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Abstract

The problem of aggregating multiple numerical attributes to form overall measure is of
considerable importance in many disciplines. In location problems, classical approaches are
based on minimization of the average distance (the median concept) or minimization of the
maximum distance (the center concept) to the service facilities. The median solution con-
cept is primarily concerned with the spatial efficiency while the center concept is focused
on the spatial equity. The ordered weighted averaging (OWA) aggregation uses the pref-
erence weights assigned to the ordered values rather than to the specific attributes. It is
widely recognized for location problems as a general model (the ordered median) allowing
to build various solution concepts taking into account distribution of distances. Importance
weights are used in location problems to express the client demand for a service thus defining
the location decision output as distances distributed according to measures defined by the
demand weights. The standard ordered median concept does not take into account such de-
mand weights. They can be treated with the Weighted OWA (WOWA) aggregation though
the importance weights make the WOWA concept much more complicated than the original
OWA. In this paper we analyze mathematical programming models for location problems
with the WOWA objective functions (the weighted ordered median).

Key words. Location, Ordered Median, OWA, WOWA, Linear Programming, Mixed Integer
Linear Programming, Equity, Fairness.

∗National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland.

1



Institute of Control & Computation Engineering Report 2015–03

1 Introduction

Location analysis is a field of operations research with a long tradition, which deals with distri-
bution of spatial units to meet specific objectives and requirements [1, 2]. It is widely applied
in many domains of engineering, for example to design various kinds of networks (distribution,
telecommunications). The key element in the location problems are utilities that express an
abstract measure of distance between the suppliers and clients of the considered services. If
the individual clients are independent of each other, in addition to the global efficiency, the
distribution of distances plays an important role [3]. Justice (equity of distribution) becomes an
additional criterion for assessing the resulting solution. This approach is especially important in
decisions concerning the location of public facilities, for example hospitals, crisis management
centers, schools [4], where clients (citizens) have the right to a fair public access in accordance
with regulations.

Demand weights are used in location problems to express the client demand for a service
thus defining the location decision output as distances distributed according to measures defined
by the demand weights. Note that the model of such distribution weights allows us for a clear
interpretation of demand weights as the client repetitions at the same place. Splitting a client
into two clients sharing the demand at the same geographical point does not cause any change
of the final distribution of distances. Therefore, the distribution model of weights is important
to accommodate various demand coefficients in location problems.

Numerous models for the discrete location problem were developed. Many of them differ
only in the aggregation function. It is immediately apparent when we take into account effect
of the siting facilities on individuals or groups [5] and consider the multicriteria model with
objectives corresponding to these individual evaluations (impacts) [6]. The most commonly
used aggregation is based on the weighted mean, called the median concept, where positive
importance weights pi (i = 1, . . . ,m) are allocated to several clients

Ap(y) =

m∑
i=1

yipi. (1)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1). When all weights are
equal we obtain simple arithmetic average. The average objective is equivalent to the total
sum, which aims to global efficiency and it might discriminate isolated and low populated sites.
To overcome these difficulties, especially when the equity of distribution is important, another
popular approach, called the center concept [7], is used. This objective is independent of the
demand weights and corresponds to the worst outcome (the situation of the client in the worst
position)

M(y) = max
i=1,...,m

yi. (2)

However, the center criterion might lead to substantial increase in total distance, and thus dete-
riorate global efficiency. Additionally considering only maximal distance limits the possibility to
differentiate various feasible solutions [8] and may optimize only subsets of all criteria in some
cases [9].

In various location problems some compromise between spatial efficiency and spatial equity
is desired. This issue occurs even in public sector, where decision-maker has to reconcile social
equity with economic efficiency [10]. Cent-dian [11] is an example of compromise approach,
which corresponds to convex combination of median and center criteria. Unfortunately, it has
limited ability to generate compromise solutions [12]. Apart from the center criterion, a wide
range of different equity (inequality) measures were also analyzed [5]. But simple minimization
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of inequality measure can cause undesirable side effects. Thus the bicriteria mean-equity model
is usually used, which minimizes both the average and the inequality measure. However, not all
inequality measures are well suited for such models [13]. Another approach that tries to bring
together efficiency and equity is the lexicographic center approach [6], which extends the classic
center criterion. However, as it provides the most equitable (fair) efficient solution, its modelling
flexibility is limited.

During the last decade a new type of objective function in location theory, called ordered
median (OM) function has been developed and analyzed. It originates from early models [14, 15]
of compensatory extensions of the lexicographic center approach, thus representing weighted sum
of the ordered outcomes (distances). The ordered median location models were formulated for
locations on networks [16], on the plane [17] and for general discrete location problems [18].
Some special classes of the ordered solution concepts such as k-centrum and conditional median
were independently developed for location problems [19, 20, 21]. The general OM methodology
was developed [22] unifying various location models. Exact and approximate solution methods
were studied [23, 24, 25]. The OM objective function unifies and generalizes most common
objective functions used in location theory. In fact, the ordered median function corresponds to
the Ordered Weighted Averaging (OWA) aggregation, developed by Yager [26], with the non-
negative preference weights. The OWA operator is a weighted average with weights allocated to
the ordered distances (i.e. to the largest distance, the second largest and so on) rather than to
the distances of specific clients. When applying the OWA aggregation to optimization problems
with attributes modeled by variables the weighting of the ordered outcome values causes that
the OWA operator is nonlinear even for linear programming (LP) formulation of the original
constraints and criteria. Yager [27] has shown that the nature of the nonlinearity introduced
by the ordering operations allows one to convert the OWA optimization into a mixed integer
programming problem. In [28] there was shown that the OWA optimization with monotonic
weights can be formed as a standard linear program of higher dimension, thus leading to efficient
solution techniques for many related problems [29]. We compared different MILP formulation
of OWA for any non-negative preference weights for OMP and examined the possibility of
improving the computational performance by introducing various valid inequalities [30]. MILP
formulations and valid inequalities for the OWA aggregation were also studied for different
combinatorial optimization problems [31].

The OWA operator allows to model various aggregation functions from the maximum through
the arithmetic mean to the minimum [32]. Thus, it enables modeling of various preferences from
the optimistic to the pessimistic one. On the other hand, the OWA does not allow to allocate
any demand weights to specific clients. Actually, the weighted mean (1) cannot be expressed
in terms of the OWA aggregations. Typical ordered median model allows weighting of several
clients only by straightforward rescaling of the distance values. However, the ordered median
approach might be extended by the incorporation of the demand weights by rescaling accordingly
clients measure within the distribution of distances as defined in the so-called Weighted OWA
(WOWA) aggregation [33, 34]. The WOWA aggregation uses two sets of weights: the preferential
(OWA type) weights and the demand (distribution measure) weights. Since its introduction,
the WOWA operator has been successfully applied to many fields of decision making [35, 36, 37,
38] including metadata aggregation problems [39, 40] and implicit application to the portfolio
optimization [41]. The WOWA operator covers as special cases both the standard weighted mean
(the weighted median solution concept defined with the demand weights) in the case of equal all
the preference weights, as well as the OWA average (the ordered median solution concept defined
with the preferential weights) in the case of equal all the demand weights. Therefore applying
the WOWA aggregation we can obtain solutions optimal in terms of the distance distribution
expressed by the demand weights.
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This paper studies basic properties of the Weighted Ordered Median Problem (WOMP)
taking into account the demand weights following the WOWA aggregation rules. The WOWA
operator is a particular case of the Choquet integral defined with quite a complicated for-
mula. Nevertheless, linear programming formulations were introduced for optimization of the
WOWA objective with monotonic preferential weights thus representing the equitable prefer-
ences. We proposed general MILP models of the WOWA aggregation for any non-negative
preference weights. We examined the computational performance of WOMP and consider the
possibility of improving it by introducing various additional constraints. The paper is orga-
nized as follows. Next section describes the location problem as the multiobjective optimization
problem with objectives corresponding individual clients evaluations of the location schemes.
It discusses the way the demand weights are included in the problem and their interpretation.
Section 3 presents the background of the ordered operators, specifically the WOWA aggregation.
In Section 4 we analyze mathematical programming formulations for the WOWA aggregation
and their possible reinforcements with valid inequalities. Section 5 describes the computational
experiments and analyzes the obtained results. In Section 6 we conclude with main observations
and propose some future research steps.

