
Report of the Institute of Control
and Computation Engineering

Warsaw University of Technology

Multicriteria Models for Fair Resource Allocation

W lodzimierz Ogryczak

December, 2005

Report nr: 05–07

Copyright c©2005 by the Institute of Control & Computation Engineering

Permission to use, copy and distribute this document for any purpose and without fee is hereby granted,

provided that the above copyright notice and this permission notice appear in all copies, and that the

name of ICCE not be used in advertising or publicity pertaining to this document without specific,

written prior permission. ICCE makes no representations about the suitability of this document for any

purpose. It is provided “as is” without express or implied warranty.

Warsaw University of Technology
Institute of Control & Computation Engineering
ul. Nowowiejska 15/19, 00–665 Warsaw, Poland
phone (48-22)-660-7397, fax (48-22)-825-3719



Multicriteria Models for Fair Resource Allocation∗

W lodzimierz Ogryczak

ogryczak@ia.pw.edu.pl

December, 2005

Abstract

Resource allocation problems are concerned with the allocation of limited resources among
competing activities so as to achieve the best performances. However, in systems which
serve many users there is a need to respect some fairness rules while looking for the overall
efficiency. The so-called Max-Min Fairness is widely used to meet these goals. However,
allocating the resource to optimize the worst performance may cause a dramatic worsening of
the overall system efficiency. Therefore, several other fair allocation schemes are searched and
analyzed. In this paper we show how the concepts of multiple criteria equitable optimization
can effectively be used to generate various fair and efficient allocation schemes. First, we
demonstrate how the scalar inequality measures can be consistently used in bicriteria models
to search for a compromise fair and efficient allocations. Further, two alternative multiple
criteria models equivalent to equitable optimization are introduced thus allowing to generate
a larger variety of fair and efficient resource allocation schemes.

Key Words. Multiple Criteria, Efficiency, Fairness, Equity, Inequality Measures.

1 Introduction

Resource allocation problems are concerned with the allocation of limited resources among com-
peting activities (Ibaraki and Katoh, 1988). In this paper, we focus on approaches that, while
allocating resources to maximize the system efficiency, they also attempt to provide a fair treat-
ment of all the competing activities (Luss, 1999). The problems of efficient and fair resource
allocation arise in various systems which serve many users, like in telecommunication systems
among others. This applies among others to networking where a central issue is how to allocate
bandwidth to flows efficiently and fairly (Denda, Banchs and Effelsberg, 2000; Pióro and Medhi,
2004). The issue of equity is widely recognized in location analysis of public services, where the
clients of a system are entitled to fair treatment according to community regulations. In such
problems, the decisions often concern the placement of a service center or other facility in a
position so that the users are treated in an equitable way, relative to certain criteria (Ogryczak,
2000). Moreover, uniform individual outcomes may be associated with some events rather than

∗This work was partially supported by the Ministry of Science and Information Society Technologies under
grant 3T11C 005 27 “Models and Algorithms for Efficient and Fair Resource Allocation in Complex Systems”.
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physical users, like in many dynamic optimization problems where uniform individual criteria
represent a similar event in various periods and all they are equally important. Recently, several
research publications relating the fairness and equity concepts to the multiple criteria optimiza-
tion methodology have appeared (Luss, 1999; Ogryczak and Śliwiński, 2002; Kaliszewski, 2004;
Kostreva, Ogryczak and Wierzbicki, 2004).

The generic resource allocation problem may be stated as follows. Each activity is measured
by an individual performance function that depends on the corresponding resource level assigned
to that activity. A larger function value is considered better, like the performance measured
in terms of quality level, capacity, service amount available, etc. Models with an (aggregated)
objective function that maximizes the mean (or simply the sum) of individual performances are
widely used to formulate resource allocation problems, thus defining the so-called mean solution
concept. This solution concept is primarily concerned with the overall system efficiency. As
based on averaging, it often provides solution where some smaller services are discriminated
in terms of allocated resources. An alternative approach depends on the so-called Max-Min
solution concept, where the worst performance is maximized. The max-min approach is con-
sistent with Rawlsian (Rawls, 1971) theory of justice, especially when additionally regularized
with the lexicographic order. On the other hand, allocating the resources to optimize the worst
performances may cause a large worsening of the overall (mean) performances.

Fairness is, essentially, an abstract socio-political concept that implies impartiality, justice
and equity (Rawls, 1958; Young, 1994). Nevertheless, fairness was usually quantified with the so-
called inequality measures to be minimized (Atkinson, 1970; Rothschild and Stiglitz, 1973; Sen,
1973). Unfortunately, direct minimization of typical inequality measures contradicts the maxi-
mization of individual outcomes and it may lead to inferior decisions. The concept of fairness
has been studied in various areas beginning from political economics problems of fair allocation
of consumption bundles (Dalton, 1920; Pigou, 1912; Rawls, 1958) to abstract mathematical for-
mulation (Steinhaus, 1949). In order to ensure fairness in a system, all system entities have to
be equally well provided with the system’s services. This leads to concepts of fairness expressed
by the equitable efficiency (Ogryczak, 1997; Kostreva and Ogryczak, 1999: Luss, 1999). The
concept of equitably efficient solution is a specific refinement of the Pareto-optimality taking
into account the inequality minimization according to the Pigou-Dalton approach.

The paper is organized as follows. In the next section the equitable optimization with the
preference structure that complies with both the efficiency (Pareto-optimality) and with the
Pigou-Dalton principle of transfers is used to formalize the fair solution concepts. In Section
3 the use of scalar inequality measures in bicriteria models to search for a compromise fair
and efficient allocations is analyzed. There is shown that properties of convexity and positive
homogeneity together with some boundedness condition are sufficient for a typical inequality
measure to guarantee the corresponding fair consistency. Further, two alternative multiple
criteria models equivalent to equitable optimization are introduced thus allowing to generate a
larger variety of fair and efficient resource allocation schemes. In Section 4 the multiple criteria
model of the cumulative ordered outcomes is analyzed. This model covers the MMF and the
Ordered Weighted Averaging (Yager, 1988) as special cases but it allows also for the reference
point approaches. In Section 5 the alternative model of multiple targets is introduced. There is
shown that the fair dominance can be expressed by pointwise comparison of mean shortfalls to
several real target values. The model requires a finite set of outcome values or its approximation
with some grid but it is very attractive computationally.
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2 Equity and fairness

The generic resource allocation problem may be stated as follows. There is a system dealing
with a set I of m services. There is given a measure of services realization within a system. In
applications we consider, the measure usually expresses the service quality. However, outcomes
can be measured (modeled) as service time, service costs, service delays as well as in a more
subjective way. There is also given a set Q of allocation patterns (allocation decisions). For
each service i ∈ I a function fi(x) of the decision x has been defined. This function, called
the individual objective function, measures the outcome (effect) yi = fi(x) of the allocation
pattern for service i. In typical formulations a larger value of the outcome means a better effect
(higher service quality or client satisfaction). Otherwise, the outcomes can be replaced with
their complements to some large number. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized which allows us to view the generic resource
allocation problem as a vector maximization model:

max {f(x) : x ∈ Q} (1)

where

f(x) is a vector–function that maps the decision space X = Rn into the criterion space
Y = Rm,

Q ⊂ X denotes the feasible set,

x ∈ X denotes the vector of decision variables.

Model (1) only specifies that we are interested in maximization of all objective functions fi for
i ∈ I = {1, 2, . . . ,m}. In order to make it operational, one needs to assume some solution concept
specifying what it means to maximize multiple objective functions. The solution concepts may be
defined by properties of the corresponding preference model. The preference model is completely
characterized by the relation of weak preference (Vincke, 1992), denoted hereafter with �.
Namely, the corresponding relations of strict preference � and indifference ∼= are defined by the
following formulas:

y′ � y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal (efficient) solution concept
assumes that the preference relation � is reflexive:

y � y, (2)

transitive:
(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:
y + εei � y for ε > 0; i = 1, . . . ,m, (4)

where ei denotes the i–th unit vector in the criterion space. The last assumption expresses that
for each individual objective function more is better (maximization). The preference relations
satisfying axioms (2)–(4) are called hereafter rational preference relations. The rational prefer-
ence relations allow us to formalize the Pareto-optimality (efficiency) concept with the following
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definitions. We say that outcome vector y′ rationally dominates y′′ (y′ �r y′′), iff y′ � y′′

for all rational preference relations �. We say that feasible solution x ∈ Q is a Pareto-optimal
(efficient) solution of the multiple criteria problem (1), iff y = f(x) is rationally nondominated.

