorithm could in principle be ported to
any sequential architecture — that is after all the point of a paradigm.

 Figure 1: The sequential programming paradigm

The message-passing paradigm is a development of this idea for the purposes of par-
allel programming. Several instances of the sequential paradigm are considered
together. That is, the programmer imagines several processors, each with its own
memory space, and writes a program to run on each processor. So far, so good, but
parallel programming by definition requires co-operation between the processors to
solve a task, which requires some means of communication. The main point of the
message-passing paradigm is that the processes communicate by sending each other
messages. Thus the message-passing model has no concept of a shared memory space
or of processors accessing each other’s memory directly — anything other than mes-
sage-passing is outwith the scope of the paradigm1. As far as the programs running
on the individual processors are concerned, the message passing operations are just
subroutine calls.

1.Readers with experience of data-parallel programming will see how message-pass-
ing contrasts with and complements the data-parallel model.

Processor

Memory

P

M

Writing Message-Passing Parallel Programs with MPI

8 Course notes

Those with experience of using networks of workstations, client-server systems or
even object-oriented programs will recognise the message-passing paradigm as noth-
ing novel.

 Figure 2: The message-passing programming paradigm.

The message-passing paradigm has become increasingly popular in recent times. One
reason for this is the wide number of platforms which can support a message-passing
model. Programs written in a message-passing style can run on distributed or shared-
memory multi-processors, networks of workstations, or even uni-processor systems.
The point of having the paradigm, just as in the sequential case, is that the program-
mer knows that his or her algorithms should in principle be portable to any architec-
ture that supports a message-passing model1. Message-passing is popular, not
because it is particularly easy, but because it is so general.

1.1.1 What is SPMD?

In the section above, the message-passing paradigm was described as involving a set
of sequential programs, one for each processor. In reality, it is rare for a parallel pro-
grammer to make full use of this generality and to write a different executable for
each processor. Indeed, for most problems this would be perverse — usually a prob-
lem can naturally be divided into sub-problems each of which is solved in broadly the
same way. An example is the transformation or iterative update of a regular grid (per-
haps in image processing or the numerical modelling of a problem from physics). The
same operation is to be applied at every grid point. A typical parallel algorithm
divides the grid into sub-grids and each sub-grid is processed in the same way.

Typically then, a programmer will want to write one program which is to be repli-
cated across multiple processors (probably as many as possible!), often with a one-off
controller process and possibly with other one-off processes like a name-server etc.

The acronym “SPMD” stands for single-program-multiple-data and refers to a restriction
of the message-passing model which requires that all processes run the same executa-
ble. Some vendors provide parallel environments which only support SPMD parallel
programs. In practice this is not usually a problem to the programmer, who can incor-
porate all the different types of process he or she requires into one overall executable.
For example, here a controller process performs a different task (e.g. reading,
checking and distributing initial data) to a worker process:

1. To a first approximation: Of course in reality, just as in the sequential case, any pro-
grammer who cares about performance (i.e. all of us some of the time) should give
some thought to the target architecture.

Processor

Memory

$Id: mp−paradigm.ips,v 1.1 1994/06/27 21:21:10 tharding Exp $
Communications Network

P

M

P

M

P

M

Getting Started

Edinburgh Parallel Computing Centre 9

main(int argc, char **argv)

if(process is to become a controller process)

Controller(/* Arguments */);

else

Worker(/* Arguments */);

or in Fortran,

PROGRAM

IF (process is to become a controller process) THEN

CALL CONTROLLER(/* Arguments */)

ELSE

CALL WORKER(/* Arguments */)

ENDIF

END

Often, for related reasons of efficiency, some vendors do not allow time-sharing i.e.
multiple processes per processor (some authorities understand the term ‘‘SPMD” to
include this further restriction). The programmer should bear in mind that in a SPMD
environment in which multiple processes per processor are not allowed, having spe-
cial lightly-loaded one-off processes such as “controllers” or name-servers may be
inefficient because a whole processor will be taken up with that process.

1.2 Messages
A message transfer is when data moves from variables in one sub-program to varia-
bles in another sub-program. The message consists of the data being sent. The mes-
sage passing system has no interest in the value of this data. It is only concerned with
moving it. In general the following information has to be provided to the message
passing system to specify the message transfer.

• Which processor is sending the message.

• Where is the data on the sending processor.

• What kind of data is being sent.

• How much data is there.

• Which processor(s) are receiving the message.

• Where should the data be left on the receiving processor.

• How much data is the receiving processor prepared to accept.

In general the sending and receiving processors will cooperate in providing this infor-
mation. Some of this information provided by the sending processor will be attached
to the message as it travels through the system and the message passing system may
make some of this information available to the receiving processor.

As well as delivering data the message passing system has to provide some informa-
tion about progress of communications. A receiving processor will be unable to use

Writing Message-Passing Parallel Programs with MPI

10 Course notes

incoming data if it is unaware of its arrival. Similarly a sending processor may wish to
find out if its message has been delivered. A message transfer therefore provides syn-
chronisation information in addition to the data in the message.

The essence of message passing is communication and many of the important con-
cepts can be understood by analogy with the methods that people use to communi-
cate, phone, fax, letter, radio etc. Just as phones and radio provide different kinds of
service different message passing systems can also take very different approaches. For
the time being we are only interested in general concepts rather than the details of
particular implementations.

1.3 Access
Before messages can be sent a sub-program needs to be connected to the message
passing system. This is like having a telephone installed or a a mailbox fitted to the
front door. A person with two telephones can use one phone for business use and one
phone for personal calls. Some message passing systems also allow a single processor
to have multiple connections to the message passing system. Other systems only sup-
port a single connection to the network so some other mechanism must be used to dis-
tinguish between different types of message.

1.4 Addressing
Messages have to be addressed in some way. Postal mail needs a town, street and
house number. Fax messages require a phone number. A single letter may contain
several completely independent items. For example my credit card bills invariably
comes packaged with a mail order catalogue. However they were contained within a
single envelope with a single address and travelled through the mail system as a sin-
gle item so they count as a single message.

The postal system only looks at the information on the envelope. As well as the
address the message envelope may provide additional information, for example a
return address or some indication of the contents of the message. It is usually possible
to separate the morning mail into bills and letters without opening any of them.

The same is true of most message passing systems. Each message must be addressed.
The data is moved through the message passing system association with some ``enve-
lope'' information that includes this address. When the message is received the receiv-
ing process may also have access to some of this information.

1.5 Reception
It is important that the receiving process is capable of dealing with the messages that
have been sent. If a processor is sent a message than it is in-capable of handling (e.g.
larger than the buffer the processor is putting the message into) then various strange
effects can occur. For example the message passing system may truncate or discard
the message.

These buffers may be variables declared within the application code or they may be
internal to the message passing system.

1.6 Point to Point Communication
The simplest form of message is a point to point communication. A message is sent
from the sending processor to a receiving processor. Only these two processors need
to know anything about the message.

Getting Started

Edinburgh Parallel Computing Centre 11

There are several variations on how the sending of a message can interact with the
execution of the sub-program.

The first common distinction is between synchronous and asynchronous sends.

Synchronous sends are provided with information about the completion of the
message.

 Figure 3: A synchronous communication does not complete until the message has been
received.

Asynchronous sends only know when the message has left.

 Figure 4: An asynchronous communication completes as soon as the message is on its way.

A fax message or registered mail is a synchronous operation. The sender can find out
if the message has been delivered.

A post card is an asynchronous message. The sender only knows that it has been put
into the post-box but has no idea if it ever arrives unless the recipient sends a reply.

The other important distinction is blocking and non-blocking.

"Beep"

?

Writing Message-Passing Parallel Programs with MPI

12 Course notes

Blocking operations only return from the subroutine call when the operation has
completed.

Non-blocking operations return straight away and allow the sub-program to con-
tinue to perform other work. At some later time the sub-program can test for the com-
pletion of the non-blocking operation.

 Figure 5: Non blocking communication allows useful work to be performed while waiting for
the communication to complete

Normal fax machines provide blocking communication. The fax remains busy until
the message has been sent. Some modern fax machines contain a memory. This allows
you to load a document into the memory and if the remote number is engaged the
machine can be left to keep trying to get through while you go and do something
more important. This is a non-blocking operation.

Receiving a message can also be a non-blocking operation. For example turning a fax
machine on and leaving it on, so that a message can arrive. You then periodically test
it by walking in to the room with the fax to see if a message has arrived.

1.7 Collective Communications
Up until now, we've only considered point-to-point communications those involving
a pair of communicating processes. Many message-passing systems also provide
operations which allow larger numbers of processes to communicate.

All of these operations can be built out of point to point communications but it is a
good idea use provided routines if they exist.

Getting Started

Edinburgh Parallel Computing Centre 13

1.7.1 Barrier

A barrier operation synchronises processors. No data is exchanged but the barrier
blocks until all of the participating processors have called the barrier routine.

 Figure 6: A barrier operation synchronises a number of processors.

1.7.2 Broadcast

A broadcast is a one-to-many communication. One processor send the same message
to several destinations with a single operation.

 Figure 7: A broadcast sends a message to a number of recipients.

1.7.3 Reduction Operations

A reduction operation takes data items from several processors and reduces them to a
single data item that is usually made available to all of the participating processors.

Barrier

Barrier

Barrier

Writing Message-Passing Parallel Programs with MPI

14 Course notes

One example of a reduction operation is a strike vote where thousands of votes are
reduced to a single decision. One common reduction operation in parallel programs is
a summation over processors.

 Figure 8: Reduction operations reduce data from a number of processors to a single item.

1.8 Introduction to MPI
In principle, a sequential algorithm is portable to any architecture supporting the
sequential paradigm. However, programmers require more than this: they want their
realisation of the algorithm in the form of a particular program to be portable —
source-code portability.

The same is true for message-passing programs and forms the motivation behind
MPI. MPI provides source-code portability of message-passing programs written in C
or Fortran across a variety of architectures. Just as for the sequential case, this has
many benefits, including

• protecting investment in a program

• allowing development of the code on one architecture (e.g. a network of work-
stations) before running it on the target machine (e.g. fast specialist parallel
hardware)

While the basic concept of processes communicating by sending messages to one
another has been understood for a number of years, it is only relatively recently that
message-passing systems have been developed which allow source-code portability.

MPI was the first effort to produce a message-passing interface standard across the
whole parallel processing community. Sixty people representing forty different organ-
isations — users and vendors of parallel systems from both the US and Europe — col-
lectively formed the “MPI Forum”. The discussion was open to the whole community
and was led by a working group with in-depth experience of the use and design of
message-passing systems (including PVM, PARMACS, and EPCC’s own CHIMP).
The two-year process of proposals, meetings and review resulted in a document spec-
ifying a standard Message Passing Interface (MPI).

1.9 Goals and scope of MPI
MPI’s prime goals are:

• To provide source-code portability

STRIKE

Getting Started

Edinburgh Parallel Computing Centre 15

• To allow efficient implementation across a range of architectures

It also offers:

• A great deal of functionality

• Support for heterogeneous parallel architectures

Deliberately outside the scope of MPI is any explicit support for:

• Initial loading of processes onto processors

• Spawning of processes during execution

• Debugging

• Parallel I/O

Writing Message-Passing Parallel Programs with MPI

16 Course notes

MPI Programs

Edinburgh Parallel Computing Centre 17

2 MPI Programs

This section describes the basic structure of MPI programs.

2.1 Preliminaries
MPI comprises a library. An MPI process consists of a C or Fortran 77 program which
communicates with other MPI processes by calling MPI routines. The MPI routines
provide the programmer with a consistent interface across a wide variety of different
platforms.

The initial loading of the executables onto the parallel machine is outwith the scope of
the MPI interface. Each implementation will have its own means of doing this (the
EPCC implementation is described in “EPCC’s MPI Implementation” on page 87).

The result of mixing MPI with other communication methods is undefined, but MPI is
guaranteed not to interfere with the operation of standard language operations such
as write , printf etc.

2.2 MPI Handles
MPI maintains internal data-structures related to communications etc. and these are
referenced by the user through handles. Handles are returned to the user from some
MPI calls and can be used in other MPI calls.

Handles can be copied by the usual assignment operation of C or Fortran.

2.3 MPI Errors
In general, C MPI routines return an int and Fortran MPI routines have an IERROR
argument — these contain the error code. The default action on detection of an error
by MPI is to cause the parallel computation to abort, rather than return with an error
code, but this can be changed as described in “Error Messages” on page 77.

Because of the difficulties of implementation across a wide variety of architectures, a
complete set of detected errors and corresponding error codes is not defined. An MPI
program might be erroneous in the sense that it does not call MPI routines correctly,
but MPI does not guarantee to detect all such errors.

2.4 Bindings to C and Fortran 77
All names of MPI routines and constants in both C and Fortran begin with the prefix
MPI_ to avoid name collisions.

Fortran routine names are all upper case but C routine names are mixed case — fol-
lowing the MPI document [2], when a routine name is used in a language-independ-

Writing Message-Passing Parallel Programs with MPI

18 Course notes

ent context, the upper case version is used. All constants are in upper case in both
Fortran and C.

In Fortran, handles are always of type INTEGER and arrays are indexed from 1.

In C, each type of handle is of a different typedef ’d type (MPI_Datatype ,
MPI_Comm, etc.) and arrays are indexed from 0.

Some arguments to certain MPI routines can legitimately be of any type (integer ,
real etc.). In the Fortran examples in this course

MPI_ROUTINE (MY_ARGUMENT, IERROR)

<type> MY_ARGUMENT

indicates that the type of MY_ARGUMENT is immaterial. In C, such arguments are sim-
ply declared as void * .