2 Problem Description

We consider discrete location problem [42], which can also be defined as network location prob-
lem, where facilities are allowed to be placed only on vertices (or subset of vertices) of the
underlying network [43]. We assume no capacity limit of facilities. There is given a set of m
sites (e.g. clients) and a set of potential facility locations. Without loss of generality it can
be assumed that these two sets are identical. We have to place n facilities (n ≤ m) to satisfy
demands from the clients. Then each client is assigned to the facility that meets its demand.
The assignment is done in such a way to optimize a given objective function. The objective
function is usually based on distances (costs) between the clients and the facilities. Because we
consider unlimited capacities each client is assigned the closest facility. Formally the model can
be expressed in the following form:

min (y1, y2, . . . , ym) (3a)

s.t. yi =

m∑
j=1

cijx
′
ij for i = 1, 2, . . . ,m, (3b)

m∑
j=1

xj = n, (3c)

m∑
j=1

x′ij = 1 for i = 1, 2, . . . ,m, (3d)

x′ij ≤ xj for i, j = 1, 2, . . . ,m, (3e)

xj ∈ {0, 1} for i, j = 1, 2, . . . ,m, (3f)

x′ij ≥ 0 for i, j = 1, 2, . . . ,m, (3g)

where cij denotes the cost of satisfying total demand of client i from facility j. The main
decisions are described by binary variables: xj (j = 1, 2, . . . ,m) is equal to 1 if a facility is
built at site j and equal to 0 otherwise. There are also binary variables that represent allocation
decisions: x′ij (i, j = 1, 2, . . . ,m) is equal to 1 if the demand of client i is satisfied by facility j and
0 otherwise. Due to lack of capacity restriction each client will be assigned to the closest facility
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and therefore variables x′ij can be relaxed to continuous variables. The auxiliary variable yi (3b)
expresses the cost of satisfying the demand of client i. Constraint (3c) enforces that exactly n
facilities are placed. The requirement that full demand of each client is satisfied is modeled with
constraint (3d). Constraint (3e) ensures that the clients are assigned to the existing facilities.
Thus constraints (3c)–(3g) defines the set of feasible solutions F , which according to constraint
(3b) is mapped into the set of attainable outcome (cost) vectors y.

Further, for each client i = 1, 2, . . . ,m there is also given weight pi, which determines the
demand for service. Thus problem (3) defines distribution of outcomes yi = fi(x) with measures
pi for i = 1, 2, . . . ,m. Integer weights could be interpreted as client multiplication within one
location, what preserves the distribution of outcomes. This allows to disaggregate the problem
to basic form, where demand weights for all clients are equal to pi = 1. Similarly, one can
proceed with any rational weights. Such transformation is possible, but in practice usually
causes significant increase in size of the problem (number of clients) and thus made the problem
impossible to solve. Our approach can directly take into account the demands weights, without
the need for disaggregation.

It is worth mentioning that it is also possible to use weights to scale the distance, thus to
define the outcomes as yi = pifi(x) for i = 1, 2, . . . ,m with a uniform distribution (with single
client at each site). This approach is substantially different from the optimization of the out-
comes distribution with the weights pi. In practice, the distance scaling may be implemented
within the individual objective functions fi. It leads to an equivalent problem without explicit
weights but with suitably transformed distances (multiplied by weights). Therefore, such appli-
cation of the weights is not specifically addressed in the work, as it can be solved by the basic
formulation of the location problem.

3 The Ordered Weighted Averages

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0 for i = 1, . . . ,m
and

∑m
i=1 wi = 1. The OWA aggregation of attributes y = (y1, . . . , ym), as introduced by

Yager [26], can be mathematically formalized as follows. First, we introduce the ordering map
Θ : Rm → Rm such that Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y)
and there exists a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we
sum the weighted ordered values Θ(y), i.e. the OWA aggregation takes the following form:

Aw(y) =
m∑
i=1

wiθi(y). (4)

The OWA aggregation (4) allows one to model various aggregation functions from the maximum
(w1 = 1, wi = 0 for i = 2, . . . ,m) through the arithmetic mean (wi = 1/m for i = 1, . . . ,m)
to the minimum (wm = 1, wi = 0 for i = 1, . . . ,m − 1). In the case of decreasing weights
w1 ≥ w2 ≥ . . . ≥ wm, the OWA aggregation is a convex function thus, when minimized it
models the so-called fairness [44] or equitable preferences [13]. The latter are important for
many locations problems related to public facilities and thus requiring modeling the equity
preferences. On the other hand, the weighted mean (1) aggregation, the standard criterion of
the median location problems, cannot be expressed as an OWA aggregation. Actually, the OWA
aggregations are symmetric with respect to the individual attributes and they do not allow to
represent any importance weights allocated to specific attributes, except of possible scaling of
outcome values (distances) [22].

Importance weighted averaging is a central task in decision problems of many kinds and
the ordered averaging model enables one to introduce importance weights to affect criteria
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importance by rescaling accordingly its measure within the distribution of achievements as
defined in the so-called Weighted OWA (WOWA) aggregation [33]. Let w = (w1, . . . , wm) be
OWA weights and let p = (p1, . . . , pm) be an additional importance weighting vector such that
pi ≥ 0 for i = 1, . . . , n and

∑m
i=1 pi = 1. The corresponding WOWA aggregation of outcomes

y = (y1, . . . , ym) is defined as follows [33]:

Aw,p(y) =
m∑
i=1

ωiθi(y), (5)

where the weights ωi are defined as

ωi = w∗(
∑
k≤i

pτ(k))− w∗(
∑
k<i

pτ(k)) (6)

with w∗ a monotone increasing function that interpolates points ( i
m ,
∑

k≤iwk) together with
the point (0.0) and τ representing the ordering permutation for y (i.e. yτ(i) = θi(y)). Function
w∗ is required to be a straight line whenever the points can be interpolated in this way. Due to
this requirement, the WOWA aggregation covers the standard weighted mean (1) with weights
pi as a special case of equal preference weights (wi = 1/m for i = 1, . . . ,m). Actually, one may
use only the simplest case of linear interpolation thus leading to the piecewise linear function
w∗(α) =

∫ α
0 g(ξ) dξ with the stepwise generating function

g(ξ) = mwk for (k − 1)/m < ξ ≤ k/m, k = 1, . . . ,m. (7)

When introducing breakpoints βi =
∑

k≤i pτ(k) and β0 = 0, weights ωi can be expressed as

ωi =
∫ βi

0 g(ξ) dξ −
∫ βi−1

0 g(ξ) dξ =
∫ βi
βi−1

g(ξ) dξ and the entire WOWA aggregation as

Aw,p(y) =
m∑
i=1

θi(y)

∫ βi

βi−1

g(ξ) dξ =

∫ 1

0
g(ξ)F

(−1)
y (ξ) dξ, (8)

where F
(−1)
y is the stepwise function F

(−1)
y (ξ) = θi(y) for βi−1 < ξ ≤ βi. Function F

(−1)
y can

also be mathematically recognized as the left-continuous inverse of the left-continuous right tail
cumulative distribution function (cdf):

Fy(d) =
∑
i∈I

piδi(d) where δi(d) =

{
1 if yi ≥ d
0 otherwise

, (9)

which for any real (outcome) value d provides the measure of outcomes greater or equal to d.