Simple solution concepts for multiple criteria problems are defined by aggregation (or utility)
functions g : Y → R to be maximized. Thus the multiple criteria problem (1) is replaced with
the maximization problem

max {g(f(x)) : x ∈ Q} (5)

In order to guarantee the consistency of the aggregated problem (5) with the maximization of
all individual objective functions in the original multiple criteria problem (or Pareto-optimality
of the solution), the aggregation function must be strictly increasing with respect to every
coordinate.

The simplest aggregation functions commonly used for the multiple criteria problem (1) are
defined as the mean (average) outcome

µ(y) =
1

m

m∑

i=1

yi (6)

or the worst outcome
M(y) = min

i=1,...,m
yi. (7)

The mean (6) is a strictly increasing function while the minimum (7) is only nondecreasing.
Therefore, the aggregation (5) using the sum of outcomes always generates a Pareto-optimal
solution while the maximization of the worst outcome may need some additional refinement.
The mean outcome maximization is primarily concerned with the overall system efficiency. As
based on averaging, it often provides a solution where some services are discriminated in terms of
performances. On the other hand, the worst outcome maximization, ie, the so-called Max-Min
solution concept

max{ min
i=1,...,m

fi(x) : x ∈ Q }. (8)

is regarded as maintaining equity. Indeed, in the case of a simplified resource allocation problem
with knapsack constraints, the Max-Min solution

max{ min
i=1,...,m

yi :
m∑

i=1

aiyi ≤ b } (9)

takes the form ȳi = mb/
∑m
i=1 ai for all i ∈ I thus meeting the perfect equity requirement

ȳ1 = ȳ2 = . . . = ȳm. In the general case, with possibly more complex feasible set structure, this
property is not fulfilled (Ogryczak, 2001). Nevertheless, the following assertion is valid.

Theorem 1 If there exists a nondominated outcome vector ȳ ∈ Y satisfying the perfect equity
requirement ȳ1 = ȳ2 = . . . = ȳm, then ȳ is the unique optimal solution of the Max-Min problem

max{ min
i=1,...,m

yi : y ∈ Y }. (10)

Proof. Let ȳ ∈ Y be a nondominated outcome vector satisfying the perfect equity requirement.
This means, there exists a number α such that ȳi = α for i = 1, 2, . . . ,m. Let y ∈ Y be an
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optimal solution of the Max-Min problem (10). Suppose, there exists some index i0 such that
yi0 6= ȳi0 . Due to the optimality of y, we have:

yi ≥ min
1≤j≤m

yj ≥ min
1≤j≤m

ȳj = α = ȳi ∀ i = 1, . . . ,m

which together with yi0 6= ȳi0 contradicts the assumption that ȳ is nondominated.
According to Theorem 1, the perfectly equilibrated outcome vector is a unique optimal

solution of the Max-Min problem if one cannot improve any of its individual outcome without
worsening some others. Unfortunately, it is not a common case and, in general, the optimal set to
the Max-Min aggregation (8) may contain numerous alternative solutions including dominated
ones. While using standard algorithmic tools to identify the Max-Min solution, one of many
solutions is then selected randomly.

Actually, the distribution of outcomes may make the Max-Min criterion partially passive
when one specific outcome is relatively very small for all the solutions. For instance, while
allocating clients to service facilities, such a situation may be caused by existence of an isolated
client located at a considerable distance from all the facilities. Maximization of the worst service
performances is then reduced to maximization of the service performances for that single isolated
client leaving other allocation decisions unoptimized. This is a clear case of inefficient solution
where one may still improve other outcomes while maintaining fairness by leaving at its best
possible value the worst outcome. The Max-Min solution may be then regularized according
to the Rawlsian principle of justice. Rawls (1971) considers the problem of ranking different
“social states”which are different ways in which a society might be organized taking into account
the welfare of each individual in each society, measured on a single numerical scale. Applying
the Rawlsian approach, any two states should be ranked according to the accessibility levels
of the least well–off individuals in those states; if the comparison yields a tie, the accessibility
levels of the next–least well–off individuals should be considered, and so on. Formalization of
this concept leads us to the lexicographic Max-Min concepts or the so-called Max-Min Fairness
(Marchi and Oviedo, 1992; Klein, Luss and Rothblum, 1993; Luss, 1999).

The concept of fairness has been studied in various areas beginning from political economics
problems of fair allocation of consumption bundles (Dalton, 1920; Pigou, 1912; Rawls, 1958) to
abstract mathematical formulation (Steinhaus, 1949). In order to ensure fairness in a system,
all system entities have to be equally well provided with the system’s services. This leads to
concepts of fairness expressed by the equitable rational preferences (Ogryczak, 1997; Kostreva
and Ogryczak, 1999). First of all, the fairness requires impartiality of evaluation, thus focusing
on the distribution of outcome values while ignoring their ordering. That means, in the multiple
criteria problem (1) we are interested in a set of outcome values without taking into account
which outcome is taking a specific value. Hence, we assume that the preference model is impartial
(anonymous, symmetric). In terms of the preference relation it may be written as the following
axiom

(yπ(1), yπ(2), . . . , yπ(m)) ∼= (y1, y2, . . . , ym) for any permutation π of I (11)

which means that any permuted outcome vector is indifferent in terms of the preference relation.
Further, fairness requires equitability of outcomes which causes that the preference model should
satisfy the (Pigou–Dalton) principle of transfers. The principle of transfers states that a transfer
of any small amount from an outcome to any other relatively worse–off outcome results in a more
preferred outcome vector. As a property of the preference relation, the principle of transfers
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takes the form of the following axiom

yi′ > yi′′ ⇒ y − εei′ + εei′′ � y for 0 < ε < yi′ − yi′′ (12)

The rational preference relations satisfying additionally axioms (11) and (12) are called hereafter
fair (equitable) rational preference relations. We say that outcome vector y ′ fairly (equitably)
dominates y′′ (y′ �e y′′), iff y′ � y′′ for all fair rational preference relations �. In other words,
y′ fairly dominates y′′, if there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that
y1 = y′′, ys = y′ and yj is constructed from yj−1 by application of either permutation of
coordinates, equitable transfer, or increase of a coordinate. An allocation pattern x ∈ Q is
called fairly (equitably) efficient or simply fair if y = f(x) is fairly nondominated. Note that
each fairly efficient solution is also Pareto-optimal, but not vice verse.

In order to guarantee fairness of the solution concept (5), additional requirements on the class
of aggregation (utility) functions must be introduced. In particular, the aggregation function
must be additionally symmetric (impartial), i.e. for any permutation π of I,

g(yπ(1), yπ(2), . . . , yπ(m)) = g(y1, y2, . . . , ym) (13)

as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (14)

for any 0 < ε < yi′ − yi′′ . In the case of a strictly increasing function satisfying both the
requirements (13) and (14), we call the corresponding problem (5) a fair (equitable) aggregation
of problem (1). Every optimal solution to the fair aggregation (5) of a multiple criteria problem
(1) defines some fair (equitable) solution.

Note that both the simplest aggregation functions, the sum (6) and the minimum (7), are
symmetric although they do not satisfy the equitability requirement (14). To guarantee the
fairness of solutions, some enforcement of concave properties is required. For any strictly concave,
increasing utility function u : R → R, the function g(y) =

∑m
i=1 u(yi) is a strictly monotonic

and equitable thus defining a family of the fair aggregations (Ogryczak, 1997)

max {
m∑

i=1

u(fi(x)) : x ∈ Q} (15)

Various concave functions utility s can be used to define fair aggregations (15) and the
resulting fair solution concepts. In the case of the outcomes restricted to positive values, one
may use logarithmic function thus resulting in the Proportional Fairness (PF) solution concept
(Kelly, Mauloo and Tan, 1997; Pióro, Malicskó and Fodor, 2002). Actually, it corresponds to
the so-called Nash criterion (Nash, 1950) which maximizes the product of additional utilities
compared to the status quo. Again, in the case of a simplified resource allocation problem with
knapsack constraints, the PF solution

max{
m∑

i=1

log(yi) :
m∑

i=1

aiyi ≤ b } (16)

takes the form ȳi = b/ai for all i ∈ I thus allocating the resource inversely proportional to the
consumption of particular services.
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For a common case of upper bounded outcomes yi ≤ u∗ one may maximize power functions
−∑m

i=1 (u∗ − xi)
p for p > 1 which corresponds to the minimization of the corresponding p-

norm distances from the common upper bound u∗ (Kostreva, Ogryczak and Wierzbicki, 2004).
Various other concave functions s can be used to define fair aggregations and the resulting
resource allocation schemes. In particular a parametric class of utility functions:

u(yi, α) =

{
y1−α
i /(1 − α) if α 6= 1

log(yi) if α = 1

may be used on positive outcomes generating various fair solution concepts for α > 0 (Mo and
Warland, 2000).