2.5 Initialising MPI
The first MPI routine called in any MPI program must be the initialisation routine
MPI_INIT 1. Every MPI program must call this routine once, before any other MPI
routines. Making multiple calls to MPI_INIT is erroneous. The C version of the rou-
tine accepts the arguments to main , argc and argv as arguments.

int MPI_Init(int *argc, char ***argv);

The Fortran version takes no arguments other than the error code.

MPI_INIT(IERROR)

 INTEGER IERROR

2.6 MPI_COMM_WORLD and communicators
MPI_INIT defines something called MPI_COMM_WORLD for each process that calls it.
MPI_COMM_WORLD is a communicator. All MPI communication calls require a commu-
nicator argument and MPI processes can only communicate if they share a communi-
cator.

 Figure 9: The predefined communicator MPI_COMM_WORLD for seven processes. The num-
bers indicate the ranks of each process.

1.There is in fact one exception to this, namelyMPI_INITIALIZED which allows the pro-
grammer to test whetherMPI_INIT has already been called.

10

32 4

5
6

MPI_COMM_WORLD

MPI Programs

Edinburgh Parallel Computing Centre 19

Every communicator contains a group which is a list of processes. Secondly, a group is
in fact local to a particular process. The apparent contradiction between this statement
and that in the text is explained thus: the group contained within a communicator has
been previously agreed across the processes at the time when the communicator was
set up. The processes are ordered and numbered consecutively from 0 (in both For-
tran and C), the number of each process being known as its rank. The rank identifies
each process within the communicator. For example, the rank can be used to specify
the source or destination of a message. (It is worth bearing in mind that in general a
process could have several communicators and therefore might belong to several
groups, typically with a different rank in each group.) Using MPI_COMM_WORLD,
every process can communicate with every other. The group of MPI_COMM_WORLD is
the set of all MPI processes.

2.7 Clean-up of MPI
An MPI program should call the MPI routine MPI_FINALIZE when all communica-
tions have completed. This routine cleans up all MPI data-structures etc. It does not
cancel outstanding communications, so it is the responsibility of the programmer to
make sure all communications have completed. Once this routine has been called, no
other calls can be made to MPI routines, not even MPI_INIT , so a process cannot later
re-enrol in MPI.

MPI_FINALIZE() 1

2.8 Aborting MPI
MPI_ABORT(comm, errcode)

This routine attempts to abort all processes in the group contained in comm so that
with comm = MPI_COMM_WORLD the whole parallel program will terminate.

2.9 A simple MPI program
All MPI programs should include the standard header file which contains required
defined constants. For C programs the header file is mpi.h and for Fortran programs
it is mpif.h 2. Taking into account the previous two sections, it follows that every MPI
program should have the following outline.

2.9.1 C version

#include <mpi.h>

/* Also include usual header files */

main(int argc, char **argv)

{

/* Initialise MPI */

1.The C and Fortran versions of the MPI calls can be found in the MPI specification
provided.

2.In the EPCC implementation of MPI, the Fortran include file is called mpif.inc

Writing Message-Passing Parallel Programs with MPI

20 Course notes

MPI_Init (&argc, &argv);

/* Main part of program */

/* Terminate MPI */

MPI_Finalize ();

exit (0);

}

2.9.2 Fortran version

PROGRAM simple

include ’mpif.h’

integer errcode

C Initialise MPI

call MPI_INIT (errcode)

C Main part of program

C Terminate MPI

call MPI_FINALIZE (errcode)

end

2.9.3 Accessing communicator information

An MPI process can query a communicator for information about the group, with
MPI_COMM_SIZE and MPI_COMM_RANK.

MPI_COMM_RANK (comm, rank)

MPI_COMM_RANKreturns in rank the rank of the calling process in the group associ-
ated with the communicator comm.

MPI_COMM_SIZE returns in size the number of processes in the group associated
with the communicator comm.

MPI_COMM_SIZE (comm, size)

2.10 Exercise: Hello World - the minimal MPI
program

1. Write a minimal MPI program which print "hello world". Compile and run it on
a single processor.

2. Run it on several processors in parallel.

MPI Programs

Edinburgh Parallel Computing Centre 21

3. Modify your program so that only the process ranked 0 in MPI_COMM_WORLD
prints out.

4. Modify your program so that the number of processes is printed out.

Extra exercise

What happens if you omit the last MPI procedure call in your last MPI program?

Writing Message-Passing Parallel Programs with MPI

22 Course notes

What’s in a Message?

Edinburgh Parallel Computing Centre 23

3 What’s in a Message?

An MPI message is an array of elements of a particular MPI datatype.

 Figure 10: An MPI message.

All MPI messages are typed in the sense that the type of the contents must be specified
in the send and receive. The basic datatypes in MPI correspond to the basic C and For-
tran datatypes as shown in the tables below.

Table 1: Basic C datatypes in MPI

MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

Writing Message-Passing Parallel Programs with MPI

24 Course notes

There are rules for datatype-matching and, with certain exceptions, the datatype spec-
ified in the receive must match the datatype specified in the send. The great advan-
tage of this is that MPI can support heterogeneous parallel architectures i.e. parallel
machines built from different processors, because type conversion can be performed
when necessary. Thus two processors may represent, say, an integer in different ways,
but MPI processes on these processors can use MPI to send integer messages without
being aware of the heterogeneity1

More complex datatypes can be constructed at run-time. These are called derived
datatypes and are built from the basic datatypes. They can be used for sending strided
vectors, C structs etc. The construction of new datatypes is described later. The MPI
datatypes MPI_BYTE and MPI_PACKED do not correspond to any C or Fortran
datatypes. MPI_BYTE is used to represent eight binary digits and MPI_PACKED has a
special use discussed later.

1.Whilst a single implementation of MPI may be designed to run on a parallel
“machine” made up of heterogeneous processors, there is no guarantee that two dif-
ferent MPI implementation can successfully communicate with one another — MPI
defines an interface to the programmer, but does not define message protocols etc.

Table 2: Basic Fortran datatypes in MPI

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

Point-to-Point Communication

Edinburgh Parallel Computing Centre 25

4 Point-to-Point Communica-
tion

4.1 Introduction
A point-to-point communication always involves exactly two processes. One process
sends a message to the other. This distinguishes it from the other type of communica
tion in MPI, collective communication, which involves a whole group of processes at
one time.

 Figure 11: In point-to-point communication a process sends a message to another specific
process

To send a message, a source process makes an MPI call which specifies a destination
process in terms of its rank in the appropriate communicator (e.g.
MPI_COMM_WORLD). The destination process also has to make an MPI call if it is to
receive the message.

4.2 Communication Modes
There are four communication modes provided by MPI: standard, synchronous, buffered
and ready. The modes refer to four different types of send. It is not meaningful to talk of
communication mode in the context of a receive. “Completion” of a send means by
definition that the send buffer can safely be re-used. The standard, synchronous and
buffered sends differ only in one respect: how completion of the send depends on the
receipt of the message.

Table 3: MPI communication modes

Completion condition

Synchronous send Only completes when the receive has completed.

0

4

2

3

5
1

communicator

source

dest

Writing Message-Passing Parallel Programs with MPI

26 Course notes

All four modes exist in both blocking and non-blocking forms. In the blocking forms,
return from the routine implies completion. In the non-blocking forms, all modes are
tested for completion with the usual routines (MPI_TEST, MPI_WAIT, etc.)

There are also “persistent” forms of each of the above, see “Persistent communica-
tions” on page 80.

4.2.1 Standard Send

The standard send completes once the message has been sent, which may or may not
imply that the message has arrived at its destination. The message may instead lie “in
the communications network” for some time. A program using standard sends
should therefore obey various rules:

• It should not assume that the send will complete before the receive begins. For
example, two processes should not use blocking standard sends to exchange
messages, since this may on occasion cause deadlock.

• It should not assume that the send will complete after the receive begins. For ex-
ample, the sender should not send further messages whose correct interpreta-
tion depends on the assumption that a previous message arrived elsewhere; it is
possible to imagine scenarios (necessarily with more than two processes) where
the ordering of messages is non-deterministic under standard mode.

In summary, a standard send may be implemented as a synchronous send, or it
may be implemented as a buffered send, and the user should not assume either
case.

• Processes should be eager readers, i.e. guarantee to eventually receive all messag-
es sent to them, else the network may overload.

Buffered send Always completes (unless an error occurs), irrespective of
whether the receive has completed.

Standard send Either synchronous or buffered.

Ready send Always completes (unless an error occurs), irrespective of
whether the receive has completed.

Receive Completes when a message has arrived.

Table 4: MPI Communication routines

Blocking form

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

Table 3: MPI communication modes

Completion condition

Point-to-Point Communication

Edinburgh Parallel Computing Centre 27

If a program breaks these rules, unpredictable behaviour can result: programs may
run successfully on one implementation of MPI but not on others, or may run success-
fully on some occasions and “hang” on other occasions in a non-deterministic way.

The standard send has the following form

MPI_SEND (buf, count, datatype, dest, tag, comm)

where

• buf is the address of the data to be sent.

• count is the number of elements of the MPI datatype which buf contains.

• datatype is the MPI datatype.

• dest is the destination process for the message. This is specified by the rank of
the destination process within the group associated with the communicator
comm.

• tag is a marker used by the sender to distinguish between different types of
messages. Tags are used by the programmer to distinguish between different
sorts of message.

• comm is the communicator shared by the sending and receiving processes. Only
processes which have the same communicator can communicate.

• IERROR contains the return value of the Fortran version of the synchronous
send.

Completion of a send means by definition that the send buffer can safely be re-used i.e.
the data has been sent.

4.2.2 Synchronous Send

If the sending process needs to know that the message has been received by the
receiving process, then both processes may use synchronous communication. What
actually happens during a synchronous communication is something like this: the
receiving process sends back an acknowledgement (a procedure known as a ‘hand-
shake’ between the processes) as shown in Figure 12:. This acknowledgement must be
received by the sender before the send is considered complete.

 Figure 12: In the synchronous mode the sender knows that the other one has received the mes-
sage.

The MPI synchronous send routine is similar in form to the standard send. For exam-
ple, in the blocking form:

MPI_SSEND (buf, count, datatype, dest, tag, comm)

0

4

2

3

5
1

communicator

Writing Message-Passing Parallel Programs with MPI

28 Course notes

If a process executing a blocking synchronous send is “ahead” of the process execut-
ing the matching receive, then it will be idle until the receiving process catches up.
Similarly, if the sending process is executing a non-blocking synchronous send, the
completion test will not succeed until the receiving process catches up. Synchronous
mode can therefore be slower than standard mode. Synchronous mode is however a
safer method of communication because the communication network can never
become overloaded with undeliverable messages. It has the advantage over standard
mode of being more predictable: a synchronous send always synchronises the sender
and receiver, whereas a standard send may or may not do so. This makes the behav-
iour of a program more deterministic. Debugging is also easier because messages can-
not lie undelivered and “invisible” in the network. Therefore a parallel program using
synchronous sends need only take heed of the rule on page 26. Problems of unwanted
synchronisation (such as deadlock) can be avoided by the use of non-blocking syn-
chronous communication “Non-Blocking Communication” on page 35.

4.2.3 Buffered Send

Buffered send guarantees to complete immediately, copying the message to a system
buffer for later transmission if necessary. The advantage over standard send is pre-
dictability — the sender and receiver are guaranteed not to be synchronised and if the
network overloads, the behaviour is defined, namely an error will occur. Therefore a
parallel program using buffered sends need only take heed of the rule on page 26. The
disadvantage of buffered send is that the programmer cannot assume any pre-allo-
cated buffer space and must explicitly attach enough buffer space for the program
with calls to MPI_BUFFER_ATTACH. Non-blocking buffered send has no advantage
over blocking buffered send.

To use buffered mode, the user must attach buffer space:

MPI_BUFFER_ATTACH (buffer, size)

This specifies the array buffer of size bytes to be used as buffer space by buffered
mode. Of course buffer must point to an existing array which will not be used by
the programmer. Only one buffer can be attached per process at a time. Buffer space is
detached with:

MPI_BUFFER_DETACH (buffer, size)

Any communications already using the buffer are allowed to complete before the
buffer is detached by MPI.

C users note: this does not deallocate the memory in buffer .

Often buffered sends and non-blocking communication are alternatives and each has
pros and cons:

• buffered sends require extra buffer space to be allocated and attached by the us-
er;

• buffered sends require copying of data into and out of system buffers while non-
blocking communication does not;

• non-blocking communication requires more MPI calls to perform the same
number of communications.

4.2.4 Ready Send

A ready send, like buffered send, completes immediately. The communication is guar-
anteed to succeed normally if a matching receive is already posted. However, unlike
all other sends, if no matching receive has been posted, the outcome is undefined. As

Point-to-Point Communication

Edinburgh Parallel Computing Centre 29

shown in Figure 13:, the sending process simply throws the message out onto the
communication network and hopes that the receiving process is waiting to catch it. If
the receiving process is ready for the message, it will be received, else the message
may be silently dropped, an error may occur, etc.

 Figure 13: In the ready mode a process hopes that the other process has caught the message

The idea is that by avoiding the necessity for handshaking and buffering between the
sender and the receiver, performance may be improved. Use of ready mode is only
safe if the logical control flow of the parallel program permits it. For example, see Fig-
ure 14:

 Figure 14: An example of safe use of ready mode. When Process 0 sends the message with tag
0 it ``knows'' that the receive has already been posted because of the synchronisation inherent

in sending the message with tag 1.

Clearly ready mode is a difficult mode to debug and requires careful attention to par-
allel program messaging patterns. It is only likely to be used in programs for which
performance is critical and which are targeted mainly at platforms for which there is a
real performance gain. The ready send has a similar form to the standard send:

MPI_RSEND (buf, count, datatype, dest, tag, comm)

Non-blocking ready send has no advantage over blocking ready send (see “Non-
Blocking Communication” on page 35).