That means, F
(−1)
y is the quantile function defined as

F
(−1)
y (ξ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1. (10)

Using the stepwise generation function (7) within the general WOWA formula (8) leads us
to the following expression of the WOWA aggregation:

Aw,p(y) =

∫ 1

0
g(ξ)F

(−1)
y (ξ) dξ =

m∑
k=1

wkm

∫ k/m

(k−1)/m
F

(−1)
y (ξ) dξ. (11)

We will treat formula (11) as a formal definition of the WOWA aggregation of m-dimensional
outcomes y defined by m-dimensional importance weights p and preferential weights w. Note
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that quantities m
∫ k/m

(k−1)/m F
(−1)
y (ξ) dξ express the conditional means within the corresponding

quantiles (k − 1)/m and k/m. In the case of equal importance weights pi = 1/m, formula

(11) represents the standard definition of the OWA aggregation (4), since F
(−1)
y (ξ) = θk(y) for

(k−1)/m ≤ ξ < k/m. Although formula (11) allows one to express general WOWA aggregations

by using the preferential weights to redefine F
(−1)
y (ξ) = θk(y) accordingly.

Example 1. To illustrate the concept of the WOWA aggregation let us consider a location prob-
lem with 5 sites (m = 5) and the normalized demand weights p = (0.1, 0.2, 0.2, 0.4, 0.1). Thus
the demand needs of the second and third clients are twice the demand of the first client, and the
fourth client has four times bigger demand than the first one (the demand needs of the fifth and
first clients are equal). Furthermore, assume the preference weights w = (0.4, 0.3, 0.15, 0.1, 0.05).

Let us consider a feasible solution with the cost (distance) vector y = (1, 3, 2, 4, 5). First,
we focus on the classic definition of the WOWA aggregation given by formula (5). On the basis
of vector w we can determine function w∗, which according to definition interpolates points
(0, 0), (1/5, 0.4), (2/5, 0.7), (3/5, 0.85), (4/5, 0.95), (1, 1). Assuming the simplest piecewise linear
function, it can be expressed as

w∗(π) =



0,4
0,2π for 0 ≤ π ≤ 0,2,

0,4 + 0,3
0,2(π − 0,2) for 0,2 < π ≤ 0,4,

0,7 + 0,15
0,2 (π − 0,4) for 0,4 < π ≤ 0,6,

0,85 + 0,1
0,2(π − 0,6) for 0,6 < π ≤ 0,8,

0,95 + 0,05
0,2 (π − 0,8) for 0,8 < π ≤ 1.

Now, we can calculate weights ωi (i = 1, . . . ,m) according to formula (6). Namely:

ω1 = w∗(p5) = w∗(0,1) = 0,2,

ω2 = w∗(p5 + p4)− w∗(p5) = 0,775− 0,2 = 0,575,

ω3 = w∗(p5 + p4 + p2)− w∗(p5 + p4) = 0,9− 0,775 = 0,125,

ω4 = w∗(p5 + p4 + p2 + p3)− w∗(p5 + p4 + p2) = 0,975− 0,9 = 0,075,

ω5 = w∗(p5 + p4 + p2 + p3 + p1)− w∗(p5 + p4 + p2 + p3) = 1− 0,975 = 0,025.

The concept of calculating weights ωi is also presented in Figure 1. Finally, according to for-
mula (5) the WOWA operator value is Aw,p(y) = 0.2 ·5+0.575 ·4+0.125 ·3+0.075 ·2+0.025 ·1 =
3.85.

Next, we exemplify the alternative procedure for calculating the WOWA aggregation value
according to formula (11). For the given cost vector y and the demand weights p we can
determine the cumulative distribution function (9) and the corresponding quantile function
(10):

Fy(d) =



1 dla d ≤ 1,

0,9 for 1 < d ≤ 2,

0,7 for 2 < d ≤ 3,

0,5 for 3 < d ≤ 4,

0,1 for 4 < d ≤ 5,

0 for d > 5,

F
(−1)
y (ξ) =



5 for 0 < ξ ≤ 0,1,

4 for 0,1 < ξ ≤ 0,5,

3 for 0,5 < ξ ≤ 0,7,

2 for 0,7 < ξ ≤ 0,9,

1 for 0,9 < ξ ≤ 1.

Then, based on the quantile function, we can calculate the averages of the ordered cost vector
for the consecutive equal demand portions of 1/m. The averages correspond to the integrals
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π

w∗(π)

p5

ω1

p4

ω2

p2

ω3

p3

ω4

p1

ω5 w∗

1

1

Figure 1: Concept of WOWA weights ωi for Example 1

∫ k/5
(k−1)/5 F

(−1)
y (ξ) dξ for k = 1, . . . , 5:

∫ 1/5

0
F

(−1)
y (ξ) dξ = 0.1 · 5 + 0.1 · 4 = 0.9,∫ 2/5

1/5
F

(−1)
y (ξ) dξ = 0.2 · 4 = 0.8,∫ 3/5

2/5
F

(−1)
y (ξ) dξ = 0.1 · 4 + 0.1 · 3 = 0.7,∫ 4/5

3/5
F

(−1)
y (ξ) dξ = 0.1 · 3 + 0.1 · 2 = 0.5,∫ 1

4/5
F

(−1)
y (ξ) dξ = 0.1 · 2 + 0.1 · 1 = 0.3.

Figure 2 presents the quantile function F
(−1)
y (ξ), based on which the integrals were calculated.

Finally, according to formula (11), the WOWA value is Aw,p(y) = 5 · (0.4 · 0.9 + 0.3 · 0.8 + 0.15 ·
0.7 + 0.1 · 0.5 + 0.05 · 0.3) = 3.85.

One can also consider slightly different way to compute the WOWA aggregation value accord-

ing to formula (11), which boils down to different calculation of the integrals
∫ k/5

(k−1)/5 F
(−1)
y (ξ) dξ.

It requires a transformation of the cost vector, after which each cost corresponds to the equal de-
mand portion, which is a divisor of 1/m. It is possible, when there is a common divisor for all de-
mand weights pi (i = 1, . . . ,m) and value 1/m. A sufficient condition is that all demand weights
and value 1/m are rational — such assumption seems reasonable in case of the location prob-
lems. The transformation leads to replication of cost components of y according to the demand
weights p (precisely, each component yi is repeated the number of times the determined portion
is lower than pi for i = 1, . . . ,m). The cost vector from the example problem can be transformed
into new vector, where individual cost corresponds to 0.1 portion of demand. Consequently, we
get a new cost vector y̆ = (1, 3, 3, 2, 2, 4, 4, 4, 4, 5) with 10 components (the second and third
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ξ

F
(−1)
y (ξ)

0

1

2

3

4

5

0,2 0,4 0,6 0,8 1

p5 p4 p2 p3 p1

Figure 2: Quantile function F
(−1)
y (ξ) for Example 1

component was doubled and the fourth component was repeated four times). The preference
weights w can be now applied to the new cost vector y̆ such that the first weight is multiplied
by the average of the two largest costs, the second weight by the average of the next two largest
costs, and so on. Finally, we get Aw,p(y) = 0.4 ·4.5+0.3 ·4+0.15 ·3.5+0.1 ·2.5+0.05 ·1.5 = 3.85.