For α = 1, it represents the PF approach while with α tending to the infinity it converges to
the MMF. However, every such approach requires to build (or to guess) a utility function prior to
the analysis and later it gives only one possible compromise solution. It is very difficult to identify
and formalize the preferences at the beginning of the decision process. Moreover, apart from the
trivial case of the total output maximization all the utility functions that really take into account
any fairness preferences are nonlinear. Many decision models considered with fair outcomes are
originally Linear Programming (LP) or Mixed Integer LP (MILP) models. Nonlinear objective
functions applied to such models may result in computationally hard optimization problems. In
the following, we shall describe an approach that allows to search for such compromise solutions
with multiple linear criteria rather than the use nonlinear objective functions.
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u(y) = u(ȳ)

Figure 1: Structure of the fair dominance: D(ȳ) – the set fairly dominated by ȳ, S(ȳ) – the set
of outcomes fairly dominating ȳ.

Fig. 1 presents the structure of fair dominance for two-dimensional outcome vectors. For any
outcome vector ȳ, the fair dominance relation distinguishes set D(ȳ) of dominated outcomes
(obviously worse for all fair rational preferences) and set S(ȳ) of dominating outcomes (obviously
better for all fair rational preferences). However, some outcome vectors are left (in white areas)
and they can be differently classified by various specific fair rational preferences. The MMF
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fairness assigns the entire interior of the inner white triangle to the set of preferred outcomes
while classifying the interior of the external open triangles as worse outcomes. Isolines of various
utility functions split the white areas in different ways. For instance, there is no fair dominance
between vectors (0.01, 1) and (0.02, 0.02) and the MMF considers the latter as better while
the proportional fairness points out the former. On the other hand, vector (0.02, 0.99) fairly
dominates (0.01, 1) and all fairness models (including MMF and PF) prefers the former. One
may notice that the set D(ȳ) of directions leading to outcome vectors being dominated by a
given ȳ is, in general, not a cone and it is not convex. Although, when we consider the set S(ȳ) of
directions leading to outcome vectors dominating given ȳ we get a convex set. While the MMF
nondominated optimal solution may be characterized by the lack of a possibility to increase of any
outcome without decreasing of some smaller outcome, the general fairly nondominated vectors
are characterized by the lack of a possibility to increase of any outcome without decreasing of
some smaller outcome or greater decrease of some larger outcome.

3 Inequality measures and bicriteria models

Equity is, essentially, an abstract socio–political concept, but it is usually quantified with the
so–called inequality measures to be minimized. Inequality measures were primarily studied in
economics (Sen. 1973) while recently they become very popular tools in Operations Research.
For instance, Marsh and Schilling (1994) describe twenty different measures proposed in the
literature to gauge the level of equity in facility location alternatives. Typical inequality measures
are some deviation type dispersion characteristics. They are translation invariant in the sense
that %(y + ae) = %(y) for any outcome vector y and real number a (where e vector of units
(1, . . . , 1)), thus being not affected by any shift of the outcome scale. Moreover, the inequality
measures are also inequality relevant which means that they are equal to 0 in the case of a
perfectly equal outcomes while taking positive values for any unequal one.

The simplest inequality measures are based on the absolute measurement of the spread of
outcomes, like the mean (absolute) difference

Γ(y) =
1

2m2

m∑

i=1

m∑

j=1

|yi − yj| (17)

or the maximum (absolute) difference

d(y) = max
i,j=1,...,m

|yi − yj |. (18)

In most application frameworks better intuitive appeal may have inequality measures related to
deviations from the mean outcome like the mean (absolute) deviation

δ(y) =
1

m

m∑

i=1

|yi − µ(y)|. (19)

or the maximum (absolute) deviation

R(y) = max
i∈I
|yi − µ(y)|. (20)
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Note that the standard deviation σ (or the variance σ2) represents both the deviations and the
spread measurement as

σ(y) =

√√√√ 1

m

∑

i∈I
(yi − µ(y))2 =

√√√√ 1

2m2

∑

i∈I

∑

j∈I
(yi − yj)2. (21)

Deviational measures may be focused on the downside semideviations as related to worsening
of outcome while ignoring upper semideviations related to improvement of outcome. One may
define the maximum (downside) semideviation

∆(y) = max
i∈I

(µ(y) − yi) (22)

and the mean (downside) semideviation

δ̄(y) =
1

m

∑

i∈I
(µ(y)− yi)+ (23)

where (.)+ denotes the nonnegative part of a number. Similarly, the standard (downside) semide-
viation is given as

σ̄(y) =

√√√√ 1

m

∑

i∈I
(µ(y) − yi)2

+. (24)

In economics one usually considers relative inequality measures normalized by mean out-
come. Among many inequality measures perhaps the most commonly accepted by economists
is the Gini coefficient, which is the relative mean difference. One can easily notice that direct
minimization of typical inequality measures (especially the relative ones) may contradict the
optimization of individual outcomes (Erkut, 1993). Unfortunately, this flaw cannot be overcome
with the standard bicriteria mean-equity model (Ogryczak, 2000):

max {(µ(f(x)),−%(f(x))) : x ∈ Q} (25)

which takes into account both the efficiency with optimization of the mean outcome µ(y) and the
equity with minimization of an inequality measure %(y). The bicriteria mean-equity model still
does not completely eliminate contradiction to the optimization of individual outcomes. When
considering a simple discrete problem with two allocation patterns P1 and P2 generating outcome
vectors y′ = (0, 0) and y′′ = (2, 8), respectively, for any dispersion type inequality measure one
gets %(y′′) > 0 = %(y′) while µ(y′′) = 5 > 0 = µ(y′). Hence, y′′ is not bicriteria dominated
by y′ and vice versa. Nevertheless, one must accept that for any dispersion type inequality
measure %, allocation P1 with obviously worse outcome vector than that for allocation P2 is a
Pareto-optimal solution in the corresponding bicriteria mean-equity model.

Note that the lack of consistency with the dominance applies also to the maximum semidevi-
ation ∆(y) (22) whereas subtracting this measure from the mean µ(y)−∆(y) = M(y) results in
the worst outcome and thereby the first criterion of the MMF model. In other words, although
a direct use of the maximum semideviation contradicts the efficiency, the measure can be used
complementary to the mean leading to the worst outcome criterion which is fairly consistent.
This construction can be generalized for various (dispersion type) inequality measures. For any
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inequality measure % we introduce the corresponding underachievement function defined as the
difference of the mean outcome and the inequality measure itself, i.e.

M%(y) = µ(y)− %(y). (26)

This allows us to replace the original mean-equity bicriteria optimization (25) with the following
bicriteria problem:

max {(µ(f(x)), µ(f(x))− %(f(x))) : x ∈ Q} (27)

where the second objective represents the corresponding underachievement measure M%(y) (26).
Note that for any inequality measure %(y) ≥ 0 one gets M%(y) ≤ µ(y) thus really expressing
underachievements (comparing to mean) from the perspective of outcomes being maximized.

The fair consistency of inequality measures may be formalized as follows. We say that
inequality measure %(y) is mean-complementary fairly consistent if the corresponding under-
achievement measure M%(y) is fairly consistent, i.e.,

y′ �e y′′ ⇒ µ(y′)− %(y′) ≥ µ(y′′)− %(y′′). (28)

The relation of fair (mean-complementary) consistency is called strong if, in addition to (28),
the following holds

y′ �e y′′ ⇒ µ(y′)− %(y′) > µ(y′′)− %(y′′). (29)

Theorem 2 If the inequality measure %(y) is mean-complementary fairly consistent (28), then
except for outcomes with identical values of µ(y) and %(y), every efficient solution of the bicri-
teria problem (27) is a fairly efficient allocation pattern. In the case of strong consistency (29),
every solution x ∈ Q efficient to (27) is, unconditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (27). Suppose that x0 is not fairly efficient. This
means, there exists x ∈ Q such that y = f(x) �e y0 = f(x0). Then, it follows µ(y) ≥ µ(y0),
and simultaneously µ(y) − %(y) ≥ µ(y0) − %(y0), by virtue of the mean-complementary fair
consistency (28). Since x0 is efficient to (27) no inequality can be strict, which implies µ(y) =
µ(y0) and and %(y) = %(y0).