4.2.5 The standard blocking receive

The format of the standard blocking receive is:

MPI_RECV (buf, count, datatype, source, tag, comm, status)

where

0

4

2

3

5
1

communicator

Process 0

non−blocking receive from
process 0 with tag 0

blocking receive fr o
process 0 with tag 1

ynchronous send to
rocess 1 with tag 1

ready send to
process 1 with tag 0

Process 1
time

received

test non−blocking
receive

Writing Message-Passing Parallel Programs with MPI

30 Course notes

• buf is the address where the data should be placed once received (the receive
buffer). For the communication to succeed, the receive buffer must be large
enough to hold the message without truncation — if it is not, behaviour is un-
defined. The buffer may however be longer than the data received.

• count is the number of elements of a certain MPI datatype which buf can con-
tain. The number of data elements actually received may be less than this.

• datatype is the MPI datatype for the message. This must match the MPI da-
tatype specified in the send routine.

• source is the rank of the source of the message in the group associated with the
communicator comm. Instead of prescribing the source, messages can be re-
ceived from one of a number of sources by specifying a wildcard,
MPI_ANY_SOURCE, for this argument.

• tag is used by the receiving process to prescribe that it should receive only a
message with a certain tag. Instead of prescribing the tag, the wildcard
MPI_ANY_TAG can be specified for this argument.

• comm is the communicator specified by both the sending and receiving process.
There is no wildcard option for this argument.

• If the receiving process has specified wildcards for both or either of source or
tag , then the corresponding information from the message that was actually re-
ceived may be required. This information is returned in status , and can be
queried using routines described later.

• IERROR contains the return value of the Fortran version of the standard receive.

Completion of a receive means by definition that a message arrived i.e. the data has
been received.

4.3 Discussion
The word “blocking” means that the routines described above only return once the com-
munication has completed. This is a non-local condition i.e. it might depend on the state
of other processes. The ability to select a message by source is a powerful feature. For
example, a source process might wish to receive messages back from worker proc-
esses in strict order. Tags are another powerful feature. A tag is an integer labelling
different types of message, such as “initial data”, “client-server request”, “results
from worker”. Note the difference between this and the programmer sending an inte-
ger label of his or her own as part of the message — in the latter case, by the time the
label is known, the message itself has already been read. The point of tags is that the
receiver can select which messages it wants to receive, on the basis of the tag. Point-to-
point communications in MPI are led by the sending process “pushing” messages out
to other processes — a process cannot “fetch” a message, it can only receive a message
if it has been sent. When a point-to-point communication call is made, it is termed
posting a send or posting a receive, in analogy perhaps to a bulletin board. Because of
the selection allowed in receive calls, it makes sense to talk of a send matching a
receive. MPI can be thought of as an agency — processes post sends and receives to
MPI and MPI matches them up.

Point-to-Point Communication

Edinburgh Parallel Computing Centre 31

4.4 Information about each message: the
Communication Envelope

As well as the data specified by the user, the communication also includes other infor-
mation, known as the communication envelope, which can be used to distinguish
between messages. This information is returned from MPI_RECV as status .

 Figure 15: As well as the data, the message contains information about the communication in
the communication envelope.

The status argument can be queried directly to find out the source or tag of a mes-
sage which has just been received. This will of course only be necessary if a wildcard
option was used in one of these arguments in the receive call. The source process of a
message received with the MPI_ANY_SOURCE argument can be found for C in:

status.MPI_SOURCE

and for Fortran in:

STATUS(MPI_SOURCE)

This returns the rank of the source process in the source argument. Similarly, the
message tag of a message received with MPI_ANY_TAG can be found for C in:

status.MPI_TAG

and for Fortran in:

STATUS(MPI_TAG)

The size of the message received by a process can also be found.

Destination Address

For the attention of :

Data
Item 1
Item 2
Item 3

Sender’s Address

Writing Message-Passing Parallel Programs with MPI

32 Course notes

4.4.1 Information on received message size

The message received need not fill the receive buffer. The count argument specified
to the receive routine is the number of elements for which there is space in the receive
buffer. This will not always be the same as the number of elements actually received.

 Figure 16: Processes can receive messages of different sizes.

The number of elements which was actually received can be found by querying the
communication envelope, namely the status variable, after a communication call.
For example:

MPI_GET_COUNT (status, datatype, count)

This routine queries the information contained in status to find out how many of
the MPI datatype are contained in the message, returning the result in count .

4.5 Rules of point-to-point communication
MPI implementations guarantee that the following properties hold for point-to-point
communication (these rules are sometimes known as “semantics”).

4.5.1 Message Order Preservation

Messages do not overtake each other. That is, consider any two MPI processes. Process A
sends two messages to Process B with the same communicator. Process B posts two
receive calls which match both sends. Then the two messages are guaranteed to be
received in the order they were sent.

 Figure 17: Messages sent from the same sender which match the same receive are received in
the order they were sent.

0

4

2

3

5
1

communicator

0

4

2

3

5
1

communicator

Point-to-Point Communication

Edinburgh Parallel Computing Centre 33

4.5.2 Progress

It is not possible for a matching send and receive pair to remain permanently outstanding.
That is, if one MPI process posts a send and a second process posts a matching
receive, then either the send or the receive will eventually complete.

 Figure 18: One communication will complete.

There are two possible scenarios:

• The send is received by a third process with a matching receive, in which case
the send completes but the second processes receive does not.

• A third process sends out a message which is received by the second process, in
which case the receive completes but the first processes send does not.

4.6 Datatype-matching rules
When a message is sent, the receiving process must in general be expecting to receive
the same datatype. For example, if a process sends a message with datatype
MPI_INTEGER the receiving process must specify to receive datatype MPI_INTEGER,
otherwise the communication is incorrect and behaviour is undefined. Note that this
restriction disallows inter-language communication. (There is one exception to this
rule: MPI_PACKED can match any other type.) Similarly, the C or Fortran type of the
variable(s) in the message must match the MPI datatype, e.g., if a process sends a mes-
sage with datatype MPI_INTEGER the variable(s) specified by the process must be of
type INTEGER, otherwise behaviour is undefined. (The exceptions to this rule are
MPI_BYTE and MPI_PACKED, which, on a byte-addressable machine, can be used to
match any variable type.)

4.7 Exercise: Ping pong
1. Write a program in which two processes repeatedly pass a message back and

forth.
2. Insert timing calls (see below) to measure the time taken for one message.
3. Investigate how the time taken varies with the size of the message.

4.7.1 Timers

For want of a better place, a useful routine is described here which can be used to time
programs.

0

4

2

3

5
1

communicator

message
I want one

Writing Message-Passing Parallel Programs with MPI

34 Course notes

MPI_WTIME()

This routine returns elapsed wall-clock time in seconds. The timer has no defined
starting-point, so in order to time something, two calls are needed and the difference
should be taken between them.

Extra exercise

Write a program in which the process with rank 0 sends the same message to all other
processes in MPI_COMM_WORLD and then receives a message of the same length
from all other processes. How does the time taken varies with the size of the messages
and with the number of processes?

Non-Blocking Communication

Edinburgh Parallel Computing Centre 35

5 Non-Blocking Communica-
tion

5.1 Example: one-dimensional smoothing
Consider the example in Figure 19: (a simple one-dimensional case of the smoothing
operations used in image-processing). Each element of the array must be set equal to
the average of its two neighbours, and this is to take place over a certain number of
iterations. Each process is responsible for updating part of the array (a common paral-
lel technique for grid-based problems known as regular domain decomposition1. The two
cells at the ends of each process’ sub-array are boundary cells. For their update, they
require boundary values to be communicated from a process owning the neighbour-
ing sub-arrays and two extra halo cells are set up to hold these values. The non-bound-
ary cells do not require halo data for update.

 Figure 19: One-dimensional smoothing

1. We use regular domain decomposition as an illustrative example of a partic-
ular communication pattern. However, in practice, parallel libraries exist
which can hide the communication from the user.

halo

boundaryboundary

halo

process

array

Writing Message-Passing Parallel Programs with MPI

36 Course notes

5.2 Motivation for non-blocking communica-
tion

The communications described so far are all blocking communications. This means
that they do not return until the communication has completed (in the sense that the
buffer can be used or re-used). Using blocking communications, a first attempt at a
parallel algorithm for the one-dimensional smoothing might look like this:

for(iterations)

update all cells;

send boundary values to neighbours;

receive halo values from neighbours;

This produces a situation akin to that shown in where each process sends a message
to another process and then posts a receive. Assume the messages have been sent
using a standard send. Depending on implementation details a standard send may
not be able to complete until the receive has started. Since every process is sending and
none is yet receiving, deadlock can occur and none of the communications ever com-
plete.

 Figure 20: Deadlock

There is a solution to the deadlock based on “red-black” communication in which
“odd” processes choose to send whilst “even” processes receive, followed by a
reversal of roles1 — but deadlock is not the only problem with this algorithm. Com-
munication is not a major user of CPU cycles, but is usually relatively slow because of
the communication network and the dependency on the process at the other end of
the communication. With blocking communication, the process is waiting idly while
each communication is taking place. Furthermore, the problem is exacerbated because
the communications in each direction are required to take place one after the other.
The point to notice is that the non-boundary cells could theoretically be updated dur-
ing the time when the boundary/halo values are in transit. This is known as latency
hiding because the latency of the communications is overlapped with useful work.
This requires a decoupling of the completion of each send from the receipt by the
neighbour. Non-blocking communication is one method of achieving this.2 In non-
blocking communication the processes call an MPI routine to set up a communication

1.Another solution might use MPI_SEND_RECV

2.It is not the only solution - buffered sends achieve a similar effect.

0

4

2

3

5
1

communicator

Non-Blocking Communication

Edinburgh Parallel Computing Centre 37

(send or receive), but the routine returns before the communication has completed.
The communication can then continue in the background and the process can carry on
with other work, returning at a later point in the program to check that the communi-
cation has completed successfully. The communication is therefore divided into two
operations: the initiation and the completion test. Non-blocking communication is
analogous to a form of delegation — the user makes a request to MPI for communica-
tion and checks that its request completed satisfactorily only when it needs to know in
order to proceed. The solution now looks like:

for(iterations)

update boundary cells;

initiate sending of boundary values to neighbours;

initiate receipt of halo values from neighbours;

update non-boundary cells;

wait for completion of sending of boundary values;

wait for completion of receipt of halo values;

Note also that deadlock cannot occur and that communication in each direction can
occur simultaneously. Completion tests are made when the halo data is required for
the next iteration (in the case of a receive) or the boundary values are about to be
updated again (in the case of a send)1.

5.3 Initiating non-blocking communication in
MPI

The non-blocking routines have identical arguments to their blocking counterparts
except for an extra argument in the non-blocking routines. This argument, request ,
is very important as it provides a handle which is used to test when the communica-
tion has completed.

1. “Persistent communications” on page 80 describes an alternative way of
expressing the same algorithm using persistent communications.

Table 5: Communication models for non-blocking communications

Non-Blocking Operation MPI call

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_IRECV

Writing Message-Passing Parallel Programs with MPI

38 Course notes

5.3.1 Non-blocking sends

The principle behind non-blocking sends is shown in Figure 21:.

 Figure 21: A non-blocking send

The sending process initiates the send using the following routine (in synchronous
mode):

MPI_ISSEND (buf, count, datatype, dest, tag, comm, request)

It then continues with other computations which do not alter the send buffer. Before
the sending process can update the send buffer it must check that the send has com-
pleted using the routines described in “Testing communications for completion” on
page 39.

5.3.2 Non-blocking receives

Non-blocking receives may match blocking sends and vice versa.

A non-blocking receive is shown in Figure 22:.

 Figure 22: A non-blocking receive

The receiving process posts the following receive routine to initiate the receive:

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

The receiving process can then carry on with other computations until it needs the
received data. It then checks the receive buffer to see if the communication has com-
pleted. The different methods of checking the receive buffer are covered in “Testing
communications for completion” on page 39.

0

4

2

3

5
1

out

in

communicator

0

4

2

3

5
1

out

in

communicator

Non-Blocking Communication

Edinburgh Parallel Computing Centre 39

5.4 Testing communications for completion
When using non-blocking communication it is essential to ensure that the communi-
cation has completed before making use of the result of the communication or re-
using the communication buffer. Completion tests come in two types:

• WAIT type These routines block until the communication has completed. They
are useful when the data from the communication is required for the computa-
tions or the communication buffer is about to be re-used.

Therefore a non-blocking communication immediately followed by a WAIT-type
test is equivalent to the corresponding blocking communication.

• TEST type These routines return a TRUE or FALSE value depending on whether
or not the communication has completed. They do not block and are useful in
situations where we want to know if the communication has completed but do
not yet need the result or to re-use the communication buffer i.e. the process can
usefully perform some other task in the meantime.

5.4.1 Testing a non-blocking communication for
completion

The WAIT-type test is:

MPI_WAIT (request, status)

This routine blocks until the communication specified by the handle request has
completed. The request handle will have been returned by an earlier call to a non-
blocking communication routine. The TEST-type test is:

MPI_TEST (request, flag, status)

In this case the communication specified by the handle request is simply queried to
see if the communication has completed and the result of the query (TRUE or FALSE)
is returned immediately in flag .

5.4.2 Multiple Communications

It is not unusual for several non-blocking communications to be posted at the same
time, so MPI also provides routines which test multiple communications at once (see
Figure 23:). Three types of routines are provided: those which test for the completion
of all of the communications, those which test for the completion of any of them and
those which test for the completion of some of them. Each type comes in two forms:
the WAIT form and the TEST form.

 Figure 23: MPI allows a number of specified non-blocking communications to be tested in one
go.

in

in

in

process

Writing Message-Passing Parallel Programs with MPI

40 Course notes

The routines may be tabulated:

Each is described in more detail below.