When in (11) the left-tail integrals are used rather than those on intervals one gets

Aw,p(y) =
m∑
k=1

mwk(L(y,p,
k

m
)− L(y,p,

k − 1

m
)), (12)

where L(y,p, α) is defined by left-tail integrating of quantile function F
(−1)
y , i.e.

L(y,p, 0) = 0 and L(y,p, α) =

∫ α

0
F

(−1)
y (ξ)dξ for 0 < α ≤ 1. (13)

In particular, L(y,p, 1) =
∫ 1

0 F
(−1)
y (ξ)dξ = Ap(y). Graphs of functions L(y,p, α) (with respect

to α) are concave curves, the so-called (upper) absolute Lorenz curves [13]. In the case of
equal importance weights pi = 1/m thus representing the standard OWA aggregation, one gets
L(y,p, km) = 1

m

∑k
i=1 θi(y) and formula (12) reduces to (4). Similar to the OWA aggregation, in

the case of decreasing OWA weights w1 ≥ w2 ≥ . . . ≥ wm, the WOWA aggregation is a convex
function thus modeling equitable preferences when minimized.

4 MILP Models for WOWA Optimization

4.1 Basic models

Following formula (12), the WOWA aggregation may be expressed as

Aw,p(y) =
m∑
k=1

mwk(L(y,p,
k

m
)− L(y,p,

k − 1

m
)) =

m∑
k=1

w′kL(y,p,
k

m
), (14)
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where w′m = mwm, w′k = m(wk − wk+1). Due to formula (13), values of function L(y,p, α) for
any 0 ≤ α ≤ 1 can be found by optimization:

L(y,p, α) = max
ui
{
m∑
i=1

yiui :
m∑
i=1

ui = α, 0 ≤ ui ≤ pi ∀ i }. (15)

The above problem is an LP for a given outcome vector y while it becomes nonlinear for y being
a vector of variables. This difficulty can be overcome by taking advantages of the LP dual to
(15). Introducing dual variable t corresponding to the equation

∑m
i=1 ui = α and variables di

corresponding to upper bounds on ui one gets the following LP dual of problem (15):

L(y,p, α) = min
t,di
{αt+

m∑
i=1

pidi : t+ di ≥ yi, di ≥ 0 ∀ i} (16a)

= min
t
{αt+

m∑
i=1

pi max{yi − t, 0} }, (16b)

where the optimal value t̄ is the α-quantile of distribution of values yi with respect to the
measures pi. Equation (16a) enables the following statement.

Proposition 1. For any vector y, value % fulfills inequality L(y,p, α) ≤ % if and only if there
exist t and di (i = 1, . . . ,m) such that

αt+

m∑
i=1

pidi ≤ % and t+ di ≥ yi, di ≥ 0 ∀ i.

Consider minimization of the WOWA aggregation

min{Aw,p(y) : y = f(x), x ∈ F}. (17)

Note that in the case of equitable WOWA aggregation specified by decreasing weights w1 ≥
w2 ≥ . . . ≥ wm, following (14) the WOWA aggregation takes the form

Aw,p(y) =

m∑
k=1

w′kL(y,p,
k

m
)

with positive weights w′k. Therefore, the following assertion can be proven.

Proposition 2. In the case of WOWA aggregation defined by decreasing weights w1 ≥ w2 ≥
. . . ≥ wm, optimization problem (17) may be expressed as the following problem with auxiliary
linear inequalities:

min
%k,tk,dik,yi

m∑
k=1

w′k%k

s.t.
k

m
tk +

m∑
i=1

pidik ≤ %k for k = 1, . . . ,m,

tk + dik ≥ yi, dik ≥ 0 for i, k = 1, . . . ,m,

y = f(x), x ∈ F .

10
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Model from Proposition 2 is further depicted as MWLP.
In general case of WOWA with non-monotonic weights wi, one may get negative coefficient

w′ in formula (14). Therefore, one cannot rely on minimization of only upper bounds %k as in
Proposition 2. For negative coefficients one needs to use lower bounds on the corresponding
Lorenz terms.

Following (16b) and taking into account that optimal value t̄ is the corresponding quantile
thus one of the values yi we get that L(y,p, α) ≥ % if and only if

% ≤ αyi′ +
m∑
i=1

pi max{yi − yi′ , 0} for i′ = 1, . . . ,m.

Proposition 3. For any vector y, value % fulfills inequality L(y,p, α) ≥ % if and only if there
exist zii′ and d̄ii′ (i′, i = 1, . . . ,m) such that

% ≤ αyi′ +
m∑
i=1
i 6=i′

pid̄ii′ for i′ = 1, . . . ,m,

d̄ii′ ≤ yi − yi′ +Mzii′ for i′ 6= i = 1, . . . ,m,

d̄ii′ ≤M(1− zii′) for i′ 6= i = 1, . . . ,m,

zii′ ∈ {0, 1} for i′ 6= i = 1, . . . ,m.

This allows us to form a MILP model for general WOWA optimization.

Proposition 4. In the case of any WOWA aggregation, optimization problem (17) may be
expressed as the following problem with auxiliary linear inequalities and binary variables:

min
%k,tk,dik,yi,d̄ii′ ,zii′

m∑
k=1

w′k%k (18a)

s.t.
k

m
tk +

m∑
i=1

pidik ≤ %k for k = 1, . . . ,m, (18b)

tk + dik ≥ yi, dik ≥ 0 for i, k = 1, . . . ,m, (18c)

%k ≤
k

m
yi′ +

m∑
i=1
i 6=i′

pid̄ii′ for i′, k = 1, . . . ,m, (18d)

d̄ii′ ≤ yi − yi′ +Mzii′ for i′ 6= i = 1, . . . ,m, (18e)

d̄ii′ ≤M(1− zii′) for i′ 6= i = 1, . . . ,m, (18f)

zii′ ∈ {0, 1} for i′ 6= i = 1, . . . ,m, (18g)

y = f(x), x ∈ F . (18h)

All constraints (18b)–(18h) together represent a valid MILP model for general WOWA op-
timization. However, there is no need to use both upper and lower bound constraints for all k.
From the model one may eliminate the corresponding upper constraints (18b)–(18c) in case of
w′k < 0 and the corresponding lower constraint (18d) for w′k ≥ 0. Constraints (18e)–(18g) may
be skipped only in the case of all w′k ≥ 0 (equitable WOWA). This model is further depicted as
MW1.

Binary variables zii′ with constraints (18e)–(18g) represent pairwise comparisons of values
yi and yi′ . Exactly, zii′ = 1 when yi < yi′ and zii′ = 0 otherwise. Number of binary variables

11
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and constraints may be reduced by taking advantages of the symmetry for variables d̄ii′ and d̄i′i.
Indeed, constraints (18e)–(18g) can be replaced with the following

d̄ii′ ≤ yi − yi′ +Mzii′ for i′, i = 1, . . . ,m; i < i′, (19a)

d̄ii′ ≤M(1− zii′) for i′, i = 1, . . . ,m; i < i′, (19b)

d̄ii′ ≤ yi − yi′ + d̄i′i for i′, i = 1, . . . ,m; i > i′, (19c)

zii′ ∈ {0, 1} for i′, i = 1, . . . ,m; i < i′. (19d)

Nevertheless, the model still remains very complex with numerous variables and constraints.
This model is further depicted as MW2.