In the case of the strong mean-complementary fair consistency (29), the supposition y =
f(x) �e y0 = f(x0) implies µ(y) ≥ µ(y0) and µ(y) − %(y) > µ(y0) − %(y0) which contradicts
the efficiency of x0 with respect to (27). Hence, x0 is fairly efficient.

Typical dispersion type inequality measures are convex, i.e. %(λy ′ + (1 − λ)y′′) ≤ λ%(y′) +
(1 − λ)%(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1. Actually, convexity of an inequality measure on
equally distributed outcomes is necessary for its mean-complementary fair consistency. Note,
that for any two vectors y′ and y′′ representing the same distribution of outcomes as y (i.e., y′ =
(yπ′(1), . . . , yπ′(m)) for some permutation π′ and y′′ = (yπ′′(1), . . . , yπ′′(m)) for some permutation
π′′) due to concavity of θ̄i(y), one gets θ̄i(λy′ + (1 − λ)y′′) ≥ λθ̄i(y

′) + (1 − λ)θ̄i(y
′′) = θ̄i(y)

for all i ∈ I and any 0 ≤ λ ≤ 1. Hence, λy′ + (1 − λ)y′′ �e y and M%(λy′ + (1 − λ)y′′) ≥
M%(y) is necessary for the fair consistency. Thus, due to equal means µ(λy ′ + (1 − λ)y′′) =
µ(y′) = µ(y′′) = µ(y), the inequality measure depending only on distribution %(y ′) = %(y′′) =
%(y) must satisfy %(λy′ + (1 − λ)y′′) ≤ %(y) = λ%(y′) + (1 − λ)%(y′′) which represents the
convexity of %(y). Certainly, the underachievement function M%(y) must be also monotonic for
the fair consistency which enforces more restrictions on the inequality measures. We will show
further that convexity together with positive homogeneity and some boundedness of an inequality
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measure is sufficient to guarantee monotonicity of the corresponding underachievement measure
and thereby to guarantee the mean-complementary fair consistency of inequality measure itself.

We say that (dispersion type) inequality measure %(y) ≥ 0 is ∆-bounded if it upper bounded
by the maximum downside deviation, i.e.,

%(y) ≤ ∆(y) ∀y. (30)

Moreover, we say that %(y) ≥ 0 is strictly ∆-bounded if inequality (30) is a strict bound, except
from the case of perfectly equal outcomes, i.e., %(y) < ∆(y) for any y such that ∆(y) > 0.

Theorem 3 Let %(y) ≥ 0 be a convex and ∆-bounded positively homogeneous inequality mea-
sure. Then %(y) is mean-complementary fairly consistent in the sense of (28), ie.

y′ �e y′′ ⇒ µ(y′)− %(y′) ≥ µ(y′′)− %(y′′).

Proof. The relation of fair dominance y′ �e y′′ denotes that there exists a finite sequence
of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ + εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′

for k = 1, 2, . . . , t and there exists a permutation π such that y ′π(i) ≥ yti for all i ∈ I. Note

that the underachievement function M%(y), similar as %(y) depends only on the distribution
of outcomes. Further, if y′ ≥ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≥ 0. Hence, due to
concavity and positive homogeneity, M%(y

′) ≥ M%(y
′′) + M%(y

′ − y′′). Moreover, due to the
bound (30), M%(y

′ − y′′) ≥ µ(y′ − y′′) − ∆(y′ − y′′) ≥ µ(y′ − y′′) − µ(y′ − y′′) = 0. Thus,
M%(y) satisfies also the requirement of monotonicity. Hence, M%(y

′) ≥ M%(y
t). Further, let

us notice that yk = λȳk−1 + (1 − λ)yk−1 where ȳk−1 = yk−1 − (yi′ − yi′′)ei′ + (yi′ − yi′′)ei′′
and λ = ε/(yi′ − yi′′). Vector ȳk−1 has the same distribution of coefficients as yk−1 (actually
it represents results of swapping yi′ and yi′′). Hence, due to concavity of M%(y), one gets
M%(y

k) ≥ λM%(ȳ
k−1) + (1− λ)M%(y

k−1) = M%(y
k−1). Thus, M%(y

′) ≥ M%(y
′′) which justifies

the mean-complementary fair consistency of the inequality measure %(y).
For strict fair consistency some strict monotonicity and concavity properties of the achieve-

ment function are needed. Obviously, there does not exist any inequality measure which is
positively homogeneous and simultaneously strictly convex. However, one may notice from the
proof of Theorem 3 that only convexity properties on equally distributed outcome vectors are
important for monotonous achievement functions. We say that function C(y) is strictly convex
on equally distributed outcome vectors, if C(λy′ + (1 − λ)y′′) < λC(y′) + (1 − λ)C(y′′) for
0 < λ < 1 and any two vectors y′ 6= y′′ but representing the same outcomes distribution as
some y, i.e., y′ = (yπ′(1), . . . , yπ′(m)) π

′ and y′′ = (yπ′′(1), . . . , yπ′′(m)) for some permutations π′

and π′′, respectively.

Theorem 4 Let %(y) ≥ 0 be a convex and strictly ∆-bounded positively homogeneous inequal-
ity measure. If %(y) is also strictly convex on equally distributed outcomes, then it is mean-
complementary fairly strongly consistent in the sense of (29), ie.

y′ �e y′′ ⇒ µ(y′)− %(y′) > µ(y′′)− %(y′′).

Proof. The relation of weak fair dominance y′ �e y′′ denotes that there exists a finite sequence
of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ + εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for

k = 1, 2, . . . , t and there exists a permutation π such that y ′π(i) ≥ yti for all i ∈ I. The strict

11
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fair dominance y′ �e y′′ means that y′π(i) > yti for some i ∈ I or at least one εk is strictly

positive. Note that the underachievement function M%(y) is strictly monotonous and strictly
convex on equally distributed outcome vectors. Hence, M%(y

′) > M%(y
′′) which justifies the

mean-complementary fair strong consistency of the inequality measure %(y).
Let %(y) ≥ 0 be a convex, positively homogeneous and ∆-bounded (dispersion type) inequal-

ity measure. It follows from Theorems 2–4 that except for allocation patterns with identical mean
µ(y) and inequality measure %(y), every efficient solution to the bicriteria problem (27) is then
a fairly efficient solution of the location problem (1). Moreover, if the measure is also strictly ∆-
bounded and strictly convex on equally distributed outcome vectors, then every location x ∈ Q
efficient to (27) is, unconditionally, fairly efficient.

As mentioned, typical inequality measures are convex and many of them are positively
homogeneous. Moreover, the measures such as the mean absolute (downside) semideviation
δ̄(y) (23), the standard downside semideviation σ̄(y) (24), and the mean absolute difference Γ(y)
(17) are ∆-bounded. Indeed, one may easily notice that yi− µ(y) ≤ ∆(y) and therefore δ̄(y) ≤
1
m

∑
i∈I ∆(y) = ∆(y), σ̄(y) ≤

√
∆(y)2 = ∆(y) and Γ(y) = 1

m2

∑
i∈I
∑
j∈I(max{yi, yj}−µ(y)) ≤

∆(y). Actually, all these inequality measures are strictly ∆-bounded since for any unequal
outcome vector at least one outcome must be below the mean thus leading to strict inequalities
in the above bounds. Obviously, ∆-bounded (but not strictly) is also the maximum absolute
downside deviation ∆(y) itself. This us to justify the maximum downside deviation ∆(y) (22),
the mean absolute (downside) semideviation δ̄(y) (23), the standard downside semideviation
σ̄(y) (24) and the mean absolute difference Γ(y) (17) as mean-complementary fairly consistent
in the sense of (28).

We emphasize that, despite the standard semideviation is mean-complementary fairly con-
sistent inequality measure, the consistency is not valid for variance, semivariance and even for
the standard deviation. These measures, in general, do not satisfy all assumptions of Theo-
rem 3. Certainly, we have enumerated only the simplest inequality measures studied in the
resource allocation context which satisfy the assumptions of Theorem 3 and thereby they are
mean-complementary fairly consistent. Theorem 3 allows one to show this property for many
other measures. In particular, one may easily find out that any convex combination of mean-
complementary fairly efficient inequality measures remains also consistent. On the other hand,
among typical inequality measures the mean absolute difference seems to be the only one meeting
the stronger assumptions of Theorem 4 and thereby maintaining the strong consistency.