5.4.3 Completion of all of a number of communi-
cations

In this case the routines test for the completion of all of the specified communications
(see Figure 24:).

 Figure 24: Test to see if all of the communications have completed.

The blocking test is as follows:

MPI_WAITALL (count, array_of_requests, array_of_statuses)

This routine blocks until all the communications specified by the request handles,
array_of_requests , have completed. The statuses of the communications are
returned in the array array_of_statuses and each can be queried in the usual
way for the source and tag if required (see “Information about each message: the
Communication Envelope” on page 31).

There is also a TEST-type version which tests each request handle without blocking.

MPI_TESTALL (count, array_of_requests, flag, array_of_statuses)

If all the communications have completed, flag is set to TRUE, and information
about each of the communications is returned in array_of_statuses . Otherwise
flag is set to FALSE and array_of_statuses is undefined.

Table 6: MPI completion routines

Test for completion WAIT type
(blocking)

TEST type
(query only)

At least one, return exactly one
MPI_WAITANY MPI_TESTANY

Every one MPI_WAITALL MPI_TESTALL

At least one, return all which
completed

MPI_WAITSOME MPI_TESTSOME

in

in

in

process

Non-Blocking Communication

Edinburgh Parallel Computing Centre 41

5.4.4 Completion of any of a number of communi-
cations

It is often convenient to be able to query a number of communications at a time to find
out if any of them have completed (see Figure 25:).

This can be done in MPI as follows:

MPI_WAITANY (count, array_of_requests, index, status)

MPI_WAITANY blocks until one or more of the communications associated with the
array of request handles, array_of_requests , has completed. The index of the
completed communication in the array_of_requests handles is returned in
index , and its status is returned in status . Should more than one communication
have completed, the choice of which is returned is arbitrary. It is also possible to query
if any of the communications have completed without blocking.

MPI_TESTANY (count, array_of_requests, index, flag, status)

The result of the test (TRUE or FALSE) is returned immediately in flag. Otherwise
behaviour is as for MPI_WAITANY.

 Figure 25: Test to see if any of the communications have completed.

5.4.5 Completion of some of a number of commu-
nications

The MPI_WAITSOME and MPI_TESTSOME routines are similar to the MPI_WAITANY
and MPI_TESTANY routines, except that behaviour is different if more than one com-
munication can complete. In that case MPI_WAITANY or MPI_TESTANY select a com-
munication arbitrarily from those which can complete, and returns status on that.
MPI_WAITSOME or MPI_TESTSOME, on the other hand, return status on all commu-
nications which can be completed. They can be used to determine how many commu-
nications completed. It is not possible for a matched send/receive pair to remain
indefinitely pending during repeated calls to MPI_WAITSOME or MPI_TESTSOME i.e.
the routines obey a fairness rule to help prevent “starvation”.

MPI_TESTSOME (count, array_of_requests, outcount,
array_of_indices, array_of_statuses)

in

in

in

process

Writing Message-Passing Parallel Programs with MPI

42 Course notes

5.4.6 Notes on completion test routines

Completion tests deallocate the request object for any non-blocking communica-
tions they return as complete1. The corresponding handle is set to
MPI_REQUEST_NULL. Therefore, in usual circumstances the programmer would take
care not to make a completion test on this handle again. If a MPI_REQUEST_NULL
request is passed to a completion test routine, behaviour is defined but the rules are
complex.

5.5 Exercise: Rotating information around a
ring.

Consider a set of processes arranged in a ring as shown below.

Each processor stores its rank in MPI_COMM_WORLD in an integer and sends this value
onto the processor on its right. The processors continue passing on the values they
receive until they get their own rank back. Each process should finish by printing out
the sum of the values.

 Figure 26: Four processors arranged in a ring.

Extra exercise

Modify the above program in order to measure the time taken by a message to travel
between to adjacent processes along the ring. What happens to your timings when
you vary the number of processes in the ring? Do the new timings agree with those
you made with the ping-pong program?

1. Completion tests are also used to test persistent communication requests —
see “Persistent communications” on page 80— but do not deallocate in that
case.

1

2

3

0

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 43

6 Introduction to Derived
Datatypes

6.1 Motivation for derived datatypes
In “Datatype-matching rules” on page 33, the basic MPI datatypes were discussed. These allow
the MPI programmer to send messages consisting of an array of variables of the same type.
However, consider the following examples.

6.1.1 Examples in C

6.1.1.1 Sub-block of a matrix

Consider

double results[IMAX][JMAX];

where we want to send results[0][5], results[1][5],,
results[IMAX][5] . The data to be sent does not lie in one contiguous area of mem-
ory and so cannot be sent as a single message using a basic datatype. It is however
made up of elements of a single type and is strided i.e. the blocks of data are regularly
spaced in memory.

6.1.1.2 A struct

Consider

struct {

int nResults;

double results[RMAX];

} resultPacket;

where it is required to send resultPacket . In this case the data is guaranteed to be
contiguous in memory, but it is of mixed type.

6.1.1.3 A set of general variables

Consider

int nResults, n, m;

double results[RMAX];

where it is required to send nResults followed by results .

Writing Message-Passing Parallel Programs with MPI

44 Course notes

6.1.2 Examples in Fortran

6.1.2.1 Sub-block of a matrix

Consider

DOUBLE PRECISION results(IMAX, JMAX)

where we want to send results(5,1), results(5,2),,
results(5,JMAX) . The data to be sent does not lie in one contiguous area of mem-
ory and so cannot be sent as a single message using a basic datatype. It is however
made up of elements of a single type and is strided i.e. the blocks of data are regularly
spaced in memory.

6.1.2.2 A common block

Consider

INTEGER nResults

DOUBLE PRECISION results(RMAX)

COMMON / resultPacket / nResults, results

where it is required to send resultPacket . In this case the data is guaranteed to be
contiguous in memory, but it is of mixed type.

6.1.2.3 A set of general variable

Consider

INTEGER nResults, n, m

DOUBLE PRECISION results(RMAX)

where it is required to send nResults followed by results .

6.1.3 Discussion of examples

If the programmer needs to send non-contiguous data of a single type, he or she
might consider

• making consecutive MPI calls to send and receive each data element in turn,
which is slow and clumsy.

So, for example, one inelegant solution to “Sub-block of a matrix” on page 43,
would be to send the elements in the column one at a time. In C this could be
done as follows:

int count=1;

/*

**

* Step through column 5 row by row

**

*/

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 45

for(i=0;i<IMAX;i++){

MPI_Send (&(results[i][5]), count, MPI_DOUBLE,

dest, tag, comm);

}

In Fortran:

INTEGER count

C Step through row 5 column by column

count = 1

DO i = 1, IMAX

CALL MPI_SEND (result(i, 5), count, MPI_DOUBLE_PRECISION,

& dest, tag, comm, ierror)

END DO

• copying the data to a buffer before sending it, but this is wasteful of memory and
long-winded.

If the programmer needs to send contiguous data of mixed types, he or she might con-
sider

• again, making consecutive MPI calls to send and receive each data element in
turn, which is clumsy and likely to be slower.

• using MPI_BYTE and sizeof to get round the datatype-matching rules, but this
produces an MPI program which may not be portable to a heterogeneous ma-
chine.

Non-contiguous data of mixed types presents a combination of both of the problems
above. The idea of derived MPI datatypes is to provide a portable and efficient way of
communicating non-contiguous and/or mixed types in a message.

6.2 Creating a derived datatype
Derived datatypes are created at run-time. Before a derived datatype can be used in a
communication, the program must create it. This is done in two stages.

• Construct the datatype. New datatype definitions are built up from existing
datatypes (either derived or basic) using a call, or a recursive series of calls, to
the following routines: MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR,
MPI_TYPE_HVECTOR, MPI_TYPE_INDEXED MPI_TYPE_HINDEXED,
MPI_TYPE_STRUCT.

• Commit the datatype.The new datatype is “committed” with a call to
MPI_TYPE_COMMIT. It can then be used in any number of communications. The
form of MPI_TYPE_COMMIT is:

MPI_TYPE_COMMIT (datatype)

Finally, there is a complementary routine to MPI_TYPE_COMMIT, namely
MPI_TYPE_FREE, which marks a datatype for de-allocation.

Writing Message-Passing Parallel Programs with MPI

46 Course notes

MPI_TYPE_FREE (datatype)

Any datatypes derived from datatype are unaffected when it is freed, as are any
communications which are using the datatype at the time of freeing. datatype is
returned as MPI_DATATYPE_NULL.

6.2.1 Construction of derived datatypes

Any datatype is specified by its type map, that is a list of the form:

The displacements may be positive, zero or negative, and when a communication call
is made with the datatype, these displacements are taken as offsets from the start of
the communication buffer, i.e. they are added to the specified buffer address, in order
to determine the addresses of the data elements to be sent. A derived datatype can
therefore be thought of as a kind of stencil laid over memory.

Of all the datatype-construction routines, this course will describe only
MPI_TYPE_VECTOR and MPI_TYPE_STRUCT. The others are broadly similar and the
interested programmer is referred to the MPI document [2].

6.2.1.1 MPI_TYPE_VECTOR

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)

 Figure 27: Illustration of a call to MPI_TYPE_VECTOR with count = 2 , stride = 5
and blocklength = 3

The new datatype newtype consists of count blocks, where each block consists of
blocklength copies of oldtype . The elements within each block have contiguous
displacements, but the displacement between every block is stride . This is illus-
trated in Figure 27:.

6.2.1.2 MPI_TYPE_STRUCT

MPI_TYPE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE)

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatypen-1 displacement of datatypen-1

oldtype

newtype

5 element stride
between blocks

3 elements
per block

2 blocks

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 47

The new datatype newtype consists of a list of count blocks, where the ith block in
the list consists of array_of_blocklengths[i] copies of the type
array_of_types[i] . The displacement of the ith block is in units of bytes and is
given by array_of_displacements[i] . This is illustrated in Figure 28:.

 Figure 28: Illustration of a call to MPI_TYPE_STRUCT with count = 2 ,
array_of_blocklengths[0] = 1 , array_of_types[0] = MPI_INT ,

array_of_blocklengths[1] = 3 and array_of_types[1] = MPI_DOUBLE

See also MPI_TYPE_SIZE , MPI_TYPE_EXTENT, MPI_TYPE_LB, MPI_TYPE_UB,
MPI_TYPE_COUNT

6.3 Matching rule for derived datatypes
A send and receive are correctly matched if the type maps of the specified datatypes,
with the displacements ignored, match according to the usual matching rules for basic
datatypes. A received message may not fill the specified buffer. The number of basic
elements received can be retrieved from the communication envelope using
MPI_GET_ELEMENTS. The MPI_GET_COUNT routine introduced earlier returns as
usual the number of received elements of the datatype specified in the receive call.
This may not be a whole number, in which case MPI_GET_COUNT will return
MPI_UNDEFINED.

6.4 Example Use of Derived Datatypes in C
6.4.1 Sub-block of a matrix (strided non-contigu-
ous data of a single type)

double results[IMAX][JMAX];

/* ** *

* We want to send results[0][5], results[1][5],

* results[2][5],, results[IMAX][5]

* *** */

MPI_Datatype newtype;

/* ** *

* Construct a strided vector type and commit.

newtype

MPI_DOUBLE

MPI_INT

block 0 block 1

array_of_displacements[0] array_of_displacements[1]

Writing Message-Passing Parallel Programs with MPI

48 Course notes

* IMAX blocks, each of length 1 element, separated by

* stride JMAX elements

* oldtype=MPI_DOUBLE

* *** */

MPI_Type_vector (IMAX, 1, JMAX, MPI_DOUBLE, &newtype);

MPI_Type_Commit (&newtype);

/* ** *

* Use new type to send data, count=1

* *** */

MPI_Ssend(&results[0][5]), 1, newtype, dest, tag, comm);

6.4.2 A C struct (contiguous data of mixed type)

struct{

int nResults;

double results[RMAX];

} resultPacket;

/* *** *

* It is required to send resultPacket

* ** */

/* *** *

* Set up the description of the struct prior to

* constructing a new type

* Note that all the following variables are constants

* and depend only on the format of the struct. They

* could be declared ’const’

* ** */

#define RESULT_PACKET_NBLOCKS 2

int array_of_blocklengths[RESULT_PACKET_NBLOCKS] = {1, RMAX};

MPI_Type_extent (MPI_INT, &extent);

MPI_Aint array_of_displacements[RESULT_PACKET_NBLOCKS] =

{0, extent};

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 49

MPI_Datatype array_of_types[RESULT_PACKET_NBLOCKS] =

{MPI_INT, MPI_DOUBLE};

/* ***

* Use the description of the struct to construct a new

* type, and commit.