4.2 Valid inequalities

In this section we propose some valid inequalities for the WOWA optimization models.
First, for MILP models we consider simple additional constraint on variables d̄ii′ , which

should be non-negative, that is,

d̄ii′ ≥ 0 for i, i′ = 1, 2, . . . ,m. (20)

Next, we may notice that the linear constraints on d̄ii′ variables may be additionally
strengthen by adding several transitivity relations on pairwise comparisons. The transitivity
relations means that when yi < yi′ and yi′ < yi′′ then yi < yi′′ . Such dependency is equivalent
to the following constraint

zii′′ ≥ zii′ + zi′i′′ − 1 for i, i′, i′′ = 1, 2, . . . ,m; i < i′ < i′′. (21)

Constraint (21) can be regarded as a lower bound for binary variables arising from the transitivity
relations. Similarly, one can add upper bound, which corresponds to the following relationship:
if yi ≥ yi′ and yi′ ≥ yi′′ then yi ≥ yi′′ . The equivalent constraint can be stated as

zii′′ ≤ zii′ + zi′i′′ for i, i′, i′′ = 1, 2, . . . ,m; i < i′ < i′′. (22)

It should be emphasized, however, that the transitivity relation generates huge number of con-
straints, which on the other hand may have an adverse effect on the computational performance
of MILP models.

We also consider restrictions on the value of the function L(y,p, α). Let us look at the
maximum increment of L(y,p, α). For a given k the L(y,p, k/m) represents a weighted average
of k/m largest cost y with weights distribution given by p. Keeping in mind the non-increasing
order of the outcomes, the difference between the weighted averages of the (k + 1)/m and k/m
greatest cost may be, at most, such as between the weighted averages of the k/m and (k−1)/m
largest costs for each k = 2, 3, . . . ,m− 1. Taking into account the limiting case for k = 1, these
restrictions can be expressed as follows:

ρk+1 ≤ 2ρk − ρk−1 for k = 2, . . . ,m− 1,

ρ2 ≤ 2ρ1.
(23)

We may also impose the lower bound on the function L(y,p, α). Due to the non-increasing
order of the outcomes, for a given k the value of L(y,p, k/m) is at least k/m-th part of the
whole, that is, the value of the function L(y,p, 1), which is the weighted average of all outcomes
for k = 1, 2, . . . ,m. Formally, this restriction can be stated as follows

ρk ≥
k

m

m∑
i=1

piyi for k = 1, 2, . . . ,m. (24)

12



Institute of Control & Computation Engineering Report 2015–03

Constraints (23) and (24) can also be applied for model MWLP.
To clarify, the last four constraints are further depicted as:

• c1 — constraint (21),

• c2 — constraint (22),

• c3 — constraint (23),

• c4 — constraint (24).

5 Computational Tests

5.1 Experimental procedure

The experimental procedure has been analogous to that presented in [24]. In order to check the
computational performance of the presented models and their different formulations, we have
applied them to various instances of the location problem. To generate various instances we have
considered some parameters characterizing the location problem and have determined their sets
of possible values. Then, based on combinations of these parameters various instances of the
location problems have been defined. We have considered the following parameters: the number
of sites (locations) m, the number of facilities to be placed n and the type of problem defined
by the vector of preference weights w in the WOWA aggregation. Besides these, we have also
generated additional parameter p corresponding to the demand requirements.

The number of sites is very important parameter because, in fact, it determines the size of
the problem. Seven cases of sites number are considered: m ∈ {8, 10, 12, 15, 20, 25, 30}. Due to
computational complexity MILP formulations are tested on smaller sizes, and LP formulation
on all sizes.

The second parameter, the number of facilities, is defined as proportional to the problem
size (m value). Following cases are examined: n =

⌈
m
4

⌉
, n =

⌈
m
3

⌉
, n =

⌈
m
2

⌉
, n =

⌈
m
2 + 1

⌉
,

where dae is the smallest integer value not smaller than a.
Type of problem corresponds to objective function, which is defined by the preference weight-

ing vector w. This vector determines the structure and thus the complexity of the problem. We
consider 12 problem types (the same as in [30]), which are described in Table 1 with respect to
the number of criteria m and the number of facilities n. By dae we denote the smallest integer
not less than a, and by bac the largest integer not greater than a. The first eight problems
appear in literature [25]. The n-median and n-center are the most popular objective functions
in multicriteria optimization. The k-centra and k1 + k2-trimmed mean are less popular but also
known in the field. We can identify problems T5–T8 as artificial and we use them particularly
to test the computational efficiency for choppy weighting vector. As the last four types T9–T12
we consider problems with monotonic weights. Depending on the type of monotonicity they
are simpler (T9, T11 with decreasing weights) or harder (T10, T12 with increasing weights)
problems. These problem types can be treated as extended versions of min max (T9, T11) and
min min (T10, T12) objective functions, respectively.

The demand weights p have been generated according to Zipf distribution, which is primarily
associated with the distribution of the words frequency in text corpora [45]. But according to
[46], in his work [47] Zipf also referred to the population size of cities, and the relationship in
this area had also been noticed by Auerbach [48]. Thus, it seems justified to use this distribution
for the location problems. Zipf distribution is also present in other domains, for example in the
distribution of company sizes [49], for which the location model may also be applied. Although
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Table 1: Problem types defined by the weighting vector w with respect to the number of criteria
m and the number of facilities n.

type name/description weighting vector w parameters
T1 n-median (1, . . . , 1︸ ︷︷ ︸

m

)

T2 n-center (1, 0, . . . , 0︸ ︷︷ ︸
m−1

)

T3 k-centra (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) k =
⌊
m
3

⌋
T4 k1 + k2-trimmed mean (0, . . . , 0︸ ︷︷ ︸

k1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k2

) k1 =
⌈
m
10

⌉
,

k2 =
⌈
n+ m

10

⌉
T5 Alternating 0’s and 1’s,

beginning with 1.
(1, 0, 1, 0, 1, 0, . . .)

T6 Alternating 0’s and 1’s,
beginning with 0.

(0, 1, 0, 1, 0, 1, . . .)

T7 Repeating the sequence
(1, 1, 0).

(1, 1, 0, 1, 1, 0, . . .)

T8 Repeating the sequence
(1, 0, 0).

(1, 0, 0, 1, 0, 0, . . .)

T9 Beginning with m and de-
creasing by 1.

(m,m− 1, . . . , 2, 1)

T10 Such as T9, but in reverse
order (increasing).

(1, 2, . . . ,m− 1,m)

T11 Beginning with 3m and
decreasing in a piecewise
linear manner, k weights
by 3, next k weights by 2
and rest by 1.

(3m, 3(m− 1), . . . , 3(m− k)︸ ︷︷ ︸
k

, k =
⌊
m
3

⌋
3(m− k)− 2, . . . , 3(m− k)− 2k︸ ︷︷ ︸

k

,

3m− 5k − 1, 3m− 5k − 2, . . .)

T12
Such as T11, but in
reverse order (increasing).

(. . . , 3m− 5k − 2, 3m− 5k − 1, k =
⌊
m
3

⌋
3(m− k)− 2k, . . . , 3(m− k)− 2︸ ︷︷ ︸

k

,

3(m− k), . . . , 3(m− 1)︸ ︷︷ ︸
k

, 3m)
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recent works [46], which are based on more accurate data (for the smaller towns), show that
the distribution of city sizes corresponds rather to log-normal distribution, the authors of these
works admit at the same time that for some of the largest cities it practically coincides with the
Zipf distribution. Such approximation seems to be sufficient for the purposes of our study.