Note that the mean absolute semideviations are symmetric in the sense that the upper
semideviation is always equal to the downside one. In other words, δ̄(y) = 1

2δ(y) and thereby the
fair consistency of the mean absolute semideviation justifies also fair consistency of the half mean
absolute deviation. In general, one may just consider %α(X) = α%(X) as a basic risk measure,
like the mean absolute semideviation equal to the half of the mean absolute deviation itself. In
order to avoid creation of new inequality measures by simple scaling we rather parameterize the
fair consistency concept. We will say that an inequality measure % is fairly α-consistent if

y′ �e y′′ ⇒ µ(y′)− α%(y′) ≥ µ(y′′)− α%(y′′) (31)

The relation of fair α-consistency will be called strong if, in addition to (31), the following holds

y′ �e y′′ ⇒ µ(y′)− α%(y′) > µ(y′′)− α%(y′′). (32)

Note that the fair 1-consistency represent our basic relation of the mean-complementary fair
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consistency. On the other hand, the fair α-consistency of measure %(y) is equivalent to the
mean-complementary fair consistency of measure α%(y). Thus the following assertion is valid.

Corollary 1 If the inequality measure %(y) is fairly α-consistent (31), then except for outcomes
with identical values of µ(y) and %(y), every efficient solution of the bicriteria problem

max{(µ(f(x)), µ(f(x))− α%(f(x))) : x ∈ Q} (33)

is a fairly efficient allocation pattern. In the case of strong consistency (29), every allocation
pattern x ∈ Q efficient to (33) is, unconditionally, fairly efficient.

Directly from Theorems 3 and 4 applied to the measures α%(y) as in definition of α-
consistency one gets the following sufficient conditions.

Corollary 2 Let %(y) ≥ 0 be a convex, positively homogeneous and translation invariant (dis-
persion type) inequality measure. If α%(y) is ∆-bounded, then %(y) is fairly α-consistent in the
sense of (31).
If %(y) is also strictly convex on equally distributed outcomes and α%(y) is strictly ∆-bounded,
then %(y) is fairly strongly α-consistent in the sense of (32).

Note that the fair ᾱ-consistency of measure %(y) actually guarantees the mean-
complementary fair consistency of measure α%(y) for all 0 < α ≤ ᾱ, and the same remain valid
for the strong consistency properties. It follows from a possible expression of µ(y)−α%(y) as the
convex combination of µ(y) − ᾱ%(y) and µ(y). Hence, for any y′ �e y′′, due to µ(y′) ≥ µ(y′′)
one gets µ(y′)−α%(y′) ≥ µ(y′′)−α%(y′′) in the case of the fair ᾱ-consistency of measure %(y) (or
respective strict inequality in the case of strong consistency). Therefore, while analyzing specific
inequality measures we seek a report the largest values α guaranteeing the corresponding fair
efficiency.

As mentioned, the mean absolute semideviation is twice the mean absolute upper semide-
viation which means that αδ(y) is ∆-bounded for any 0 < α ≤ 0.5. The symmetry of mean
absolute semideviations δ̄(y) =

∑
i∈I(yi−µ(y))+ =

∑
i∈I(µ(y)− yi)+ can be also used to derive

some ∆-boundedness relations for other inequality measures. In particular, one may find out
that for m-dimensional outcome vectors of unweighted location problem, any downside semide-
viation from the mean cannot be larger than m− 1 upper semideviations. Hence, the maximum
absolute deviation satisfies the inequality 1

m−1R(y) ≤ ∆(y), while the maximum absolute dif-

ference fulfills 1
md(y) ≤ ∆(y). Similarly, for the standard deviation one gets 1√

m−1
δ(y) ≤ ∆(y).

Actually, ασ(y) is strictly ∆-bounded for any 0 < α ≤ 1/
√
m− 1 since for any unequal outcome

vector at least one outcome must be below the mean thus leading to strict inequalities in the
above bounds. These allow us to justify the mean absolute semideviation with 0 < α ≤ 0.5,
the maximum absolute deviation with 0 < α ≤ 1

m−1 , the maximum absolute difference with

0 < α ≤ 1
m and the standard deviation with 0 < α ≤ 1√

m−1
as fairly α-consistent within the

specified intervals of α. Moreover, the α-consistency of the standard deviation is strong.
The fair consistency results for basic dispersion type inequality measures considered in re-

source allocation problems are summarized in Table 1 where α values for unweighted as well as
weighted problems are given and the strong consistency is indicated. Table 1 points out how
the inequality measures can be used in resource allocation models to guarantee their harmony
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Table 1: Fair consistency results for the basic dispersion type inequality measures
Measure α–consistency

Standard upper semideviation σ̄(y) (24) 1
Standard deviation σ(y) (21) 1√

m−1
strong

Mean absolute semideviation δ̄(y) (23) 1
Mean absolute deviation δ(y) (19) 1

2
Maximum upper semideviation ∆(y) (22) 1
Maximum absolute deviation R(y) (20) 1

m−1

Mean absolute difference Γ(y) (17) 1 strong
Maximum absolute difference d(y) (18) 1

m

both with outcome maximization (Pareto-optimality) and with inequalities minimization (Pigou-
Dalton equity theory). Exactly, for each inequality measure applied with the corresponding value
α from Table 1 (or smaller positive value), every efficient solution of the bicriteria problem (33),
ie. max{(µ(f(x)), µ(f(x)) − α%(f(x))) : x ∈ Q}, is a fairly efficient allocation pattern, ex-
cept for outcomes with identical values of µ(y) and %(y). In the case of strong consistency (as
for mean absolute difference or standard deviation), every solution x ∈ Q efficient to (33) is,
unconditionally, fairly efficient.

4 Ordered outcomes

Multiple criteria optimization defines the dominance relation y ′ �r y′′ which may be expressed
in terms of the vector inequality y′ ≥ y′′. Hence, we can state that a feasible solution x0 ∈ Q
is a Pareto-optimal solution of the multiple criteria problem (1), if and only if, there does not
exist x ∈ Q such that f(x) ≥ f(x0). The latter refers to the commonly used definition of
the Pareto-optimal (efficient) solutions as feasible solutions for which one cannot improve any
criterion without worsening another (Vincke, 1992).

The theory of majorization (Marshall and Olkin, 1979) includes the results which allow us to
express the relation of fair (equitable) dominance as a vector inequality on the cumulative ordered
outcomes (Kostreva and Ogryczak, 1999). This can be mathematically formalized as follows.
First, introduce the ordering map Θ : Rm → Rm such that Θ(y) = (θ1(y), θ2(y), . . . , θm(y)),
where θ1(y) ≤ θ2(y) ≤ · · · ≤ θm(y) and there exists a permutation π of set I such that
θi(y) = yπ(i) for i = 1, . . . ,m. Next, apply to ordered outcomes Θ(y), a linear cumulative map
thus resulting in the cumulative ordering map Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)) defined as

θ̄i(y) =
i∑

j=1

θj(y) for i = 1, . . . ,m (34)

The coefficients of vector Θ̄(y) express, respectively: the smallest outcome, the total of the two
smallest outcomes, the total of the three smallest outcomes, etc.

Note that fair solutions to problem (1) can be expressed as Pareto-optimal solutions for the
multiple criteria problem with objectives Θ̄(f(x))

max {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q} (35)
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Theorem 5 A feasible allocation pattern x ∈ Q is a fair solution of the problem (1), iff it is a
Pareto-optimal solution of the multiple criteria problem (35).

Theorem 5 provides the relationship between fair solutions and the standard Pareto-
optimality. Hence, the multiple criteria problem (35) may serve as a source of fair solution
concepts. Although the definitions of quantities θ̄k(y), used as criteria in (35), are very compli-
cated, the quantities themselves can be modeled with simple auxiliary variables and constraints.
It is commonly known that the smallest outcome may be defined by the following optimization:
θ̄1(y) = max {t : t ≤ yi for i = 1, . . . ,m}, where t is an unrestricted variable. It turns out
that this can be generalized to provide an effective modeling technique for quantities θ̄k(y) with
arbitrary k (Ogryczak and Tamir, 2003). Let us notice that for any given vector y, the quantity
θ̄k(y) is defined by the following LP:

θ̄k(y) = min
m∑

i=1

yizki

s.t.
m∑

i=1

zki = k, 0 ≤ zki ≤ 1 for i = 1, . . . ,m.