* ** */

MPI_Datatype resultPacketType;

MPI_Type_struct (2,

array_of_blocklengths,

array_of_displacements,

array_of_types,

&resultPacketType);

MPI_Type_commit (&resultPacketType);

/* ***

* The new datatype can be used to send any number of

* variables of type ’resultPacket’

* ** */

count=1;

MPI_Ssend (&resultPacket, count, resultPacketType, dest, tag,

comm);

6.4.3 A set of general variables (non-contiguous
data of mixed type)

Unlike the contiguous case, the relative displacement between nResults and
results cannot be known for certain. This case requires a different approach using
the MPI_ADDRESS routine and the constant MPI_BOTTOM. These provide, respec-
tively, the MPI address of a variable and the MPI address of the conceptual “origin” of
the memory space. C programmers are recommended to use these rather than the
native pointer arithmetic of C, for the sake of consistency with MPI.

int nResults;

double results[RMAX];

/* *** *

* It is required to send nResults followed by results

* ** */

Writing Message-Passing Parallel Programs with MPI

50 Course notes

int array_of_blocklengths[2] = {1, RMAX};

MPI_Aint array_of_displacements[2];

MPI_Datatype array_of_types[2] = {MPI_INT, MPI_DOUBLE};

MPI_Datatype newtype;

/* *** *

* Find the addresses of nResults and results

* ** */

MPI_Address (&nResults, &(array_of_displacements[0]));

MPI_Address (results, &(array_of_displacements[1]));

MPI_Type_struct (2,

array_of_blocklengths,

array_of_displacements,

array_of_types,

&newtype);

MPI_Type_commit (&newtype);

/* ***

* Addresses are relative to MPI_BOTTOM

* ** */

MPI_Send (MPI_BOTTOM, 1, newtype, dest, tag, comm);

6.5 Example Use of Derived Datatypes in
Fortran

6.5.1 Sub-block of a matrix (strided non-contigu-
ous data of a single type)

DOUBLE_PRECISION results(IMAX, JMAX)

C **

C We want to send results(5,1), results(5,2),

C results(5,3),, results(5, JMAX)

C **

INTEGER newtype

C **

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 51

C Construct a strided datatype and commit.

C JMAX blocks, each of length 1 element, separated by

C stride IMAX elements.

C oldtype = MPI_DOUBLE_PRECISION

C ***

CALL MPI_TYPE_VECTOR (JMAX, 1, IMAX,

& MPI_DOUBLE_PRECISION, newtype, ierror)

CALL MPI_TYPE_COMMIT (newtype, ierror)

C ***

C Use new type to send data, count = 1

C ***

CALL MPI_SSEND (results(5, 1), 1, newtype, dest,

& tag, comm, ierror)

6.5.2 A Fortran common block (contiguous data
of mixed type)

INTEGER RESULT_PACKET_NBLOCKS

PARAMETER (RESULT_PACKET_NBLOCKS = 2)

INTEGER nResults

DOUBLE PRECISION results(RMAX)

COMMON / resultPacket / nResults, results

C ***

C We want to send resultPacket

C ***

C ***

C Set up the description of the common block prior

C to constructing a new type.

C Note that all the following variables are constants

C and depend only on the format of the common block.

C ***

array_of_blocklengths(1) = 1

Writing Message-Passing Parallel Programs with MPI

52 Course notes

array_of_blocklengths(2) = RMAX

array_of_displacements(1) = 0

CALL MPI_TYPE_EXTENT(MPI_INTEGER, extent, ierror)

array_of_displacements(2) = extent

array_of_types(1) = MPI_INTEGER

array_of_types(2) = MPI_DOUBLE_PRECISION

C ***

C Use the description of the struct to construct a

C new type, and commit.

C ***

CALL MPI_TYPE_STRUCT (2, array_of_blocklengths,

& array_of_displacements,

& array_of_types,

& resultPacketType, ierror)

CALL MPI_TYPE_COMMIT (resultPacketType, ierror)

C ***

C The new variable can be used to send any number

C of variables of type ’resultPacket’.

C ***

count = 1

CALL MPI_SSEND (nResults, count, resultPacketType,

& dest, tag, comm, ierror)

6.5.3 A set of general variables (non-contiguous
data of mixed type)

Unlike the contiguous case, the relative displacement between nResults and
results cannot be know for certain. This case requires a different approach using
the MPI_ADDRESS routine and the constant MPI_BOTTOM. These provide, respec-
tively, the MPI address of a variable and the MPI address of the conceptual "origin" of
the memory space.

INTEGER array_of_blocklengths(2)

INTEGER array_of_displacements(2)

INTEGER array_of_types(2)

Introduction to Derived Datatypes

Edinburgh Parallel Computing Centre 53

INTEGER address(2)

INTEGER newtype

INTEGER nResults

DOUBLE PRECISION results(RMAX)

C ***

C We want to send nResults followed by results.

C ***

array_of_blocklengths(1) = 1

array_of_blocklengths(2) = RMAX

C ***

C Find the addresses of nResults and results

C ***

CALL MPI_ADDRESS(nResults, address(1))

array_of_displacements(1) = address(1)

CALL MPI_ADDRESS(results, address(2))

array_of_displacements(2) = address(2)

array_of_types(1) = MPI_INTEGER

array_of_types(2) = MPI_DOUBLE_PRECISION

CALL MPI_TYPE_STRUCT (2, array_of_blocklengths,

& array_of_displacements,

& array_of_types,

& newtype, ierror)

CALL MPI_TYPE_COMMIT (newtype, ierror)

C ***

C Addresses are relative to MPI_BOTTOM

C ***

CALL MPI_SSEND (MPI_BOTTOM, 1, newtype, dest, tag,

& comm, ierror)

Writing Message-Passing Parallel Programs with MPI

54 Course notes

Fortran programmers should note that there are conceptual issues surrounding the
use of MPI_BOTTOM in Fortran. These are discussed in the "Unresolved Issues" section
included at the end of the MPI standard [2]

6.6 Exercise
Modify the passing-around-a-ring exercise from “Exercise: Rotating information
around a ring.” on page 42 so that it uses derived datatypes to pass round either a C
structure or a Fortran common block which contains a floating point sum as well as
the integer sum.

Extra exercises

1. Write a program in which two processes exchange two vectors of the same
strided vector data type, e.g. rows or columns of a two-dimensional array. How
does the time taken for one message vary as a function of the stride?

2. Modify the above program so that the processes exchange a sub-array of a two-
array. How does the time taken for one message vary as a function of the size of
the sub-array?

Convenient Process Naming: Virtual Topologies

Edinburgh Parallel Computing Centre 55

7 Convenient Process Naming:
Virtual Topologies

A virtual topology is a mechanism for naming the processes in a communicator in a
way that fits the communication pattern better. The main aim of this is to makes sub-
sequent code simpler. It may also provide hints to the run-time system which allow it
to optimise the communication or even hint to the loader how to configure the proc-
esses — however, any specification for this is outwith the scope of MPI. For example,
if your processes will communicate mainly with nearest neighbours after the fashion
of a two-dimensional grid (see Figure 29:), you could create a virtual topology to
reflect this fact. What this gains you is access to convenient routines which, for exam-
ple, compute the rank of any process given its coordinates in the grid, taking proper
account of boundary conditions i.e. returning MPI_NULL_PROC if you go outside the
grid. In particular, there are routines to compute the ranks of your nearest neighbours.
The rank can then be used as an argument to MPI_SEND, MPI_RECV, MPI_SENDRECV
etc. The virtual topology might also gain you some performance benefit, but if we
ignore the possibilities for optimisation, it should be stressed that nothing complex is
going on here: the mapping between process ranks and coordinates in the grid is sim-
ply a matter of integer arithmetic and could be implemented simply by the program-
mer — but virtual topologies may be simpler still.

 Figure 29: A virtual topology of twelve processes. The lines denote the main communication
patterns, namely between neighbours. This grid actually has a cyclic boundary condition in

one direction e.g. processes 0 and 9 are ``connected''. The numbers represent the ranks in the
new communicator and the conceptual coordinates mapped to the ranks.

Although a virtual topology highlights the main communication patterns in a com-
municator by a “connection”, any process within the communicator can still commu-
nicate with any other.

1

2

3

4

5

6

7

8

10

9

11

(0,0)
0

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

Writing Message-Passing Parallel Programs with MPI

56 Course notes

As with everything else in MPI, a virtual topology is associated with a communicator.
When a virtual topology is created on an existing communicator, a new communica-
tor is automatically created and returned to the user. The user must use the new com-
municator rather than the old to use the virtual topology.

7.1 Cartesian and graph topologies
This course will only describe cartesian virtual topologies, suitable for grid-like topol-
ogies (with or without cyclic boundaries), in which each process is “connected” to its
neighbours in a virtual grid. MPI also allows completely general graph virtual topolo-
gies, in which a process may be “connected” to any number of other processes and the
numbering is arbitrary. These are used in a similar way to cartesian topologies,
although of course there is no concept of coordinates. The reader is referred to the
MPI document [2] for details.

7.2 Creating a cartesian virtual topology
MPI_CART_CREATE (comm_old, ndims, dims, periods, reorder,
comm_cart)

MPI_CART_CREATE takes an existing communicator comm_old and returns a new
communicator comm_cart with the virtual topology associated with it. The cartesian
grid can be of any dimension and may be periodic or not in any dimension, so tori,
rings, three-dimensional grids, etc. are all supported. The ndims argument contains
the number of dimensions. The number of processes in each dimension is specified in
the array dims and the array periods is an array of TRUE or FALSE values specify-
ing whether that dimension has cyclic boundaries or not. The reorder argument is
an interesting one. It can be TRUE or FALSE:

• FALSE is the value to use if your data is already distributed to the processes. In
this case the process ranks remain exactly as in old_comm and what you gain is
access to the rank-coordinate mapping functions.

• TRUE is the value to use if your data is not yet distributed. In this case it is open
to MPI to renumber the process ranks. MPI may choose to match the virtual to-
pology to a physical topology to optimise communication. The new communi-
cator can then be used to scatter the data.

MPI_CART_CREATE creates a new communicator and therefore like all communica-
tor-creating routines (see “Communicators, groups and contexts” on page 77) it may
(or may not) synchronise the processes involved. The routine MPI_TOPO_TEST can be
used to test if a virtual topology is already associated with a communicator. If a carte-
sian topology has been created, it can be queried as to the arguments used to create it
(ndims etc.) using MPI_CARTDIM_GET and MPI_CART_GET (see the MPI document
[2]).

7.2.1 Note for Fortran Programmers

Fortran programmers should be aware that MPI numbers dimensions from 0 to ndim
- 1. For example, if the array dims contains the number of processes in a particular
dimension, then dims(1) contains the number of processes in dimension 0 of the
grid.

7.3 Cartesian mapping functions
The MPI_CART_RANK routine converts process grid coordinates to process rank. It
might be used to determine the rank of a particular process whose grid coordinates

Convenient Process Naming: Virtual Topologies

Edinburgh Parallel Computing Centre 57

are known, in order to send a message to it or receive a message from it (but if the
process lies in the same row, column, etc. as the calling process, MPI_CART_SHIFT
might be more appropriate). If the coordinates are off the grid, the value will be
MPI_NULL_PROC for non-periodic dimensions, and will automatically be wrapped
correctly for periodic.

MPI_CART_RANK (comm, coords, rank)

The inverse function MPI_CART_COORDS routine converts process rank to process
grid coordinates. It might be used to determine the grid coordinates of a particular
process from which a message has just been received.

MPI_CART_COORDS (comm, rank, maxdims, coords)

The maxdims argument is needed to specify the length of the array coords , usually
ndims .

MPI_CART_SHIFT (comm, direction, disp, rank_source, rank_dest)

This routine does not actually perform a “shift” (see “Shifts and MPI_SENDRECV” on
page 81). What it does do is return the correct ranks for a shift which can then be
included directly as arguments to MPI_SEND, MPI_RECV, MPI_SENDRECV, etc. to per-
form the shift. The user specifies the dimension in which the shift should be made in
the direction argument (a value between 0 and ndims-1 in both C and Fortran).
The displacement disp is the number of process coordinates in that direction in
which to shift (a positive or negative number). The routine returns two results:
rank_source is where the calling process should receive a message from during the
shift, while rank_dest is the process to send a message to. The value will be
MPI_NULL_PROC if the respective coordinates are off the grid (see Figure 30: and Fig-
ure 31:). Unfortunately, there is no provision for a diagonal “shift”, although
MPI_CART_RANK can be used instead.

 Figure 30: MPI_CART_SHIFT is called on process 20 with a virtual topology as shown, with
direction=0 and with disp=2

calling proces s

rank_source

rank_dest

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Writing Message-Passing Parallel Programs with MPI

58 Course notes

 Figure 31: MPI_CART_SHIFT is called on process 20 with a virtual topology as shown, with
direction=1 and with disp=-1 . Note the effect of the periodic boundary condition

7.4 Cartesian partitioning
You can of course use several communicators at once with different virtual topologies
in each. Quite often, a program with a cartesian topology may need to perform reduc-
tion operations or other collective communications only on rows or columns of the
grid rather than the whole grid. MPI_CART_SUB exists to create new communicators
for sub-grids or “slices” of a grid.

MPI_CART_SUB (comm, remain_dims, newcomm)

If comm defines a 2x3x4 grid, and remain_dims = (TRUE, FALSE, TRUE) , then
MPI_CART_SUB(comm, remain_dims, comm_new) will create three communica-
tors each with eight processes in a 2×4 grid.

Note that only one communicator is returned — this is the communicator which con-
tains the calling process.

7.5 Balanced cartesian distributions
MPI_DIMS_CREATE (nnodes, ndims, dims)

The MPI_DIMS_CREATE function, given a number of processors in nnodes and an
array dims containing some zero values, tries to replace the zeroes with values, to
make a grid of the with dimensions as close to each other as possible. Obviously this
is not possible if the product of the non-zero array values is not a factor of nnodes .
This routine may be useful for domain decomposition, although typically the pro-
grammer wants to control all these parameters directly.

rank_source

rank_dest

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

calling proces s

Convenient Process Naming: Virtual Topologies

Edinburgh Parallel Computing Centre 59

7.6 Exercise
1. Re-write the exercise from page 54 so that it uses a one-dimensional ring topol-

ogy.
2. Extend one-dimensional ring topology to two-dimensions. Each row of the grid

should compute its own separate result.

Extra exercise

Write a program that sorts the rows and columns of a 2-dimensional matrix in increas-
ing order. This is illustrated below with the matrix on the right being the output when
the matrix on the right is input. There may be more than one valid output any given
input matrix; you need only compute one.