According to Zipf distribution the size of any object (phenomenon) is inversely proportional
to its rank, when ordering the objects from the biggest to the smallest ones. Formally, it means
pi ∼ 1/ib, where pi is the size of an object in the i-th ranking position. The exponent b is very
close to 1 and for the sake of simplicity it is usually assumed that b = 1 (this assumption is also
adopted in this paper). We also presume that location indexes correspond to the positions in
ranking, thus the locations are ordered by decreasing demand size. To summarize, the normalized
demand weights can be expressed as

pi =
1

i
∑m

k=1
1
k

for i = 1, . . . ,m.

For each size case we have generated 15 cost matrices with zeros on the main diagonal and the
remaining entries randomly generated from a discrete uniform distribution in the interval [1, 100].
These matrices have been assigned to each combination of the parameters with corresponding
problem size. Thus we have received a set of test problem instances.

Additionally, we have also checked the performance of model MWLP on problems with 100
and 200 locations from OR-library1 [50].

The experimental procedure has been implemented in C++ and IBM ILOG CPLEX Opti-
mization Studio (including the solver CPLEX) version 12.4 [51] has been used to solve optimiza-
tion problems. Computational experiments have been performed on a machine with the Intel
Core2 Duo 2.53 GHz (mobile) and 3 GB of RAM.

5.2 Results

A time limit of 600 seconds has been imposed as the maximum solution time for a single instance
of the location problem. Obtained results are presented below. Upper index in front of the time
is the number of instances of the 15 that exceeded the time limit. In cases where all 15 instances
exceeded the time limit, minus sign is placed. Minus sign is also used for instances from OR-
library that exceeded the time limit.

5.2.1 Non-increasing preference weights

When the preference weights wk (k = 1, . . . ,m) are non-increasing, then all weights w′k (k =
1, . . . ,m) are non-negative, and thus both models MW1 and MW2 reduce to the linear model
MWLP.

We have carried out computational tests to check the performance of the linear model as
well as the influence of valid inequalities c3 and c4. Detailed results for m = 25 and m = 30
are presented in Table 2. Figure 3 shows results for the 30 locations averaged over variants of
facilities number (besides averaging over cost matrix instances).

Table 2: Average solution times [s] for linear formulation MWLP (with
and without valid inequalities)

Problem CPU[s]
type m n MWLP c3 c4 c3c4
T1 25 7 0.02 0.05 0.03 0.14

continue on next page
1http://people.brunel.ac.uk/ mastjjb/jeb/info.html
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Problem CPU[s]
type m n MWLP c3 c4 c3c4

9 0.02 0.04 0.02 0.13
13 0.01 0.02 0.01 0.08
14 0.02 0.02 0.01 0.08

30 8 0.04 0.12 0.05 0.26
10 0.04 0.08 0.04 0.23
15 0.02 0.03 0.02 0.13
16 0.02 0.03 0.02 0.13

T2 25 7 0.83 1.54 0.60 1.67
9 0.80 1.31 0.48 1.39
13 0.68 1.04 0.29 0.98
14 0.56 0.84 0.23 0.89

30 8 1.81 4.00 1.60 4.55
10 1.78 3.73 1.23 3.75
15 1.29 1.91 0.57 2.11
16 1.05 1.84 0.45 1.76

T3 25 7 0.51 2.88 0.39 2.86
9 0.51 2.87 0.34 2.80
13 0.21 1.17 0.16 1.13
14 0.12 0.75 0.11 0.72

30 8 0.81 5.82 0.69 5.67
10 0.81 5.32 0.60 5.02
15 0.25 1.98 0.26 1.97
16 0.21 1.92 0.19 1.85

T9 25 7 0.46 0.62 0.55 0.67
9 0.41 0.54 0.48 0.64
13 0.12 0.20 0.18 0.24
14 0.09 0.16 0.15 0.17

30 8 0.73 0.97 0.84 1.05
10 0.56 0.84 0.74 0.95
15 0.14 0.25 0.24 0.32
16 0.12 0.22 0.22 0.28

T11 25 7 0.33 0.43 0.38 0.47
9 0.32 0.42 0.38 0.48
13 0.10 0.15 0.15 0.20
14 0.08 0.13 0.13 0.16

30 8 0.50 0.68 0.63 0.81
10 0.50 0.67 0.59 0.81
15 0.13 0.21 0.22 0.29
16 0.11 0.20 0.20 0.27

As one can see, model MWLP copes quite well with solving problems up to 30 locations.
The longest times concerns n-center problems and are about a few seconds. For other types
of problems with non-increasing weights the solution times are shorter, reaching the shortest
values for n-median problems. Constraint c3 worsens the solution times for all types of problems
under consideration. It is significant deterioration, even several times, in case of problems of
types T1–T3. This applies to both cases where c3 is the only valid inequality, as well as the
formulation with two valid inequalities. The situation is slightly different for constraint c4. For
problems of types T1, T9, T11 impact of this constraint is negative, but to a much lesser extent
than that of constraint c3. On the contrary, for problems of types T2 and T3 constraint c4

allows us to achieve shorter solution times. However, the differences are rather small, especially
for the problem of type TC3.

The results obtained for the problems up to 30 locations suggest that valid inequalities for
linear model of WOWA does not allow for significant performance improvement, and sometimes
they may cause considerable deterioration of solution times. Although constraint c4 improves

16



Institute of Control & Computation Engineering Report 2015–03

the solution times for two problem types, the reduction is relatively minor. Constraint c4 is a
lower bound for the upper limit of function L(y,p, α), and thus its direction is consistent with
constraints in basic linear formulation of WOWA. For this reason it seems that c4 does not
complicate too much the structure of a set of feasible solutions, and has a positive impact in
solving algorithm for some problems. On the other hand, it appears that constraint c3 makes
the structure of the feasible set much harder, which consequently leads to worse solution times.

We have also checked the performance for larger problems. The performance of basic linear
model and impact of constraint c4 have been examined by solving problems with 100 and 200
locations from OR-library. The results are shown in Table 3.

Table 3: Solution times [s] for problems from OR-library (m ∈
{100, 200}) by linear formulation MWLP (with and without valid in-
equality) (minus sign for the problems that were not solved within 600 s
time limit)

Problem CPU[s]
type name m n MWLP c4
T1 pmed1 100 5 0.56 0.63

pmed2 10 0.29 0.37
pmed3 10 0.34 0.42
pmed4 20 0.22 0.33
pmed5 33 0.22 0.29
pmed6 200 5 17.31 24.16
pmed7 10 2.29 2.82
pmed8 20 1.93 2.68
pmed9 40 1.72 2.5
pmed10 67 1.38 2.17

T2 pmed1 100 5 – –
pmed2 10 – –
pmed3 10 – –
pmed4 20 – –
pmed5 33 – –
pmed6 200 5 – –
pmed7 10 – –
pmed8 20 – –
pmed9 40 – –
pmed10 67 – –

T3 pmed1 100 5 27.01 30.56
pmed2 10 – –
pmed3 10 88.1 99.58
pmed4 20 – –
pmed5 33 36.05 62.73
pmed6 200 5 – –
pmed7 10 – –
pmed8 20 – –
pmed9 40 – –
pmed10 67 274.44 255.76

T9 pmed1 100 5 24.48 38.28
pmed2 10 81.17 100.87
pmed3 10 35.03 44.78
pmed4 20 35.37 53.77
pmed5 33 4.06 16.87
pmed6 200 5 – –
pmed7 10 – –
pmed8 20 – –
pmed9 40 – –
pmed10 67 – –

continue on next page
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Problem CPU[s]
type name m n MWLP c4
T11 pmed1 100 5 7.44 13.54

pmed2 10 15.98 37.85
pmed3 10 22.52 30.16
pmed4 20 17.44 31.36
pmed5 33 4.09 13.27
pmed6 200 5 – –
pmed7 10 – –
pmed8 20 – –
pmed9 40 – –
pmed10 67 576.76 –

It can be seen that except for n-median problems (T1), only a few problems with 200 locations
have been solved within the limit of 600 s. Considering the problems with 100 locations, the
worst results relate to problems of types T2 and T3. We have failed to solve any problem of type
T2, and have managed to solve 3 of 5 problems of type T3. As we can remember, for these types
of problems constraint c4 has shortened slightly the solution time in case of small problems (up
to 30 sites). However, results for bigger instances do not confirm this observations, because for
solved problems of type T3 the solution times are longer in case of formulation with constraint
c4. It suggests that valid inequalities in linear model of WOWA usually makes the problems
harder to solve.

