
A Prototyping Tool for Validating Complex Robot Systems

Cezary ZIELINSKI, Gerald SEET

 School of MPE, Nanyang Technological University
Nanyang Avenue, Singapore 639798.

mczielinski@ntu.edu.sg, mgseet@ntu.edu.sg

Abstract
 In the development of complex electromechanical
systems, e.g. robot systems, it is often necessary to
produce breadboard systems to demonstrate the
viability of the concept. This, typically, requires that
different computer hardware operating with different
software to be interconnected. Towards this aim,
UDP/IP or TCP/IP networking interfaces provide a
useful medium. The paper presents a universal
switch that can handle the communication between
diverse software modules of any large robot system.
The only assumption is made that each component
has the capability of using UDP/IP and resides on a
node of a real computer network supporting that
protocol. The switch has internal data buffering
capability, so the speed of data production and
consumption may be radically different. It can
handle a large number of data producers and
consumers. The effectiveness of the solution has
been tested on a pilot training and control system for
an Underwater Robotics Vehicle (URV).

1 Introduction

Robot systems are usually composed of several
layers. The bottom layer consists of
electromechanical devices. On top of that is the layer
composed of electronic devices responsible for
driving the bottom layer and acquiring sensory
information both about the state of the
electromechanical part and the environment.
Currently it is a common practice to compose that
layer of several embedded computers and some
interfacing electronics. A still higher layer is formed
by the control software responsible for the execution
of the prescribed task, operator interfacing and
generation of control signals for the lower layers.
The control software layer itself may be layered too
and very often is [1]. Nevertheless the design of
complex robot systems always starts with the
feasibility study which has to prove that the general
concept is valid. In this phase we often use stand-
alone computers, instead of embedded ones, running
software coded using different programming
language platforms or obtained from different
vendors, but suiting certain partial tasks. Although
each piece of software may perform its functions
satisfactorily on its own, it is often very difficult to
integrate it into a larger system. The main problems
are caused by various speeds of communication
between subsystems and the inability of

synchronising actions. This paper proposes a
general solution to this problem by connecting the
computers by a UDP/IP (User Datagram
Protocol/Internet Protocol) [2,3,4] network and
introducing an extra computer responsible for
gathering, storing and supplying upon request the
data produced or consumed by all the other nodes of
the network. As UDP/IP communication software is
available for the majority of real time operating
systems and the usually used programming
languages (e.g.: C, C++, Pascal), the proposed
concept can be used to validate software for very
diverse robot systems.

2 Communication Switch

Quite often the software layer of robot devices
contains modules that are responsible only for the
delivery of data (e.g. sensors). On the other hand
there are modules that only consume data (e.g.
software generating control signals according to the
feedback information obtained from the sensors).
The data producers (sources) and consumers
(targets) might work with different repetition times.
Moreover, it may be difficult to synchronise the
sources and targets to exchange the data directly.
The proposed communication switch solves all of
the above mentioned problems.

 The communication switch is a separate computer
supervised by a real time operating system QNX [5].
This computer constantly listens at a predefined
socket [2] for any incoming UDP/IP datagrams from
the data sources. The headers of the received
datagrams are analysed to find out who is the target
of the message. Subsequently the received data is
stored in the internal buffer assigned to the target.
When the target needs this information it asks for the
data through another socket. The switch then
transmits the data to the target through yet another
socket. In this way the source can produce data as
fast as it can, and the target always receives the
latest update. All the communication with the switch
uses UDP/IP protocol (fig.1). No assumption is
made as to how many sources and targets exist or as
to where they reside in the network. Some of them
may share the same computers, others might be
placed on single network nodes. This depends only
on the assumed architecture, the computational load
of the software and the properties of the software
components used.

mailto:mgseet@ntu.edu.sg

The switch is independent of all those factors. Any
type of data can be passed between sources and
targets, although the header has to be appended by
the source.

The switch runs three kinds of processes (fig.2).
There is one receiver process that is responsible for
listening at a single predefined socket to any
incoming datagrams from the sources. Once the
datagram is received this process finds out by
analysing the header who is the target. This
information is necessary to correctly select the
buffer process. The buffer process stores the
received information. There are as many buffer

processes as there are targets. The buffer process
constantly listens to messages sent either by the
receiver or the transmitter process. There are also as
many transmitters as there are targets. The
transmitter listens at its private socket for any
requests from its target. If such a request is issued it
immediately contacts its buffer process. The buffer
process passes to it the stored information. The so
received data is then transmitted through another
socket to the target. All of the internal inter-process
communication within the communication switch
uses the QNX message passing method (Send -
Receive - Reply). All of the external communication
is handled by the sockets of the UDP/IP protocol.