1. In the first instance, assign at most one matrix element to each process.
2. Modify your program so that it can take an arbitrary N × N matrix for input

where N2 may be much greater than the total number of processes.

4 0 3

5 2 7

2 3 1

7 5 2

4 3 1

3 2 0

→

Writing Message-Passing Parallel Programs with MPI

60 Course notes

Collective Communication

Edinburgh Parallel Computing Centre 61

8 Collective Communication

MPI provides a variety of routines for distributing and re-distributing data, gathering
data, performing global sums etc. This class of routines comprises what are termed
the “collective communication” routines, although a better term might be “collective
operations”. What distinguishes collective communication from point-to-point com-
munication is that it always involves every process in the specified communicator1 (by
which we mean every process in the group associated with the communicator). To
perform a collective communication on a subset of the processes in a communicator, a
new communicator has to be created (see “When to create a new communicator” on
page 78). The characteristics of collective communication are:

• Collective communications cannot interfere with point-to-point communica-
tions and vice versa — collective and point-to-point communication are transpar-
ent to one another. For example, a collective communication cannot be picked
up by a point-to-point receive. It is as if each communicator had two sub-com-
municators, one for point-to-point and one for collective communication.

• A collective communication may or may not synchronise the processes in-
volved2.

• As usual, completion implies the buffer can be used or re-used. However, there
is no such thing as a non-blocking collective communication in MPI.

• All processes in the communicator must call the collective communication.
However, some of the routine arguments are not significant for some processes
and can be specified as “dummy” values (which makes some of the calls look a
little unwieldy!).

• Similarities with point-to-point communication include:

• A message is an array of one particular datatype (see “What’s in a Mes-
sage?” on page 23).

• Datatypes must match between send and receive (see “Datatype-match-
ing rules” on page 33).

• Differences include:

• There is no concept of tags.

• The sent message must fill the specified receive buffer.

8.1 Barrier synchronisation
This is the simplest of all the collective operations and involves no data at all.

1.Always an intra-communicator. Collective communication cannot be per
formed on an inter-communicator.

2.Obviously MPI_BARRIER always synchronises.

Writing Message-Passing Parallel Programs with MPI

62 Course notes

MPI_BARRIER (COMM)

MPI_BARRIER blocks the calling process until all other group members have called it.

In one phase of a computation, all processes participate in writing a file. The file is to
be used as input data for the next phase of the computation. Therefore no process
should proceed to the second phase until all processes have completed phase one.

8.2 Broadcast, scatter, gather, etc.

 Figure 32: Schematic illustration of broadcast/scatter/gather operations. The circles represent
processes with ranks as shown. The small boxes represent buffer space and the letters represent
data items. Receive buffers are represented by the empty boxes on the ``before'' side, send buff-

ers by the full boxes.

This set of routines distributes and re-distributes data without performing any opera-
tions on the data. The routines are shown schematically in Figure 32:. The full set of
routines is as follows, classified here according to the form of the routine call.

8.2.1 MPI_BCAST

A broadcast has a specified root process and every process receives one copy of the
message from the root. All processes must specify the same root (and communicator).

MPI_BCAST (buffer, count, datatype, root, comm)

The root argument is the rank of the root process. The buffer , count and
datatype arguments are treated as in a point-to-point send on the root and as in a
point-to-point receive elsewhere.

8.2.2 MPI_SCATTER, MPI_GATHER

These routines also specify a root process and all processes must specify the same root
(and communicator). The main difference from MPI_BCAST is that the send and
receive details are in general different and so must both be specified in the argument
lists. The argument lists are the same for both routines, so only MPI_SCATTER is
shown here.

B B BBBB

A B C D E

A B C D E A B C D EA B C D EA B C D EA B C D E

ROOT

ROOT

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A G M YB C D EF H I JK L N OP Q R S TU V W X

1 2 3 4 1 2 3 4RANK

MPI_BCAST

MPI_SCATTER

MPI_GATHER

MPI_ALLGATHER

MPI_ALL_TO_ALL

Before After

A B C D E

C D EA B

A B C D E

ROOT

C D EA B C D EA B

A B C D E F G H I J K L M N O P Q R S T U V W X Y

C D EA B C D EA B

0 0

Collective Communication

Edinburgh Parallel Computing Centre 63

MPI_SCATTER (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

Note that the sendcount (at the root) is the number of elements to send to each proc-
ess, not to send in total. (Therefore if sendtype = recvtype , sendcount =
recvcount). The root argument is the rank of the root process. As expected, for
MPI_SCATTER, the sendbuf , sendcount , sendtype arguments are significant only
at the root (whilst the same is true for the recvbuf , recvcount , recvtype argu-
ments in MPI_GATHER).

8.2.3 MPI_ALLGATHER, MPI_ALLTOALL

These routines do not have a specified root process. Send and receive details are sig-
nificant on all processes and can be different, so are both specified in the argument
lists. The argument lists are the same for both routines, so only MPI_ALLGATHER is
shown here.

MPI_ALLGATHER (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

8.2.4 MPI_SCATTERV, MPI_GATHERV,
MPI_ALLGATHERV, MPI_ALLTOALLV

These are augmented versions of the MPI_SCATTER, MPI_GATHER, MPI_ALLGATHER
and MPI_ALLTOALL routines respectively. For example, in MPI_SCATTERV, the
sendcount argument becomes an array sendcounts , allowing a different number
of elements to be sent to each process. Furthermore, a new integer array argument
displs is added, which specifies displacements, so that the data to be scattered need
not lie contiguously in the root process’ memory space. This is useful for sending sub-
blocks of arrays, for example, and obviates the need to (for example) create a tempo-
rary derived datatype (see“Introduction to Derived Datatypes” on page 43) instead.
Full details with examples and diagrams can be found in the MPI document [2].

8.3 Global reduction operations (global
sums etc.)

8.3.1 When to use a global reduction operation

You should use global reduction routines when you have to compute a result which
involves data distributed across a whole group of processes. For example, if every
process holds one integer, global reduction can be used to find the total sum or prod-
uct, the maximum value or the rank of the process with the maximum value. The user
can also define his or her arbitrarily complex operators.

8.3.2 Global reduction operations in MPI

Imagine that we have an operation called "o" which takes two elements of an MPI
datatype mytype and produces a result of the same type1.

1.It also has to be associative i.e. A o B o C = A o B o C, meaning that the order of
evaluation doesn’t matter. The reader should be aware that for floating point opera
tions this is not quite true because of rounding error

Writing Message-Passing Parallel Programs with MPI

64 Course notes

Examples include:

1. the sum of two integers
2. the product of two real numbers
3. the maximum of two integers
4. the product of two square matrices
5. a struct

struct {

int nResults;

double results[RMAX];

} resultPacket;

where the operation o multiplies the elements in results pairwise and sums
the nResults to produce a result of type struct resultPacket

6. a struct

struct {

float x;

int location;

} fred;

where, given two instances of fred , fred
0
 and fred

1
, the operation o com-

pares fred
0
.x with fred

1
.x and sets fred

result
.x to the maximum of the two,

then sets fred
result

.location to be whichever of the two location s “won”.

(A tie is broken by choosing the minimum of fred
0
.location and

fred
1
.location .)

A similar thing could be defined in Fortran with an array of two REALs and a bit of
trickery which stores the integer location in one of the values.

This is in fact the MPI_MAXLOC operator (see “Predefined operators” on page 65).

An operation like this can be applied recursively. That is, if we have n instances of
mytype called mydata 0 mydata 1 ... mydata n-1 we can work out1 mydata 0 o

mydata 1 o ... o mydata n-1 . It is easiest to explain how reduction works in MPI

with a specific example, such as MPI_REDUCE.

1.Associativity permits writing this without brackets.

Collective Communication

Edinburgh Parallel Computing Centre 65

8.3.3 MPI_REDUCE

This is illustrated in Figure 33:.

 Figure 33: Global reduction in MPI with MPI_REDUCE. o represents the reduction operator.
The circles represent processes with ranks as shown. The small boxes represent buffer space and
the letters represent data items. After the routine call, the light-shaded boxes represent buffer

space with undefined contents, the dark-shaded boxes represent the result on the root. Only one
of the four results is illustrated, namely A o E o I o M o Q, but the other four are similar --- for
example, the next element of the result is B o F o J o N o R. Receive buffers are represented by

the empty boxes on the ``before'' side, send buffers by the full boxes.

MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm)

All processes in the communicator must call with identical arguments other than
sendbuf and recvbuf . See “Operators” on page 65 for a description of what to spec-
ify for the operator handle. Note that the root process ends up with an array of
results — if, for example, a total sum is sought, the root must perform the final sum-
mation.

8.3.4 Operators

Reduction operators can be predefined or user-defined. Each operator is only valid for
a particular datatype or set of datatypes.

8.3.4.1 Predefined operators

These operators are defined on all the obvious basic C and Fortran datatypes (see
Table 7:). The routine MPI_MAXLOC(MPI_MINLOC) allows both the maximum (mini-
mum) and the rank of the process with the maximum (minimum) to be found. See

1

2

3

4

RANK

ROOT

A B C D

MPI_REDUCE

0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

AoEoIoMoQ

Writing Message-Passing Parallel Programs with MPI

66 Course notes

“Global reduction operations in MPI” on page 63. More details with examples can be
found in the MPI document [2].

8.3.4.2 User-defined operators

To define his or her own reduction operator, in C the user must write the operator as a
function of type MPI_User_function which is defined thus:

typedef void MPI_User_function (void *invec, void *inoutvec, int
*len, MPI_Datatype *datatype);

while in Fortran the user must write a function of the following type

FUNCTION USER_FUNCTION (INVEC(*), INOUTVEC(*), LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The operator must be written schematically like this:

for(i = 1 to len)

inoutvec(i) = inoutvec(i) o invec(i)

where o is the desired operator. When MPI_REDUCE (or another reduction routine is
called), the operator function is called on each processor to compute the global result
in a cumulative way. Having written a user-defined operator function, it has to be reg-
istered with MPI at run-time by calling the MPI_OP_CREATE routine.

MPI_OP_CREATE (function, commute, op)

Table 7: Predefined operators

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum & location

MPI_MINLOC Minimum & location

Collective Communication

Edinburgh Parallel Computing Centre 67

These return the operator handle op , suitable for use in global reduction calls. If the
operator is commutative (A o B = B o A) — the value commute should be specified as
TRUE, as it may allow MPI to perform the reduction faster.

8.3.5 MPI_ALLREDUCE, MPI_REDUCE_SCATTER,
MPI_SCAN

These are variants of MPI_REDUCE. They are illustrated in Figure 34:,

 Figure 34: Global reduction in MPI with MPI_ALLREDUCE. The symbols are as in Figure
33:. The only difference from MPI_REDUCE is that there is no root --- all processes receive the

result.

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_ALLREDUCE

AoEoIoMoQ

Writing Message-Passing Parallel Programs with MPI

68 Course notes

Figure 35:

 Figure 35: Global reduction in MPI with MPI_REDUCE_SCATTER. The symbols are as in
Figure 33:The difference from MPI_ALLREDUCEis that processes elect to receive a certain-

size segment of the result. The segments are always distributed in rank order.

and Figure 36:.

 Figure 36: Global reduction in MPI with MPI_SCAN. The symbols are as in Figure 33:. The
difference from MPI_ALLREDUCE is that the processes receive a partial result.

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_REDUCE_SCATTER

recvcounts

1

0

2

0

1

AoEoIoMoQ

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_SCAN

AoEoIoMoQ

A

AoE

AoEoI

AoEoIoM

Collective Communication

Edinburgh Parallel Computing Centre 69

The “scan” is sometimes known as a “parallel prefix” operation. Further details of
routine arguments and examples (including an implementation of “segmented scan”
via a user-defined operator) can be found in the MPI document [2].

8.4 Exercise
The exercises from Sections 5, 6, and 7 are variations on a global sum where the varia-
ble being summed is the ranks of the processors.

1. Re-write the exercise to use MPI global reduction to perform the global sum.
2. Re-write the exercise so that each process prints out a partial sum.
3. Ensure that the processes prints out their partial sum in the correct order, i.e.

process 0, then process 1, etc.

Extra exercises

1. Write a program in which the process with rank 0 broadcasts a message via
MPI_COMM_WORLD and then waits for every other process to send back that
message.

2. Write a program in which the process with rank 0 scatters a message to all proc-
esses via MPI_COMM_WORLD and then gathers back that message. How do
the execution times of this program and the previous one compare?

3. Define a graph topology where nearest-neighbours of the process with rank k
have rank 2k+1 and 2k+2, where k≥0. Use the resulting communicator to
implement a broadcast. How does the execution time of that broadcast vary as
a function of the message length? How does it compare with the MPI broad-
cast?

Writing Message-Passing Parallel Programs with MPI

70 Course notes

MPI Case Study

Edinburgh Parallel Computing Centre 71

9 MPI Case Study

9.1 A predator-prey simulation
The simulation of a predator prey model provides a good overview of the activities
and challenges involved in parallelizing a realistic application code. Yet, the model is
simple enough for the sequential code to be grasped quickly leaving you more time to
practice with MPI.

9.1.1 What is the model?

Some foxes and rabbits live on a rectangular stretch of land. The problem is to find out
how the two animal populations will evolve over the years. The simulation starts with
some given initial population. Successive generations of foxes and rabbits are esti-
mated over the years according to some simple predator-prey model. The problem is
discretized by subdividing the whole land into square stretches of land of 1 kilometre
of side. During a year, animals are born, some die, some are eaten and some other
move in or out of a square stretch of land. Within each square stretch of land, an esti-
mate of the population counts of foxes and rabbits is computed at the end of each year
of the simulation.