5.2.2 Non-monotonic and non-decreasing preference weights

When the preference weights are non-decreasing or non-monotonic the binary variables are re-
quired in the model. This leads to MILP models, whose computational complexity is significantly
greater than LP models. We have tested computational performance of MILP models on prob-
lems with 8 and 10 locations. First, two MILP models have been compared taking into account
one simple valid inequality, so the following four formulations have been examined:

• MW11 — model (18a)–(18h),

• MW12 — model (18a)–(18h) with constraint (20),

• MW21 — model (18a)–(18c), (18h), (19a)–(19d),

• MW22 — model (18a)–(18c) , (18h), (19a)–(19d) with constraint (20).

Next, for the best of above formulations we have considered four more complex valid inequalities
c1–c4.

First, let us compare model MW1 with MW2 and investigate the effect of constraint (20).
The full results are presented in Table 4. Figure 4 shows the results for problems with 10
locations, averaged additionally over variants of facilities number. Clearly, model MW2 achieves
significantly shorter times than model MW1. The differences depend on the problem type, but
in many cases they exceed the order of magnitude. It applies to both versions of the model, ie.
with and without constraint (20). This constraint in itself also shortens the solution times in
most cases, although its impact is lower, at most it halves the solution times. On the other hand,
it takes a long time to solve even such small problems (8, 10 locations), specially problems of
types T4–T8. Model MW1 did not solve many problems with 10 locations within the time limit.
Model MW2 did better, although it did not manage to solve all the problems either, especially
instances with larger number of facilities. Somewhat comforting is the fact that only problems
of type T4 seem to be of substantial practical importance, due to the nature of the preference

18



Institute of Control & Computation Engineering Report 2015–03

weights. It is also surprising that problems of types T10 and T12, with the increasing preference
weights, are relatively easy to solve. Perhaps it is due to all non-zero preference weights in these
problem types.

Table 4: Average solution times [s] for MILP models

Problem CPU[s]
type m n MW11 MW12 MW21 MW22
TC4 8 2 2.99 1.41 0.63 0.39

3 18.01 6.29 1.45 0.83
4 76.19 26.70 3.38 1.97
5 10516,71 6364,93 11.80 6.64

10 3 78.17 59.77 8.54 4.12
4 2141,83 1156,31 24.45 8.07
5 14594,06 11549,54 131.12 26.22
6 – – 6431,12 1176,46

TC5 8 2 5.08 4.01 1.25 0.84
3 5.50 4.56 1.24 0.86
4 5.48 3.84 1.38 0.86
5 4.37 4.25 0.92 0.75

10 3 141.67 95.26 23.90 19.01
4 172.59 158.08 23.52 21.34
5 1168,07 2201,03 23.54 17.27
6 2188,8 3189,2 47.05 16.54

TC6 8 2 13.68 11.85 2.71 1.78
3 36.35 23.83 4.45 3.66
4 178.59 63.66 7.18 6.38
5 7391,16 138.80 8.32 8.30

10 3 12594,46 10544,71 101.00 63.31
4 – 13580,75 1187,92 119.40
5 – – 3290,17 199.29
6 – – 13570,7 2403,8

TC7 8 2 1.29 0.94 0.62 0.35
3 0.88 0.80 0.45 0.30
4 0.70 0.65 0.29 0.23
5 0.48 0.44 0.21 0.18

10 3 21.46 13.62 5.38 2.76
4 42.25 11.66 4.59 2.04
5 18.36 9.71 2.91 1.95
6 6.17 5.90 2.69 2.23

TC8 8 2 6.01 2.60 1.06 0.79
3 5.81 6.80 1.18 0.78
4 1.92 2.24 0.69 0.56
5 3.45 2.56 0.61 0.65

10 3 4274,03 2217,87 23.41 17.24
4 4248,97 4249,46 25.13 16.98
5 3206,18 3194,49 20.74 18.27
6 3224,4 1121,01 19.66 18.30

TC10 8 2 1.19 0.75 0.50 0.28
3 0.68 0.54 0.26 0.22
4 0.48 0.40 0.22 0.19
5 0.27 0.27 0.17 0.14

10 3 6.62 4.61 1.19 0.77
4 4.84 3.25 1.24 0.78
5 2.90 1.77 0.78 0.58
6 1.54 1.08 0.49 0.37

TC12 8 2 0.51 0.44 0.35 0.21
3 0.26 0.33 0.19 0.14
4 0.22 0.27 0.17 0.12

continue on next page
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Problem CPU[s]
type m n MW11 MW12 MW21 MW22

5 0.15 0.19 0.11 0.10
10 3 1.25 1.02 0.59 0.43

4 0.87 0.86 0.44 0.35
5 0.56 0.58 0.30 0.28
6 0.34 0.50 0.20 0.24

In view of the low computational performance of the MILP models for WOWA, we have
considered possibility of its improvement by more complex valid inequalities. For this purpose we
have selected model MW22, which obtained the best results. Then each of previously proposed
valid inequalities c1–c4 have been added to this model and using such extended formulation we
have applied it to the test problems. We have considered 6 formulations: 4 with a single valid
inequality and 2 with two valid inequalities. Detailed results are presented in Table 5. Figures 5
and 6 show the solution times for problems with 10 locations additionally averaged over variants
of facilities number. Symbols of valid inequalities are used to sign models MW22 extended by
corresponding constraints.

Table 5: Average solution times [s] for model MW22 with valid inequal-
ities

Problem CPU[s]
type m n MW22 c1 c2 c1c2 c3 c4 c3c4
TC4 8 2 0.39 0.43 0.38 0.43 0.63 0.37 0.72

3 0.83 0.83 0.85 0.90 1.53 0.89 1.78
4 1.97 1.61 1.51 1.24 4.07 2.02 3.46
5 6.64 4.67 4.22 1.87 5.28 7.16 4.89

10 3 4.12 4.47 3.94 3.49 8.77 4.10 10.61
4 8.07 9.58 10.21 9.13 16.45 7.47 19.38
5 26.22 24.26 22.19 14.17 31.81 32.67 47.29
6 1176.46 77.86 82.20 32.88 108.25 1195.52 113.34

TC5 8 2 0.84 0.84 0.87 0.90 0.30 0.90 0.33
3 0.86 1.04 0.99 0.97 0.30 0.87 0.31
4 0.86 0.97 0.98 0.94 0.43 0.91 0.36
5 0.75 0.89 0.81 0.71 0.29 0.78 0.19

10 3 19.01 18.99 17.92 18.46 1.28 18.43 1.42
4 21.34 21.03 17.61 21.93 1.74 24.67 1.47
5 17.27 20.61 21.38 19.18 1.91 18.34 1.78
6 16.54 20.83 21.27 20.92 1.31 23.20 1.19