(36)

Exactly, the above problem is an LP for a given outcome vector y while it begins nonlinear for
a variable y. This difficulty can be overcome by taking advantages of the LP dual to (36):

θ̄k(y) = max ktk −
m∑

i=1

dik

s.t. tk − yi ≤ dik, dik ≥ 0 for i = 1, . . . ,m

(37)

where tk is an unrestricted variable while nonnegative variables dik represent, for several outcome
values yi, their downside deviations from the value of t (Ogryczak and Tamir, 2003).

Theorem 5 allows one to generate fairly efficient solutions of (1) as Pareto-optimal solutions
of multicriteria problem:

max (η1, η2, . . . , ηm)
subject to x ∈ Q

ηk = ktk −
m∑

i=1

dik for k = 1, . . . ,m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . ,m

(38)

The aggregation maximizing the sum of outcomes, corresponds to maximization of the last
(m–th) objective (ηm) in problem (38). Similar, the Max-Min scalarization corresponds to
maximization of the first objective (η1). For modeling various fair preferences one may use some
combinations the criteria. In particular, for the weighted sum

∑m
i=1 wiηi on gets equivalent

combination of the cumulative ordered outcomes θ̄i(y):

m∑

i=1

wiθ̄i(y). (39)

Note that, due to the definition of map Θ̄ with (34), the above function can be expressed
in the form with weights vi =

∑m
j=iwj (i = 1, . . . ,m) allocated to coordinates of the ordered
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Figure 2: Isoline contours for a fair OWA aggregation.

outcome vector. Such an approach to aggregation of outcomes was introduced by Yager (1988)
as the so–called Ordered Weighted Averaging (OWA). When applying OWA to problem (1) we
get

max {
m∑

i=1

viθi(f(x)) : x ∈ Q} (40)

The OWA aggregation is obviously a piece wise linear function since it remains linear within
every area of the fixed order of arguments. If weights vi are strictly decreasing and positive, i.e.
v1 > v2 > · · · > vm−1 > vm > 0, then each optimal solution of the OWA problem (40) is a fair
solution of (1).

While equal weights define the linear aggregation, several decreasing sequences of weights
lead to various fair aggregation functions. Thus, the monotonic OWA aggregations provide
a family of piece wise linear aggregations filling out the space between the piece wise linear
aggregation functions (6) and (7) as shown in Fig. 3. Actually, formulas (39) and (37) allow us
to formulate any monotonic (not necessarily strictly) OWA problem (40) as the following LP
extension of the original multiple criteria problem:

max
m∑

k=1

wkηk

subject to x ∈ Q

ηk = ktk −
m∑

i=1

dik for k = 1, . . . ,m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . ,m

(41)

where wm = vm and wk = vk − vk+1 for k = 1, . . . ,m− 1.
When differences among weights tend to infinity, the OWA aggregation approximates the

lexicographic ranking of the ordered outcome vectors (Ogryczak and Śliwiński, 2003). That
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Figure 3: Isoline contours for various fair OWA aggregations.

means, as the limiting case of the OWA problem (40), we get the lexicographic problem:

lexmax {(θ1(f(x)), θ2(f(x)), . . . , θm(f(x))) : x ∈ Q} (42)

which represents the MMF approach to the original problem (1). Problem (42) is a regularization
of the standard Max-Min optimization (7), but in the former, in addition to the worst outcome,
we maximize also the second worst outcome (provided that the smallest one remains as large as
possible), maximize the third worst (provided that the two smallest remain as large as possible),
and so on. Due to (34), the MMF problem (42) is equivalent to the problem:

lexmax {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}

which leads us to a standard lexicographic optimization with predefined linear criteria defined
according to (37)

lexmax (η1, η2, . . . , ηm)
subject to x ∈ Q

ηk = ktk −
m∑

i=1

dik for k = 1, . . . ,m

tk − dik ≤ fi(x), dik ≥ 0 for i, k = 1, . . . ,m

(43)

Moreover, in the case of LP models, every fair solution can be identified as an optimal solution
to some OWA problem with appropriate monotonic weights (Kostreva and Ogryczak, 1999) but
such a search process is usually difficult to control (Ogryczak, Śliwiński and Wierzbicki, 2003).
Better controllability and the complete parameterization of nondominated solutions even for non-
convex, discrete problems can be achieved with the direct use of the reference point methodology
introduced by Wierzbicki (1982) and later extended leading to efficient implementations of the so-
called aspiration/reservation based decision support (ARBDS) approach with many successful
applications (Lewandowski and Wierzbicki, 1989). The ARBDS approach is an interactive
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technique allowing the DM to specify the requirements in terms of aspiration and reservation
levels, i.e., by introducing acceptable and required values for several criteria. Depending on
the specified aspiration and reservation levels, a special scalarizing achievement function is built
which may be directly interpreted as expressing utility to be maximized. Maximization of the
scalarizing achievement function generates an efficient solution to the multiple criteria problem.
The solution is accepted by the DM or some modifications of the aspiration and reservation levels
are introduced to continue the search for a better solution. The ARBDS approach provides
a complete parameterization of the efficient set to multi-criteria optimization. Hence, when
applying the ARBDS methodology to the ordered cumulated criteria in (35), one may generate
all fairly efficient solutions of the original problem (1). Indeed, initial experiments with such
an approach to the problem of network dimensioning with elastic traffic have confirmed the
theoretical advantages of the method (Ogryczak and Wierzbicki, 2004).

Although defined with simple linear constraints the auxiliary conditions (37) introduces
m2 additional variables and inequalities into the original model. This may cause a serious
computational burden for real-life problems containing numerous outcomes. In order to reduce
the problem size one may attempt the restrict the number of criteria in the problem (35). Let us
consider a sequence of indices K = {k1, k2, . . . , kq}, where 1 = k1 < k2 < . . . < kq−1 < kq = m,
and the corresponding restricted form of the multiple criteria model (35):

max {(ηk1 , ηk2 , . . . , ηkq ) : ηk = θ̄k(f(x)) for k ∈ K, x ∈ Q} (44)

with only q < m criteria. Following Theorem 5, multiple criteria model (35) allows us to generate
any fairly efficient solution of problem (1). Reducing the number of criteria we restrict these
opportunities. Nevertheless, one may still generate reasonable compromise solutions. First of
all the following assertion is valid.

Theorem 6 If xo is an efficient solution of the restricted problem (44), then it is an efficient
(Pareto-optimal) solution of the multiple criteria problem (1) and it can be fairly dominated
only by another efficient solution x′ of (44) with exactly the same values of criteria: θ̄k(f(x′)) =
θ̄k(f(xo)) for all k ∈ K.

Proof. Suppose, there exists x′ ∈ Q which dominates xo. This means, y′i = fi(x
′) ≥ yoi = fi(x

0)
for all i ∈ I with at least one inequality strict. Hence, θ̄k(y

′) ≥ θ̄k(y
o) for all k ∈ K and

θ̄kq(y
′) > θ̄kq(y

o) which contradicts efficiency of xo within the restricted problem (44).
Suppose now that x′ ∈ Q fairly dominates xo. Due to Theorem 5, this means that θ̄i(y

′) ≥
θ̄i(y

o) for all i ∈ I with at least one inequality strict. Hence, θ̄k(y
′) ≥ θ̄k(yo) for all k ∈ K and

any strict inequality would contradict efficiency of yo within the restricted problem (44). Thus,
θ̄k(y

′) = θ̄k(y
o) for all k ∈ K which completes the proof.

It follows from Theorem 6 that while restricting the number of criteria in the multiple criteria
model (35) we can essentially still expect reasonably fair efficient solution and only unfairness
may be related to the distribution of outcomes within classes of skipped target values. In
other words, we have guaranteed some rough fairness while it can be possibly improved by
redistribution of outcomes within the intervals (θkj (y), θkj+1

(y)] for j = 1, 2, . . . , q − 1.

5 Ordered targets

Vector Θ̄(y) can be viewed graphically with the absolute Lorenz curve which can be mathemat-
ically formalized as follows. First, we introduce the right-continuous cumulative distribution
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function:

Fy(ξ) =
m∑

i=1

1

m
δi(ξ) where δi(ξ) =

{
1 if yi ≤ ξ
0 otherwise

which for any real value ξ provides the measure of outcomes smaller or equal to ξ. Next, we

introduce the quantile function F
(−1)
y as the left-continuous inverse of the cumulative distribution

function Fy:

F (−1)
y (ν) = inf {ξ : Fy(ξ) ≥ ν} for 0 < ν ≤ 1.