Suppose there are NS_Size squares stretches of land along the North-South axis and
WE_Size such stretches along the East-West axis. Let fi,j and ri,j denote respectively the
number of foxes and rabbits in the i-j-th square patch of land at the beginning of the
current year. The number of rabbits that survived until the end of the year is com-
puted according to the formula shown below where birth, death and migration rates
of rabbits (αr βr and µr respectively) are constant throughout the whole land and µr∆r
is a migration term. Similarly the corresponding estimate for foxes in the same square

patch of land is given by the formula below where αf, βf and µf are constant through-
out the whole land and µf∆f is a migration factor.

The boundary conditions are periodic in the space dimensions with period NS_Size in
the North-South direction and with period WE_Size in the East-West direction. These
periodic conditions are conductive of fox and rabbit populations that oscillate with
time and are easily programmed.

New r i j, αr r i j, βr fi j, µr r∆+ +=

New fi j, αf r i j, βf fi j, µf f∆+ +=

Writing Message-Passing Parallel Programs with MPI

72 Course notes

9.1.2 What to do?

There are three steps to the case study: copy the tar file for the case study into your
working directory, then compile and run the sequential program, called ECO, and par-
allelize the ECO program following the comments in either of the files d2fox.c or
d2fox.F depending on which programming language you chose to use.

9.1.2.1 Getting the files

There are C and Fortran versions of the tar files for the MPI case study. They can be
found in

/home/etg/MPIcourse/casestudy/C/casestudy.tar

and

/home/etg/MPIcourse/casestudy/F/casestudy.tar

Copy one of the two files into you working directory and then untar it as follows

tar xvf exercise.tar

9.1.2.2 The source code

The simulation program is called ECO. The version of the ECO program in the file
whose name start with n2fox should run on any workstation. The n2fox file con-
tains no explicit clue on how to produce an MPI version of the ECO program. Its pur-
pose is to help you understand the data structures and the working of the sequential
ECO program. The sequential ECO program can be compiled as follows:

make sequential

Depending on which programming language you chose, the file d2fox.F or
d2fox.c is the recommended starting points for the case study. The ECO program in
these files have been augmented with comments and some useful data structure have
been declared. Some procedures in the files d2fox.c and d2fox.F have more arguments
than their counterparts in the files n2fox.c and n2fox.F. These additions were made to
let you concentrate on experimenting with MPI. Compile the baseline MPI ECO pro-
gram with:

make

The program ECO in the file ngfox.c calls the gnuplot graphics package to plot the
first five generations of foxes. This should give you some intuition about the predator-
prey model. On some systems the data files for the first five generations of foxes will
all be created first and then displayed one at a time. Viewing more generations of
foxes may not be possible if your workstation disk space if nearly full. The corre-
sponding executable can be compiled using the command:

make display

Whatever variant of the ECO program you compile, the makefiles provided with this
distribution will generate an executable called fox .

MPI Case Study

Edinburgh Parallel Computing Centre 73

9.2 The sequential ECO program
In accordance with the MPI usage, the name “procedure” designates either a C func-
tion or a Fortran subroutine. The number of foxes and rabbits in say the i , j -stretch of
land (with 1≤i ≤NS_Size and 1≤j ≤WE_Size) are stored as the i ,j -entries of the
arrays Fox and Rabbit respectively. The initial population counts are computed by
the procedure SetLand .

The procedure Evolve computes the populations of foxes and rabbits at time k+1
from the populations at time k , for 1≤k≤NITER. The two-dimensional arrays TFox
and TRabbit store the new populations counts while these are being computed.
Because of the periodic space boundary conditions, the new population counts for the
first row of land stretches depend on old populations counts on first, second and last
rows of land stretches. To avoid unnecessary conditional statements, both arrays Fox
and Rabbit have a row indexed 0 that duplicates the last row of the corresponding
array. Similarly both arrays Fox and Rabbit have a row indexed NS_Size+1 and
columns indexed 0 and WE_Size+1 . The data in the additional rows and columns is
called halo data. The procedure FillBorder is called at the beginning of procedure
Evolve for each animal population to handle halo data. Most communication in the
parallel ECO program take place within the procedure FillBorder .

The total population counts of foxes and rabbits are computed once every PERIOD
years by calling twice the procedure GetPopulation , once for each animal popula-
tion.

9.3 Toward a parallel ECO program
9.3.1 A 1-D cartesian topology.

1. Run the sequential ECO program in either of the file d2fox.c or d2fox.F on a
single processor. Save the output of the simulation.

2. Define a 2-D cartesian topology in procedure SetMesh . Mimic a 1-D topology
by setting the extent of one of the dimensions of the process mesh to 1. Prefera-
bly, choose that dimension that will result in messages of unit-stride, or contig-
uous, vector data type being exchanged between processes.

3. Define a geometric data decomposition in procedure SetLand .The variables fx
and lx record respectively the global indices of the first and last rows of the
arrays Fox and Rabbits for the current process. The variables fy and ly store the
corresponding global indices of columns for these two arrays. These four varia-
bles are related by the two equations shown below where the variables dx and
dy are set appropriately in procedure SetLand . The values of all four variables

fx, lx, fy and ly are saved into the array lbnds at the end of procedure SetLand
for later use by other procedures.

4. Define in procedure SetComm, the MPI derived datatypes for shifting halo data
along the ring of processes. The MPI derived datatype for shifting a column is
stored in the entry COLUMN of the array named types . The procedure Set-
Comm is also responsible for storing in the array neigh the precomputed ranks of

lx fx dx+=

ly fy dy+=

Writing Message-Passing Parallel Programs with MPI

74 Course notes

nearest neighbour processes.

5. Write in procedure FillBorder , the necessary MPI send and receive proce-
dure calls to shift halo data between nearest-neighbour processes.

6. Complete the procedure GetPopulation to sum the local population counts
computed by each process.

7. Check that your parallel simulation produces the same results as the sequential
one.

9.3.2 On a 2-D process grid.

Make your code work with an arbitrary the 2-D cartesian topology. You might
find it useful in a first instance to set to 1 the extent of one of the two dimensions
of the process mesh before letting MPI_Dims_create determine the extend of
both dimensions.

9.4 Extra exercises
These additional exercises are fairly independent of one another, and are roughly
ordered in increasing amount of work.

1. Rewrite the data shifts in procedure FillBorder using the MPI_Sendrecv
procedure.

2. Make the size of the land small, e.g. NS_Size=WE_Size=4 , and run your sim-
ulation with various number of processes. Do you get the same result on every
run? If not, can you fix the problem by adding appropriate else -conditions in
procedure FillBorder ?

3. Time your program and see how the shape of the 2-D process mesh affects the
run time of the simulation. You might get more interesting results if you do not
time the print-statement in the main loop of the main program.

4. Replace the data shifts in procedure FillBorder by persistent communication
requests. You could, for example, call the procedures MPI_Send_init and
MPI_Recv_init from in procedure SetComm. Does your new parallel ECO
program run faster than your previous parallel ECO program? Does your con-
clusion still hold when you increase either the number of processes or the size
of the whole land?

5. Overlap communication and arithmetic. Compute the new local population
counts that do not depend on halo data while halo data is being sent and
received. What happens when you increase either the number of processes or
the size of the whole land?

6. Simulate the fox and rabbit populations on a sphere. Model each animal popu-
lation on the southern and northern hemispheres by two separate 2-D arrays.
Assign the equator to the northern hemisphere. Do not change the equations,
so that your current 2-D parallel ECO program can readily be adapted to com-
pute fox and rabbit populations in the interior of each hemisphere.

MPI Case Study

Edinburgh Parallel Computing Centre 75

Writing Message-Passing Parallel Programs with MPI

76 Course notes

Further topics in MPI

Edinburgh Parallel Computing Centre 77

10 Further topics in MPI

10.1 A note on error-handling
A successful MPI routine will always return MPI_SUCCESS, but the behaviour of an
MPI routine which detects an error depends on the error-handler associated with the
communicator involved (or to MPI_COMM_WORLD if no communicator is involved).
The following are the two predefined error-handlers associated with
MPI_COMM_WORLD1.

• MPI_ERRORS_ARE_FATAL – This is the default error-handler for
MPI_COMM_WORLD. The error is fatal and the program aborts.

• MPI_ERRORS_RETURN– The error causes the routine in which the error oc-
curred to return an error code. The error is not fatal and the program continues
executing — however, the state of MPI is undefined and implementation-de-
pendent. The most portable behaviour for a program in these circumstances is
to clean up and exit.

The most convenient and flexible option is to register a user-written error-handler for
each communicator. When an error occurs on the communicator, the error-handler is
called with the error code as one argument. This method saves testing every error
code individually in the user’s program. The details are described in the MPI docu-
ment[2] (see MPI_ERRHANDLER_CREATE, MPI_ERRHANDLER_SET,
MPI_ERRHANDLER_FREE) but are not discussed in this course.

10.2 Error Messages
MPI provides a routine, MPI_ERROR_STRING, which associates a message with each
MPI error code. The format of this routine are as follows:

MPI_ERROR_STRING (errorcode, string, resultlen)

The array string must be at least MPI_MAX_ERROR_STRINGcharacters long.

10.3 Communicators, groups and contexts
10.3.1 Contexts and communicators

Two important concepts in MPI are those of communicators and contexts. In fact these
two concepts are indivisible, since a communicator is simply the handle to a context.
Every communicator has a unique context and every context has a unique communi-
cator. A communicator is the central object for communication in MPI. All MPI com-
munication calls require a communicator argument; it follows that all MPI

1.Other communicators, when they are created, inherit error-handlers by default.

Writing Message-Passing Parallel Programs with MPI

78 Course notes

communications are made in a specific context. Two MPI processes can only commu-
nicate if they share a context and messages sent in one context cannot be received in
another. A context is analogous to a radio frequency where only processes which have
specified the same frequency can take part in a communication (Figure 37:). Contexts
define the scope for communication.

 Figure 37: A communicator.

The motivation for context is modularity. The user’s code may need to work together
with one or more parallel libraries (possibly also written by the same user!), each of
which has its own communication patterns. Using context, the communications of
each “module” are completely insulated from those of other modules. Note that tags
are not suitable for this purpose, since a choice of tags to avoid clashes requires prior
knowledge of the tags used by other modules.

10.3.2 When to create a new communicator

It is often the case that a programmer wants to restrict the scope of communication to
a subset of the processes. For example:

• The programmer may want to restrict a collective communication (see “Collec-
tive Communication” on page 61) to a subset of the processes. For example, a
regular domain decomposition may require row-wise or column-wise sums.

• A parallel library may need to re-define the context of user communication to a
subset of the original processes (clients) whilst the other processes become serv-
ers.

 Figure 38: A new communicator defined on a subset of the processes in MPI_COMM_WORLD.

There are other reasons for creating a new communicator. When creating a virtual
topology (see “Convenient Process Naming: Virtual Topologies” on page 55), a new
communicator is automatically created and returned to the user. It simply contains a
convenient re-numbering of the group in the original communicator, which typically
fits communication patterns better and therefore makes subsequent code simpler.

0

4

2

3

5
1

contextgroup

communicator

0

1 2

3

myComm

Further topics in MPI

Edinburgh Parallel Computing Centre 79

10.3.3 Communicators and groups

An MPI group is simply a list of processes and is local to a particular process — proc-
esses can create and destroy groups at any time without reference to other processes.
Understanding this fact is important in understanding how new communicators are
created. It appears to contradict the statement that a communicator/context contains
a group, but the point is that the group contained within a communicator has been previ-
ously agreed across the processes at the time when the communicator was set up, an operation
that may synchronise the processes involved.

10.3.4 An aside on intra-communicators and inter-
communicators

The “standard” type of communicator is known as an intra-communicator, but a sec-
ond, more exotic type known as an inter-communicator also exists1to provide commu-
nication between two different communicators. The two types differ in two ways:

1. An intra-communicator refers to a single group, an inter-communicator refers
to a pair of groups.The group of an intra-communicator is simply the set of all
processes which share that communicator.

2. Collective communications (see“Collective Communication” on page 61 can be
performed with an intra-communicator. They cannot be performed on an inter-
communicator. The group of processes involved in a collective communication
(see “Collective Communication” on page 61) is simply the group of the intra-
communicator involved.

Inter-communicators are more likely to be used by parallel library designers than
application developers. The routines MPI_COMM_SIZE and MPI_COMM_RANK can be
used with inter-communicators, but the interpretation of the results returned is
slightly different.

10.3.5 The creation of communicators

When a process starts MPI by calling MPI_INIT , the single intra-communicator
MPI_COMM_WORLD is defined for use in subsequent MPI calls. Using
MPI_COMM_WORLD, every process can communicate with every other.
MPI_COMM_WORLD can be thought of as the “root” communicator and it provides the
fundamental group. New communicators are always created from existing communi-
cators. Creating a new communicators involves two stages:

• The processes which will define the new communicator always share an existing
communicator (MPI_COMM_WORLD for example). Each process calls MPI rou-
tines to form a new group from the group of the existing communicator — these
are independent local operations.

• The processes call an MPI routine to create the new communicator. This is a glo-
bal operation and may synchronise the processes. All the processes have to spec-
ify the same group — otherwise the routine will fail.

1.A routine MPI_COMM_TEST_INTER exists to query the type of a given communica-
tor.

Writing Message-Passing Parallel Programs with MPI

80 Course notes

10.4 Advanced topics on point-to-point com-
munication

10.4.1 Message probing

Message probing allows the MPI programmer to read a communication envelope
before choosing whether or not to read the actual message. The envelope contains
data on the size of the message and also (useful when wildcards are specified) the
source and tag, enabling the programmer to set up buffer space, choose how to
receive the message etc. A probed message can then be received in the usual way. This
need not be done immediately, but the programmer must bear in mind that:

• In the meantime the probed message might be matched and read by another re-
ceive.