TC6 8 2 1.78 1.64 1.59 1.63 0.83 1.85 1.20
3 3.66 2.37 2.57 2.02 1.95 3.12 2.05
4 6.38 4.39 5.14 2.47 2.84 5.92 3.45
5 8.30 4.99 4.85 2.60 3.17 8.63 3.05

10 3 63.31 55.66 51.80 42.82 15.67 75.97 16.24
4 119.40 69.93 80.91 50.29 27.57 121.48 38.25
5 199.29 111.63 119.99 67.19 66.10 205.66 89.80
6 2403.8 199.69 200.33 93.59 150.59 6472.57 215.57

TC7 8 2 0.35 0.35 0.34 0.39 0.23 0.33 0.26
3 0.30 0.30 0.30 0.36 0.17 0.30 0.17
4 0.23 0.30 0.27 0.27 0.14 0.25 0.16
5 0.18 0.20 0.21 0.25 0.13 0.18 0.14

10 3 2.76 3.37 2.98 3.32 0.69 2.56 0.73
4 2.04 2.70 2.51 2.59 0.53 2.47 0.58
5 1.95 2.11 1.91 2.27 0.46 1.98 0.42
6 2.23 1.91 1.86 1.84 0.35 1.88 0.34

TC8 8 2 0.79 0.67 0.69 0.71 0.47 0.72 0.54
3 0.78 0.75 0.75 0.69 0.32 0.73 0.33

continue on next page
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Problem CPU[s]
type m n MW22 c1 c2 c1c2 c3 c4 c3c4

4 0.56 0.64 0.57 0.56 0.19 0.68 0.21
5 0.65 0.62 0.60 0.60 0.22 0.63 0.24

10 3 17.24 20.07 20.17 20.59 6.73 20.32 7.08
4 16.98 19.22 17.00 17.79 4.91 16.83 5.61
5 18.27 16.24 16.42 18.08 3.17 16.85 2.94
6 18.30 17.96 18.92 20.03 1.61 20.33 2.17

TC10 8 2 0.28 0.28 0.28 0.31 0.30 0.29 0.32
3 0.22 0.22 0.22 0.26 0.21 0.23 0.23
4 0.19 0.21 0.21 0.25 0.18 0.19 0.19
5 0.14 0.16 0.16 0.18 0.14 0.14 0.14

10 3 0.77 0.98 1.01 1.01 0.86 0.88 0.88
4 0.78 0.94 0.93 0.97 0.80 0.78 0.84
5 0.58 0.66 0.67 0.73 0.58 0.56 0.57
6 0.37 0.38 0.42 0.57 0.36 0.34 0.36

TC12 8 2 0.21 0.23 0.24 0.26 0.21 0.21 0.21
3 0.14 0.19 0.15 0.19 0.17 0.16 0.17
4 0.12 0.15 0.17 0.16 0.12 0.13 0.13
5 0.10 0.13 0.11 0.14 0.10 0.12 0.12

10 3 0.43 0.48 0.49 0.56 0.41 0.43 0.45
4 0.35 0.41 0.47 0.52 0.35 0.37 0.38
5 0.28 0.33 0.34 0.43 0.27 0.29 0.30
6 0.24 0.29 0.23 0.32 0.19 0.24 0.25

Firstly, one can see that the problems of types T10 and T12 (with increasing preference
weights) are relatively easy to solve by the basic model MW22, and the influence of the valid
inequalities is negligible (at least for such small problems), except maybe a few cases for the
smallest size. Furthermore, when analyzing the impact of individual valid inequalities, constraint
c3, which limits maximum increase in the value of function L(y,p, α), stands out in positive
way. It is especially apparent for problems of types T5–T8. Adding this constraint allows
us to shorten several times the average solution times with respect to basic formulation. The
results are similar for different numbers of facilities. The situation is somewhat different for
problems T4. Here, constraint c3 improves the average solution time only for cases with the
greatest number of facilities. For problems T4 constraints c1 and c2, arising from the transitivity
relation, achieve slightly better results. Constraint c4 has negligible effect on the solution times
for all types of problems. When considering the formulations with two valid inequalities, we
can see that only for a few problems they obtain shorter solution times with respect to the
formulation with single valid inequality. The formulation with both constraint c1 and c2 can
be given as an example, which improves the solution times for problems of types T4 and T6.
However, it is worth to remember that the number of constraints c1 and c2 is of order m3 (exactly
it is

(
m
3

)
), and the number of constraints c3 is only of order m. Hence, as the problem size would

increase, constraint c3 would hinder the problem to a lesser degree.
The results for MILP model of WOWA show that, unlike in the case of LP model of WOWA,

constraint c3 allows to improve the solution times for some problem types. Basic MILP model of
WOWA contains both the lower and upper bound of function L(y,p, α). In this case, however,
the lower bound introduces more difficulties as it requires the binary variables. Since constraint
c3 limits the lower bound from above, it may give tighter description of relevant area of the
feasible set, which might lead to better computational performance of the model.
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6 Conclusions

This paper has investigated the Weighted Ordered Median Problem (WOMP), which extends the
Order Median Problem by taking into account the demand requirements according to WOWA
aggregation. This approach allows to obtain the optimal solution in terms of the distribution
of outcomes given by the demand weights. In our research we have focused mainly on compu-
tational efficiency of such models. In case of non-increasing preference weights, thus consistent
with equitable relation, WOWA aggregation can be formulated as LP optimization. This formu-
lation is based on function L(y,p, α), which expresses the weighted average of the largest costs
within the fixed demand portion of α. In general, when the preference weights do not satisfy
the monotonicity condition, we have proposed the extended formulation, which can be applied
for any non-negative preference weights. However, this flexibility requires the binary variables
and related constraints, which substantially increase the computational complexity, and thus
significantly limit the maximum size of problems that can be solved. We have also checked the
possibility for improving performance by introducing the valid inequalities and have carried out
the computational tests to examine the computational performance of particular formulations
and the influence of the valid inequalities.

LP model of WOWA have performed very well with small problems, up to 30 locations,
which have been solved in a few hundreds to a few seconds. Considering large problems, about
100 locations, the linear model have obtained reasonable solution times for problems with all
non-zero (monotone) weights (T9, T11) and very good solution times for n-median problems
(T1). Much worse results have been achieved for problems of types T2 and T3 — 3 of 5 problems
of type T3 have been solved and none of type T2. The valid inequalities, in general, have not
improved the computational performance of the linear model. This observation is similar to
the results obtained for problems with OWA aggregation [30], where valid inequalities did not
improve the performance of linear formulation of OWA either.

The comparison of two general MILP model of WOWA, for any non-negative preference
weights, show better performance of model MW2, with reduced number of the binary variables.
However, even this better model has exceeded the time limit of 600 s for some problems with only
10 locations. Some of the proposed valid inequalities have allowed for several times reduction
of the solution times, and thus all problems with 10 locations have been solved. Nevertheless,
we have not managed to solve all the problems for a slightly larger size. Thus it seems that in
the case of non-monotonic preference weights MILP models of WOWA allow to solve problems
with only a dozen or so locations. It suggests the need for the use of approximate method for
problems of larger size. At present we are working on the adaptation of metaheuristic called
Variable Neighborhood Search (VNS), which was previously applied for Order Median Problem.
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Figure 3: Average solution times [s] (within 60 problems with m = 30) for linear model MWLP
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Figure 4: Average solution times [s] for problems with m = 10 by models MW1 and MW2
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Figure 5: Average solution times [s] for T4–T6 problems with m = 10 by model MW22 with
valid inequalities
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Figure 6: Average solution times [s] for T7, T8, T10, T12 problems with m = 10 by model
MW22 with valid inequalities
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