Hence, θi(y) = F
(−1)
y (i/m). Further, by integrating F

(−1)
y , one gets F

(−2)
y (0) = 0 and

F (−2)
y (ν) =

∫ ν

0
F (−1)

y (α)dα for 0 < ν ≤ 1

as the second order quantile function. Graphs of functions F
(−2)
y (ν) (with respect to ν) take the

form of convex curves (Fig. 4), the absolute Lorenz curves (ALC). In our case of m outcomes,

F
(−2)
y (i/m) = 1

m θ̄i(y) for i = 1, . . . ,m and the absolute Lorenz curve is a piecewise linear
curve connecting point (0,0) and points (i/m, θ̄i(y)/m) for i = 1, . . . ,m. Due to Theorem 5, a
fairly dominated outcome vector is represented by the ALC below that for a dominating vector.
Vector of equal outcomes is graphically represented as an ascent line and it obviously dominates
nay unequal vector with the same mean. However, with the relation of fair dominance an
outcome vector of large unequal outcomes may be preferred to an outcome vector with small
equal outcomes. Fig. 4 presents the absolute Lorenz curves for outcome distributions of three
vectors. One can easily see that vector of perfectly equal outcomes y ′′ = (3, 3, 3) dominates
vector y′ = (1, 3, 5), but it is further dominated by vector y′′′ = (5, 4, 9) of unequal larger
outcomes.
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Figure 4: Fair dominance and the absolute Lorenz curves: y′′′ �e y′′ �e y′.

The fair dominance is equivalent to the pointwise inequalities of the entire absolute Lorenz
curves

y′ �e y′′ ⇔ F
(−2)
y′ (ν) ≥ F (−2)

y′′ (ν) for all 0 ≤ ν ≤ 1. (45)

19



Institute of Control & Computation Engineering Report 05-07

Nevertheless, the fair dominance is completely characterized by comparison of only m values

F
(−2)
y (i/m) for i = 1, . . . ,m.

Recently, an intriguing duality relation between the second quantile function F
(−2)
y and the

second cumulative distribution function F
(2)
y (τ) =

∫ τ
−∞ Fy(ξ)dξ has been shown (Ogryczak and

Ruszczyński, 2002). Namely, function F
(−2)
y is a conjugate (Rockafellar, 1970) of F

(2)
y , i.e., for

every ν ∈ [0, 1], one gets
F (−2)

y (ν) = sup
τ
{τν − F (2)

y (τ)}. (46)

It follows from the duality theory that one may completely characterize the fair dominance by
the pointwise comparison the conjugate function F (2):

y′ �e y′′ ⇔ F
(2)
y′ (τ) ≤ F (2)

y′′ (τ) for all τ ∈ R. (47)

In other words, the absolute Lorenz order is equivalent to the increasing concave order more
commonly known as the Second Stochastic Dominance (SSD) relation (Müller and Stoyan, 2002).

The SSD relation was widely studied while comparing general distributions of uncertain

outcome in the area of decision making under risk. Function F
(2)
y , used to define the SSD

relation, can also be presented as follows (Ogryczak and Ruszczyński, 1999):

F (2)
y (τ) =

1

m

m∑

i=1

(τ − yi)+ (48)

Hence, the SSD relation can be seen as a dominance for mean below-target deviations from all

possible targets. Similar to absolute Lorenz curves, graphs of functions F
(2)
y define O-R curves

(Ogryczak and Ruszczyński, 1999) (τ, F
(2)
y (τ)) allowing to depict the SSD relation, and thereby

the fair dominance of several outcome vectors y. For distributions of m outcomes, we consider,
the O-R curve is a piecewise linear convex curve with breakpoints at targets τ representing
some coordinates of outcome vector y. In the case of a perfectly outcome vector (yi = µ(y) ∀ i),
the graph of F

(2)
y consists of two line segments: the axis τ for τ ≤ µ(y) and the ascent line

τ − µ(y) for τ ≥ µ(y). Any unequal outcome vector with the same mean value µ(y) yields an
O-R curve above (precisely, not below) these two line segments, including them for τ ≤ mini yi
and τ ≥ maxi yi, respectively. Fig. 5 presents the O-R curves for outcome distributions of three
vectors compared with absolute Lorenz curves in Fig 4. Recall that vector of perfectly equal
outcomes y′′ = (3, 3, 3) dominates vector y′ = (1, 3, 5), but it is further dominated by vector
y′′′ = (5, 4, 9) of unequal larger outcomes. Note that according to (47), a fairly dominated
outcome vector is represented by the O-R curve above that for a dominating vector.

For m-dimensional outcome vectors we consider, the entire F
(2)
y is completely defined by

its values for at most m different targets representing values of several outcomes yi while the
remaining values follows from the linear interpolation. Nevertheless, these target values are de-
pendent on specific outcome vectors and one cannot define any universal grid of targets allowing
to define O-R curves for all possible outcome vectors. Therefore, in order to get a computational
procedure one need either to aggregate mean shortages for infinite number of targets or to focus
analysis on arbitrarily preselected finite grid of targets. The former turns out to lead us to
the mean utility optimization models (15). Indeed, classical results of majorization theory (c.f.,
Marshall and Olkin, 1979) relate the mean utility comparison to the comparison of the weighted
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Figure 5: Fair dominance and the O-R curves: y′′′ �e y′′ �e y′.

mean shortages

m∑

i=1

u(y′i) ≥
m∑

i=1

u(y′′i ) ⇔
∫ ∞

−∞
w(ξ)F 2

y′(ξ)dξ ≤
∫ ∞

−∞
w(ξ)F 2

y′′ (ξ)dξ.

Actually, for bounded outcomes a ≤ yi ≤ b on has
∑m
i=1 u(yi) =

∫ b
a u(ξ)dFy(ξ) and therefore,

integrating twice by parts, one may easily verify that

m∑

i=1

u(y′i)−
m∑

i=1

u(y′′i ) =

∫ b

a
u′′(ξ)F 2

y′(ξ)dξ −
∫ b

a
u′′(ξ)F 2

y′′(ξ)dξ.

Hence, the maximization of a concave and increasing utility function u is equivalent to mini-
mization of the weighted aggregation

∫ b
a w(ξ)F 2

y (ξ)dξ with positive weights w(ξ) = −u′′(ξ) (due
to concavity of u).

In order to take advantages of the multiple criteria methodology one needs to focus on a
finite set of target values. Let V = {v1, v2, . . . , vr} (where v1 < v2 < · · · < vr) denote the set
of target values for individual outcomes. For each target value we introduce function hk(y)
expressing the partial (below target) cumulated outcomes

hk(y) =
m∑

i=1

min{yi, vk} = mvk −
m∑

i=1

(vk − yi)+ = m(vk − F 2
y(vk)) (49)

Since the quantities hk(y) are complementary to F 2
y(vk), following (47), we can seek fairly

efficient allocation patterns using the standard multiple criteria optimization problem with r
criteria:

max {(h1(f(x)), . . . , hr(f(x))) : x ∈ Q}. (50)

Theorem 7 In the case of finite outcome set f(Q) ⊂ V m, a feasible allocation pattern x ∈ Q is
a fair solution of problem (1), iff it is a Pareto-optimal solution of the multiple criteria problem
(50).

Proof. Let f(xo) ∈ Q be a Pareto-optimal solution of problem (50). Suppose, there exists
x′ ∈ Q such that y′ = f(x′) fairly dominates yo = f(xo). Due to (47), this means that
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m(τ − F 2
y′(τ)) ≥ m(τ − F 2

yo(τ)) for all τ ∈ R with at least one inequality strict. Hence,

ĥk(y
′) ≥ ĥk(y

o) for all k = 1, . . . , r and any strict inequality would contradict efficiency of xo

within the problem (50). Thus, ĥk(x
′) = ĥk(x

o) and F 2
y′(vk) = F 2

yo(vk) for all k = 1, . . . , r.