• If the receive call specifies wildcards instead of the source and tag from the en-
velope returned by the probe, it may receive a different message from that which
was probed.

The same message may be probed for more than once before it is received. There is
one blocking probing routine MPI_PROBE and one non-blocking (or “querying”) rou-
tine MPI_IPROBE. The form of the routines is similar to the normal receive routines —
the programmer specifies the source, tag, and communicator as usual, but does not of
course specify buf , count or datatype arguments.

MPI_PROBE (source, tag, comm, status)

MPI_PROBE returns when a matching message is “receivable”. The communication
envelope status can be queried in the usual way, as described in “Information about
each message: the Communication Envelope” on page 31.

MPI_IPROBE (source, tag, comm, flag, status)

MPI_IPROBE is similar to MPI_PROBE, except that it allows messages to be checked
for, rather like checking a mailbox. If a matching message is found, MPI_IPROBE
returns with flag set to TRUE and this case is treated just like MPI_PROBE. However,
if no matching message is found in the “mailbox”, the routine still returns, but with
flag set to FALSE. In this case status is of course undefined. MPI_IPROBE is useful
in cases where other activities can be performed even if no messages of a certain type
are forthcoming, in event-driven programming for example.

10.4.2 Persistent communications

If a program is making repeated communication calls with identical argument lists
(destination, buffer address etc.), in a loop for example, then re-casting the communi-
cation in terms of persistent communication requests may permit the MPI implementa-
tion to reduce the overhead of repeated calls. Persistent requests are freely compatible
with normal point-to-point communication. There is one communication initialisation
routine for each send mode (standard, synchronous, buffered, ready) and one for
receive. Each routine returns immediately, having created a request handle. For
example, for standard send:

MPI_SEND_INIT (buf, count, datatype, dest, tag, comm, request)

The MPI_BSEND_INIT , MPI_SSEND_INIT , MPI_RSEND_INIT and
MPI_RECV_INIT routines are similar. The request from any of these calls can be

Further topics in MPI

Edinburgh Parallel Computing Centre 81

used to perform communication as many times as required, by making repeated calls
to MPI_START:

MPI_START (request)

Each time MPI_START is called it initiates a non-blocking instance of the communica-
tion specified in the INIT call. Completion of each instance is tested with any of the
routines described for non-blocking communication in “Testing communications for
completion” on page 39. The only difference to the use of the non-blocking communi-
cation routines in“Non-Blocking Communication” on page 35 is that completion tests
do not in this case deallocate the request object and it can therefore be re-used. The
request must be deallocated explicitly with MPI_REQUEST_FREE instead.

MPI_REQUEST_FREE (request)

For example, consider the one-dimensional smoothing example from “Example: one-
dimensional smoothing” on page 35 which can be re-written:

call MPI_SEND_INIT for each boundary cell;

call MPI_RECV_INIT for each halo cell;

for(iterations) {

update boundary cells;

initiate sending of boundary values to neighbours with
MPI_START;

initiate receipt of halo values from neighbours with MPI_SRART;

update non-boundary cells;

wait for completion of sending of boundary values;

wait for completion of receipt of halo values;

}

call MPI_REQUEST_FREE to free requests;

A variant called MPI_STARTALL also exists to activate multiple requests.

10.4.3 Shifts and MPI_SENDRECV

A shift involves a set of processes passing data to each other in a chain-like fashion (or
a circular fashion). Each process sends a maximum of one message and receives a
maximum of one message. See figure Figure 39: for an example. A routine called
MPI_SENDRECV provides a convenient way of expressing this communication pattern
in one routine call without causing deadlock and without the complications of “red-

Writing Message-Passing Parallel Programs with MPI

82 Course notes

black” methods (see“Motivation for non-blocking communication” on page 36 for a
quick description of “red-black”).

 Figure 39: An example of two shifts. MPI_SENDRECV could be used for both

Note that MPI_SENDRECV is just an extension of point-to-point communications. It is
completely compatible with point-to-point communications in the sense that mes-
sages sent with MPI_SENDRECV can be received by a usual point-to-point receive and
vice versa. In fact, all MPI_SENDRECV does is to combine a send and a receive into a
single MPI call and make them happen simultaneously to avoid deadlock. It has noth-
ing to do with collective communication and need not involve all processes in the
communicator. As one might expect, the arguments to MPI_SEND_RECV are basically
the union of the arguments to a send and receive call:

MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm, status)

There is also a variant called MPI_SENDRECV_REPLACE which uses the same buffer
for sending and receiving. Both variants are blocking — there is no non-blocking form
since this would offer nothing over and above two separate non-blocking calls. In fig-
ure Figure 39: process 1 only receives, process 6 only sends and process 3 does neither.
A nice trick is to use MPI_NULL_PROC which makes the code more symmetric. The
communication in Figure 39: could work thus with MPI_SENDRECV:

Table 8: Communications from Figure 39:

Process dest source

0 2 2

1 MPI_NULL_PROC 4

2 0 0

3 MPI_NULL_PROC MPI_NULL_PROC

4 1 5

6 4 6

6 5 MPI_NULL_PROC

10

32 4

5
6

communicator

For further information on MPI

Edinburgh Parallel Computing Centre 83

11 For further information on
MPI

Two books are in preparation at the time of writing, namely [3]. A newsgroup
comp.parallel.mpi has been set up. World Wide Web access to the MPI FAQ (“fre-
quently asked questions”) is via

http://www.cs.msstate.edu/dist_computing/mpi-faq.html

and the MPI document [2] itself is available through WWW via

http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html.

Writing Message-Passing Parallel Programs with MPI

84 Course notes

References

Edinburgh Parallel Computing Centre 85

12 References

[1] R. Alasdair A. Bruce, James G. Mills and A. Gordon Smith, ‘‘CHIMP/MPI User
Guide’’. Edinburgh Parallel Computing Centre, 1994. EPCC-KTP-CHIMP-V2-USER.

[2] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
1994.

[3] William Gropp, Ewing Lusk and Anthony Skjellum. ‘‘Using MPI: Portable Paral-
lel Programming with the Message Passing", MIT Press, 1994.

Writing Message-Passing Parallel Programs with MPI

86 Course notes

EPCC’s MPI Implementation

Edinburgh Parallel Computing Centre 87

Appendix A: EPCC’s MPI Implemen-
tation

A.1 How to compile and run MPI code
The user guide for the EPCC implementation of MPI is [1]. (The EPCC implementa
tion of MPI used in this course uses a lower level of software known as “CHIMP” and
references to “CHIMP” may therefore appear in error messages etc.)

A.2 Modifying your environment
The mpiinst script will set up your environment for MPI. It is only necessary to this the
first time you use MPI on your system. For example, assume the name of the directory in
which MPI is installed is mympi. Then you should type

mympi/bin/mpiinst

You will find that the mpiinst has appended lines to your startup files (.login,
.profile or whatever) and created a new symbolic link called .chimpv2rc. You
must now either source your startup file, or log out and then log in again.

A.3 Compiling MPI Code
The EPCC version of MPI provides scripts for the compilation of MPI code, one for C,
mpicc, and one for Fortran, mpif77.

When the compilation script is run, it compiles the program for the architecture it was
called on. If you wish to run the code on a different architecture this must be specified
with the -mpiarch option.

To compile the MPI program simple.c for a Sun workstation, the compile line
would be:

mpicc -mpiarch sun4 -o simple simple.c

For the equivalent Fortran code, simple.F, the compile line would be:

mpif77 -mpiarch sun4 -o simple simple.F

Details of other options for the compilation scripts can be found in [1].

A.3.1 Configuration Files

In order to run an MPI program using the EPCC implementation of MPI you require a
configuration file. This file specifies which executables (processes) the loader should
load onto which processors (“hosts”). The name of the configuration file is usually of

Writing Message Passing Parallel Programs with MPI

88 Course notes

the form <name>.cfg. A configuration file, simple.cfg for the example programs
shown in “A simple MPI program” on page 13 could be as follows:

The configuration file for one instance of the program
‘simple’.
(simple) : type=sun4

This will execute the executable simple on the processor on which the MPI loader is
called (if the host is not of the correct type this is likely to fail!). The structure of the
configuration file is as follows:

• The name of the executable for the MPI process is enclosed in brackets.

• Command-line arguments can be given to the executable by including them in
side the brackets after the executable name in the normal way.

• The architecture you wish to run the code on is specified to MPI in the form
type=<architecture>. For example, if you wish to run the code on Sun
workstations, you would specify the architecture as type=sun4. The type is
used by MPI to set its parameters and configure itself to support message-pass
ing on each particular host architecture.

• The type= syntax is an example of a configuration file attribute and is there
fore separated from the list of processes by a colon.

• Comments can be included in a configuration file by preceding them with #.

More details on how to construct configuration files can be found in [1].

A.3.2 Loader Command

The loader reads the configuration file and loads the processes onto the specified
resources. The loader command has the following form:

mpirun <options> <configuration file>

Details of the possible options are contained in [1]. One particularly useful option is
the verbose option -d which provides information on what the loader is doing.

To run the configuration file simple.cfg described in the previous section the
loader command would be:

mpirun simple.cfg

or with the verbose option:

mpirun -d simple.cfg

A.3.3 Running Multiple Instances of the Same MPI
Process

It is common to run several processes all consisting of the same executable. For exam
ple, if we wish to run three instances of the process work the configuration file,
work.cfg, could include the following line:

3 (work) : type=sun4

While this does what is required, it may be the case that we want to run different
numbers of work on different occasions. Rather than having to edit the configuration
file every time a different number of processes are required, it is simpler to pass the
number of instances required as an argument to the loader. This is done as follows:

$1 (work) : type=sun4

EPCC’s MPI Implementation

Edinburgh Parallel Computing Centre 89

In this case e.g., for three instances of work the command line would be

mpirun work.cfg 3

Because no host attribute has been specified, the set of processors onto which these
processes will be loaded depends on details of “resource management”. For example,
for a Unix workstation environment, all processes will be loaded on the “local host”
i.e. the workstation on which mpirun was called, but on a specialised parallel
machine the processes might be loaded onto different processors. Resource manage
ment is not discussed in this course. For the case of Unix workstations, of course the
processes have to be loaded onto different hosts to make a truly parallel program. For
example, to load a copy of the executable work onto each of the local host and two
remote hosts (blair and coventry) the following configuration file could be used:

work : type=sun4
work : type=sun4, host=blair
work : type=sun4, host=coventry

Writing Message Passing Parallel Programs with MPI

90 Course notes

Machine Specific Information

Edinburgh Parallel Computing Centre 91

Appendix B: Machine Specific
Information

The machine used in this course in a T800 Meiko Computing Surface,
ssp.epcc.ed.ac.uk, which is housed here in EPCC. To login to it from the EPCC train-
ing room workstations, type

rlogin ssp

The machine contains around 150 T800 processors which are arranged into domains
which range in size from 2 processors to 150 processors. In order to run code on the
ssp, a user must be ‘attached’ to a domain. Only one user can attach to a domain at
any one time, so you have sole access to the processors in a domain during the time
you are attached to it. Information on the domains, and whether they are available
can be obtained using the csusers command.

user@ssp$ csusers -a

VRM version 1.16c; last loaded: Sun Jan 22 13:07:20 1995

Resource User Attached
d2a AVAILABLE
d2b AVAILABLE
d2c AVAILABLE
dm8 AVAILABLE
d17a AVAILABLE
d17b AVAILABLE
d17c AVAILABLE
d17d AVAILABLE
d17e AVAILABLE
d17f AVAILABLE
d17g AVAILABLE
dm17 AVAILABLE

Class Members
d68 d68a d68b
d51 d51a d51b d51c d51d d51e d51f
d34 d34a d34b d34c d34d d34e d34f d34g d34g
d17 d17a d17b d17c d17d d17e d17f d17g
d2 d2a d2b d2c

Additive Domain Members
d150 d2a d2b d2c dm8 d136
d136 d17a d17b d17c d17d d17e d17f d17g dm17
d68b d17e d17f d17g dm17
d68a d17a d17b d17c d17d
d51b d17e d17f d17g
d51c d17b d17c d17d
d51d d17a d17b d17d

Writing Message Passing Parallel Programs with MPI

92 Course notes

d51a d17a d17b d17c
d34g d17f d17g
d34e d17e d17f
d34d d17b d17c
d34c d17a d17d
d34b d17c d17d
d34a d17a d17b

The domain names have the form

d<number><letter>

The letter d identifies it as a domain on the ssp, while the number is the number of
processors in the domain, and the letter differentiates between a number of different
domains with the same number of processors in them. The larger domains are made
up of combinations of the smaller domain.

B.1 Requesting Resources
A user connects to a domain using the csattach command followed by the name of the
domain the user wishes to attach to. For example, if you wish to attach to a domain
with name d5a then the command would be

csattach d5a

Alternatively, if the user is not concerned which of the group domains they are
attached to, they can csattach to the generic domain. For example in the above exam-
ple the generic domain would be d5 and the user could attach to it using the following
command

csattach d5

which will result in the user be given any of that class of domains which is free and to
which they are permitted access.

Once a domain has been attached to sucessfully, the following message is printed

user@ssp$ csattach d17
Request for d17 granted.
d17a: attaching to 17 x T800
Total remaining allocation: 3294:12:21 processor hours
Timeout on this connection limited to: 193:46:36 hours
user@ssp$

The user has exclusive access to the processors in the domain, in this case d17a, until
they either detach from the domain, or logout of the machine. A user can detach from
a domain using the csdetach command.

user@ssp$ csdetach
d17: detached
Connect time = 0:01:15; processor time = 0:21:15
Total remaining allocation: 3293:51:06 processor hours
user@ssp$

As well as freeing up the resources for other users, csdetach gives information about
the amount of time you were connected to the domain, and how much processor time
was used.