Fig.1 Network Communication of Data Sources And Targets

The receiver and transmitter processes most of their
time are read-blocked, waiting for the incoming data
or the request for data. The buffer processes are
Receive-blocked waiting either for the receiver to
pass on the data or an adequate transmitter to request
the data. In this way the switch is a pure server in the
terms of client-server architecture, while the sources
and the targets act as its clients. In this way none of
the processes occupies the processor unless it really
needs it to execute its task. The processes are
brought to life only if they have a task to perform,
otherwise they remain dormant. This ensures fastest
possible switch reaction times. The switching time is
rather limited by the throughput of the network.
Keeping the datagrams reasonably short (and in the
case of well structured robot systems the amount of
data to be passed around is rather limited) all of the
data transfers can be treated as atomic actions. The
transmission collisions are handled by the Ethrernet
protocol, so no data is lost.

3 Utilisation

 The switch has been used in a feasibility study of
robotic systems created in the Robotics Research
Center of Nanyang Technological University,
Singapore. The system consists of a dual-purpose
control system that can be used for training as well
as for the control of an actual URV. The Super Safir
URV (fig.3) was developed by HYTEC hydro-

Technology. It is designed around a cylinder, which
houses all the electronics and a camera module. At
one end of the cylinder is a transparent
hemispherical viewport behind which the camera is
located. At the other end of the cylinder there are the
connectors to the motors, lights, compass and the
umbilical line. Four thrusters directly attached to the
URV body provide the drive. The frame provides
protection as well as support for the two floats, two
lights and an adjustable float. Wires in a 250m long
tether supply from the surface the necessary
electrical power. In the training (simulator) mode,
the real URV is replaced by a simulator module,
which accepts actual commands from the control
system and responds with a simulated URV
reactions produced by the dynamic model of the
URV. The simulator module behaves much like the
actual URV.

The control system consists of several components:
the real URV controller, URV dynamics model,
virtual environment display and operator interface
panel. Each of those components is located on a
separate computer, being the node of a network. The
switch, handling the communication between those
nodes, resides on an additional computer (fig.4). The
operator commands the real URV or its model by
using a joystick (source of commands).

UDP/IP protocol

switch

• • • source
n

source
1

target
m• • •

target
1

The same joystick supplies the force feedback to the
operator (i.e. is the target). Moreover, the operator
requires the knowledge of the current state of the
URV. The virtual environment is the source of
simulated sonar and visual data. This environment
has to change its state either in response to the
simulation or the real vehicle motion. In simulation
mode the URV dynamics model is the source of

vehicle responses and the target of operator
commands. During normal operation the real URV
is the source of data representing the current state of
the URV. Moreover, it is the target of operator
commands. In this way four sources and four targets
have been identified. The switch handles the
communication between them.

Fig.2 Internal Structure of the Communication Switch

QNX
protocol

buffer 1
Stores data and

supplies it
when requested

readread

source 1
Generates data

source n
Generates data

• • • • •

Receive

buffer m
Stores data and

supplies it
when requested

Receive • • • • •

SendQNX
protocol

ReplySend Reply • • • • •

Switch

receiver
Gets data and

decides where to
send it

sendto UDP/IP
protocol

sendto UDP/IP
protocol

sendtoread

QNX
protocol

Send ReplyQNX
protocol

Send Reply

• • • • •

transmitter m
Retransmits data when

requested

transmitter 1
Retransmits data when

requested

• • • • •

sendtoread

sendto readsendto read UDP/IP
protocol

UDP/IP
protocol

target m
Requests data,
reads it in and

utilises

target 1

Requests data,

reads it in and utilises

Fig. 3. The Super Safir URV

Fig.4. URV control and simulation system structure

Each of the components uses a different software
platform for its implementation. In the case of
operator interface, instead of hardwired consoles,
reconfigurable LabVIEW based panels were
developed. LabViEW is a development environment
based on the graphical programming language G [6].
WorldToolKit by Sense8 Corporation was used for
the development of the virtual environment. A non-
immersive system with a 21” CRT display was
chosen for presenting the 3D real-time simulation.
Stereoscopic viewing was made possible with the
use of CrystalEyesVR LCD-shutter glasses that is
synchronised with the high-frequency monitor. To
further enhance the sense of presence within the
virtual environment, both auditory feedback and
tactile feedback was incorporated into the system
[7]. Sound files may be played in response to events
such as collision. Force feedback was achieved with