Since f(Q) ⊂ V m, the piecewise linear functions F 2
y′(τ) and F 2

y′′(τ) are completely defined by

their values at targets vk and thereby F 2
y′(τ) = F 2

yo(τ) for all τ ∈ R.
Let f(xo) ∈ Q be a fairly efficient solution of problem (1). Suppose, f(xo) is not a Pareto-

optimal solution of problem (50). This means, there exists x′ ∈ Q such that y′ = f(x′) dominates
yo = f(xo) in terms of criteria hk(y). Hence, ĥk(y

′) ≥ ĥk(y
o) for all k = 1, . . . , r with at least

one inequality strict. Due to (49), this means that F 2
y′(vk) ≤ F 2

yo(vk) for all k = 1, . . . , r with at

least one strict inequality. Since f(Q) ⊂ V m, the piecewise linear functions F 2
y′(τ) and F 2

y′′(τ)

are completely defined by their values at targets vk and thereby F 2
y′(τ) ≤ F 2

yo(τ) for all τ ∈ R
with at least one inequality strict. The latter contradicts fair efficiency of xo, which completes
the proof.

Corollary 3 In the case of finite outcome set f(Q) ⊂ V m, the MMF solution (42) can be found
by the standard lexicographic optimization with r criteria:

lex max {(h1(f(x)), . . . , hr(f(x))) : x ∈ Q}. (51)

Note that multicriteria model (50) may be formulated as, similar to (38), LP expansion to
the original resource allocation problem

max (h1, h2, . . . , hm)
subject to x ∈ Q
hk =

m∑

i=1

tik for k = 1, . . . , r

tik ≤ fi(x), tik ≤ vk for i = 1, . . . ,m, k = 1, . . . , r

(52)

Although while the ordered outcomes model (38) has always m criteria defined by the number
of outcomes, the latter model has r criteria according to the number of target values. Follow-
ing Theorem 7, multiple criteria model (50) allows us to generate any fairly efficient allocation
pattern, provided that the set of target values covers all possible outcome values. This require-
ment may be lead, in general, to very numerous set of criteria or even may make impossible to
take full advantages of model (50). Nevertheless, there are many discrete resource allocation
problems where the outcomes take values from a quite small grid of values. Actually, initial ex-
periments with the MMF solution to discrete location problems (Ogryczak and Śliwiński, 2006)
have shown much higher efficiency of the lexicographic optimization according to model (50)
than the lexicographic optimization (43).

Certainly in many practical resource allocation problems one cannot consider target values
covering all attainable outcomes. Reducing the number of criteria we restrict opportunities to
generate all possible fair allocations. Nevertheless, one may still generate reasonable compromise
solutions as the following assertion is valid.

Theorem 8 If all attainable outcomes are upper bounded by the largest target vr, then any
xo Pareto-optimal solution of problem (50) is also an efficient solution of the multiple criteria
problem (1) and it can be fairly dominated only by another efficient solution x ′ of (50) with
exactly the same values of criteria: ĥk(f(x′)) = ĥk(f(xo)) for all k = 1, . . . , r.
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Proof. Suppose, there exists x′ ∈ Q such that y′ = f(x′) dominates yo = f(xo). This means,
y′i ≥ yoi for all i ∈ I with at least one inequality strict. Hence, ĥk(y

′) ≥ ĥk(yo) for all k = 1, . . . , r
and ĥr(y

′) > ĥr(y
o) which contradicts efficiency of xo within the restricted problem (50).

Suppose now that y′ ∈ Q fairly dominates yo. Due to (47), this means that m(τ −F 2
y′(τ)) ≥

m(τ − F 2
yo(τ)) for all τ ∈ R with at least one inequality strict. Hence ĥk(y

′) ≥ ĥk(y
o) for all

k = 1, . . . , r and any strict inequality would contradict efficiency of xo within the problem (50).
Thus, ĥk(x

′) = ĥk(x
o) for all k = 1, . . . , r.

It follows from Theorem 8 that even the set of targets in the multiple criteria model (50)
does not cover all possible outcome values, we can essentially still expect reasonably fair efficient
solution and only unfairness may be related to the distribution of outcomes within classes of
skipped targets. In other words, we have guaranteed some rough fairness while it can be possibly
improved by redistribution of outcomes within the intervals (vk, vk+1] for k = 1, 2, . . . , r − 1.
Thus, we may generate various fairly efficient allocation patterns as Pareto-optimal solutions
to the multiple criteria problem (50) with a reasonably small grid of target values. Various
interactive multiple criteria techniques can be used for such an analysis including the reference
point methods.

6 Conclusions

The problems of efficient and fair resource allocation arise in various systems which serve many
users. Fairness is, essentially, an abstract socio-political concept that implies impartiality, justice
and equity. Nevertheless, in operations research it was quantified with various solution concepts.
In this paper we have demonstrated that these solution concept may be viewed as some specific
approaches to multicriteria models while direct consideration of the multicriteria models them-
selves may allow for a better decision support methodology. The equitable optimization with
the preference structure that complies with both the efficiency (Pareto-optimality) and with
the Pigou-Dalton principle of transfers has been used to formalize the fair solution concepts.
Bicriteria mean-equity models to search for a compromise fair and efficient allocations have
been justified under some requirements and limits on the inequality measures to be used. Two
alternative multiple criteria models equivalent to equitable optimization have been introduced
thus allowing to generate a variety of fair and efficient resource allocation pattern by possible
using of the reference point approaches.

References

Atkinson, A.B. (1970) On the Measurement of Inequality, Journal of Economic Theory, 2,
244–263.

Dalton, H. (1920) The Measurement of the Inequality of Income, Economic Journal, 30,
348–361.

Denda, R., Banchs, A. and Effelsberg, W. (2000) The Fairness Challenge in Computer
Networks. Lecture Notes in Computer Sci., 1922, 208–220.

Erkut, E. (1993) Inequality Measures for Location Problems, Location Science, 1, 199–217.

Ibaraki, T. and Katoh, N. (1988) Resource Allocation Problems, Algorithmic Approaches,
MIT Press, Cambridge.

23



Institute of Control & Computation Engineering Report 05-07

Kaliszewski, I. (2004) On non-interactive selection of the winner in multiple criteria decision
making. In: Modelowanie preferencji a ryzyko ’03, T.Trzaskalik (ed.), 195–211.

Kelly, F., Mauloo, A. and Tan, D. (1997) Rate Control for Communication Networks:
Shadow Prices, Proportional Fairness and Stability. J. Oper. Res. Soc., 49, 206–217.

Klein, R.S., Luss, H. and Rothblum U.G. (1993) Minimax Resource Allocation Problems
with Resource-Substitutions Represented by Graphs. Operations Research, 41, 959–971.

Kostreva, M.M. and Ogryczak, W. (1999) Linear Optimization with Multiple Equitable
Criteria. RAIRO Rech. Opér., 33, 275–297.

Kostreva, M.M., Ogryczak, W. and Wierzbicki, A. (2004) Equitable Aggregations and
Multiple Criteria Analysis, European Journal of Operational Research, 158, 362–367, 2004.

Lewandowski, A. and Wierzbicki, A.P. (1989) Aspiration Based Decision Support Sys-
tems — Theory, Software and Applications. Springer, Berlin.

Luss, H. (1999) On Equitable Resource Allocation Problems: A Lexicographic Minimax Ap-
proach. Operations Research, 47, 361–378.

Marchi, E. and Oviedo, J.A. (1992) Lexicographic Optimality in the Multiple Objective
Linear Programming: The Nucleolar Solution. European Journal of Operational Research,
57, 355–359.

Marsh, M.T. and Schilling D.A. (1994) Equity Measurement in Facility Location Analy-
sis: A Review and Framework. European Journal of Operational Research, 74, 1–17.

Marshall, A.W. and Olkin, I. (1979) Inequalities: Theory of Majorization and Its Appli-
cations. Academic Press, New York.

Mo, J. and Walrand, J. (2000) Fair End-to-End Window-Based Congestion Control.
IEEE/ACM Trans. on Networking, 8, 556–567.

Müller, A. and Stoyan, D. (2002) Comparison Methods for Stochastic Models and Risks,
Wiley, New York.

Nash, J.F. (1950) The Bargaining Problem. Econometrica, 18, 155–162.

Ogryczak, W. (1997) Linear and Discrete Optimization with Multiple Criteria: Preference
Models and Applications to Decision Support (in Polish). Warsaw Univ. Press, Warsaw.

Ogryczak, W. (2000) Inequality Measures and Equitable Approaches to Location Problems,
European Journal of Operational Research, 122, 374–391.

Ogryczak, W. (2001) Comments on Properties of the Minimax Solutions in Goal Program-
ming. European Journal of Operational Research, 132, 17–21.

Ogryczak, W. (2002) Multiple Criteria Optimization and Decisions under Risk. Control and
Cybernetics, 31, 975–1003.
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