the use of the Microsoft SideWinder force-feedback
joystick [8]. Different behaviours may be
programmed into the joystick and activated upon
request. The force-feedback joystick has two
functions. As an input device it accepts motion
commands for the URV much like a normal joystick.
In the camera control mode, it can also be used to
direct the orientation of the pan-tilt mechanism of
the camera. In the output mode, the joystick can
produce force feedback effects in response to
commands from the virtual environment computer.
In an effort to improve operator dexterity, the force-
feedback joystick can be programmed to be in one of
the following modes: vibratory effect for URV
collision detection, spring force effect for increasing
resistance to motion at higher velocity and damper
effect for increasing resistance to motion at higher
acceleration.

source
- joystick

target
 - force feedback
 - URV state update

Operator Interface

source
- sonar scanner
 simulation

target
- state of the 3D
 environment

Virtual environment

source
- response generator

target
- command
 interpreter

URV Dynamics Model

source
- URV state

target
- command
 interpreter

Real URV

UDP/IP network switch

The WorldToolKit was chosen as the platform on
which to develop the virtual environment system. It
has a programming library of over 1000 functions
written in the C language enabling the programmer
to develop high-performance, real-time 3D graphical
applications with relative ease. The system was
designed for use both in the actual vehicle
deployment and as a training aid during mission
rehearsal. Thus, it is required that the virtual world
closely resembles that of the actual work
environment. Huge static objects such as underwater
structures were created based on exact dimensions

and at precise location (fig.5). Several models were
included into the underwater virtual world to create
a realistic representation of the actual conditions.
These include the environment, the vehicle, and the
sensor systems onboard the URV.

Both the graphical and dynamic representation of the
vehicle are modelled. In the actual deployment of
the URV, the its graphical representation within the
virtual world is updated using the sensor feedback
from the vehicle. In the training mode the simulation
module provides the feedback data.

Fig. 5. The Virtual Environment Display

The URV is connected directly to the controller
through an RS-232 serial link. The panel provides
direct control of the following URV parameters:
thruster speed and direction, light intensity and
camera movement (pan, tilt, focus, zoom). Included
in the panel are a number of indicators providing
feedback on the following: camera pan/tilt, URV
heading from the onboard magnetic compass, URV
depth from the onboard pressure sensor, and fault
indicators (high temperature, water and electricity
leakage).

4 Conclusions

The software architecture of the communication
switch enabling UDP/IP datagram transmission with
data buffering has been presented. The switch can
communicate with any software using UDP/IP
protocol. No assumption has been made as to the
number of data sources or targets or the relative
speed of data production and consumption. The
software of the switch is written in a parametric way
using the C language. The switch has as many
buffer-transmitter pairs as there are targets. The
number of these pairs is a parameter. By changing
the value of this parameter and recompiling the
source code of the switch a custom designed system
tailored to the number of targets is produced.
Currently the switch is utilized in the feasibility

studies of robotic systems created in the Robotics
Research Center of Nanyang Technological
University, Singapore. Its efficiency has been tested
on a URV controller/simulator system.

5 References

[1] Zielinski C.: Distributed Software for Robots
Systems. International Journal of Intelligent
Robot Design and Production. Vol.1, No.1,
1994. pp.11-24.

[2] Hunt C.: TCP/IP Network Administration.
O’Reilly, Cambridge, 1998

[3] ---: TCP/IP Programmers Guide. QNX Software
Systems Ltd. Canada, 1998.

[4] ---: TCP/IP User’s Guide. QNX Software
Systems Ltd. Canada, 1998.

[5] ---: QNX Operating System - System
Architecture. QNX Software Systems Ltd.
Canada, 1997.

[6] ---: G Programming Reference Manual,
National Instruments, January 1998 Edition

[7] Barfield, W., Furness III, T. A.: ‘irtual
Environments and Advanced Interface Design,
Oxford University Press, New York, 1995.

[8] ---: SideWinder Force feedback SDK –
Programmer’s Reference, Microsoft
Corporation. USA, 1997

	Session Schedule
	A Prototyping Tool for Validating Complex Robot Systems
	Cezary ZIELINSKI, Gerald SEET
	Introduction
	Communication Switch
	Utilisation
	Conclusions
	References

