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Abstract

The portfolio optimization problem is modeled as a mean-risk bicriteria optimization problem
where the expected return is maximized and some (scalar) risk measure is minimized. In the orig-
inal Markowitz model the risk is measured by the variance while several polyhedral risk measures
have been introduced leading to Linear Programming (LP) computable portfolio optimization models
in the case of discrete random variables represented by their realizations under specified scenarios.
Recently, the second order quantile risk measures have beenintroduced and become popular in fi-
nance and banking. The simplest such measure, now commonly called the Conditional Value at Risk
(CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level. The corresponding
portfolio optimization models can be solved with general purpose LP solvers. However, in the case of
more advanced simulation models employed for scenario generation one may get several thousands
of scenarios. This may lead to the LP model with huge number ofvariables and constraints thus
decreasing the computational efficiency of the model. Actually, the number of constraints (matrix
rows) is proportional to the number of scenarios. while the number of variables (matrix columns) is
proportional to the total of the number of scenarios and the number of instruments. We show that the
computational efficiency can be then dramatically improvedwith an alternative model taking advan-
tages of the LP duality. In the introduced model the number ofstructural constraints (matrix rows) is
proportional to the number of instruments thus not affecting seriously the simplex method efficiency
by the number of scenarios. Moreover, similar reformulation can be applied to more complex quan-
tile risk measures like the Gini’s mean difference and the tail Gini’s measures as well as to the mean
absolute deviation.

Key Words. Risk Measures, Portfolio Optimization, Computability, Linear Programming, Duality,
CVaR, MAD.

1 Introduction

Following Markowitz [12], the portfolio selection problemis modeled as a mean-risk bicriteria optimiza-
tion problem where the expected return is maximized and some(scalar) risk measure is minimized. In
the original Markowitz model the risk is measured by the variance while several polyhedral risk measures
have been introduced leading to Linear Programming (LP) computable portfolio optimization models in
the case of discrete random variables represented by their realizations under specified scenarios. The sim-
plest LP computable risk measures are dispersion measures similar to the variance. Konno and Yamazaki
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[6] presented the portfolio selection model with the mean absolute deviation (MAD). Yitzhaki [27] intro-
duced the mean-risk model using Gini’s mean (absolute) difference as the risk measure. The Gini’s mean
difference turn out to be a special aggregation technique ofthe multiple criteria LP model [16] based on
the pointwise comparison of the absolute Lorenz curves. Thelatter leads the quantile shortfall risk mea-
sures which are more commonly used and accepted. Recently, the second order quantile risk measures
have been introduced in different ways by many authors [2, 5,14, 15, 22]. The measure, usually called
the Conditional Value at Risk (CVaR) or Tail VaR, representsthe mean shortfall at a specified confidence
level. The CVaR measures maximization is consistent with the second degree stochastic dominance [18].
Several empirical analyses confirm its applicability to various financial optimization problems [1, 10].
This paper is focused on computational efficiency of the CVaRand related LP computable portfolio
optimization models.

For returns represented by their realizations underT scenarios the basic LP model for CVaR portfo-
lio optimization containsT auxiliary variables as well asT corresponding linear inequalities. Actually,
the number of structural constraints in the LP model (matrixrows) is proportional to the number of sce-
nariosT , while the number of variables (matrix columns) is proportional to the total of the number of
scenarios and the number of instrumentsT + n. Hence, its dimensionality is proportional to the number
of scenariosT . It does not cause any computational difficulties for a few hundreds of scenarios as in
computational analysis based on historical data. However,in the case of more advanced simulation mod-
els employed for scenario generation one may get several thousands of scenarios [21]. This may lead to
the LP model with huge number of auxiliary variables and constraints thus decreasing the computational
efficiency of the model. Actually, in the case of fifty thousand scenarios and one hundred instruments the
model may require more than half an hour computation time [8]with the state-of-art LP solver (CPLEX
code). We show that the computational efficiency can be then dramatically improved with an alternative
model formulation taking advantages of the LP duality. In the introduced model the number of structural
constraints is proportional to the number of instrumentsn while only the number of variables is propor-
tional to the number of scenariosT thus not affecting so seriously the simplex method efficiency. Indeed,
the computation time is then below 30 seconds.

Moreover, similar reformulation can be applied to the classical LP portfolio optimization model
based on the mean absolute deviation as well as to more complex quantile risk measures. The Tail Gini’s
measures or the Weighted CVaR measures defined as combinations of CVaR measures form tolerance
levels lead to LP models with the number of structural constraints (matrix rows) proportional to the re-
spectively multiplied number of scenariosmT . In the alternative model taking advantages of the LP
duality the number of structural constraints is proportional to the total of the number of instruments and
number of tolerance levelsn+m. This guarantees a high computational efficiency of the dualmodel even
for a very large number of scenarios. The standard LP models for the Gini’s mean difference [27] and its
downside version [7] requireT 2 auxiliary constraints which makes them hard already for medium num-
bers of scenarios, like a few hundred scenarios given by historical data. The models taking advantages
of the LP duality allow one to limit the number of structural constraints making it proportional to the
number of scenariosT thus increasing dramatically computational performancesfor medium numbers
of scenario although still remaining hard for very large numbers of scenarios.
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2 Portfolio Optimization and Risk Measures

The portfolio optimization problem considered in this paper follows the original Markowitz’ formulation
and is based on a single period model of investment. At the beginning of a period, an investor allocates
the capital among various securities, thus assigning a nonnegative weight (share of the capital) to each
security. LetJ = {1, 2, . . . , n} denote a set of securities considered for an investment. Foreach security
j ∈ J , its rate of return is represented by a random variableRj with a given meanµj = E{Rj}.
Further, letx = (xj)j=1,2,...,n denote a vector of decision variablesxj expressing the weights defining
a portfolio. The weights must satisfy a set of constraints torepresent a portfolio. The simplest way of
defining a feasible setP is by a requirement that the weights must sum to one and they are nonnegative
(short sales are not allowed), i.e.

P = {x :

n
∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n} (1)

Hereafter, we perform detailed analysis for the setP given with constraints (1). Although the presented
results can easily be adapted to a general LP feasible set given as a system of linear equations and
inequalities, thus allowing one to include short sales, upper bounds on single shares or portfolio structure
restrictions which may be faced by a real-life investor.

Each portfoliox defines a corresponding random variableRx =
∑n

j=1 Rjxj that represents the
portfolio rate of return while the expected value can be computed asµ(x) =

∑n
j=1 µjxj. We consider

T scenarios with probabilitiespt (wheret = 1, . . . , T ). We assume that for each random variableRj its
realizationrjt under the scenariot is known. Typically, the realizations are derived from historical data
treatingT historical periods as equally probable scenarios (pt = 1/T ). The realizations of the portfolio
returnRx are given asyt =

∑n
j=1 rjtxj .

The portfolio optimization problem is modeled as a mean-risk bicriteria optimization problem where
the meanµ(x) is maximized and the risk measure̺(x) is minimized. In the original Markowitz model,
the standard deviation was used as the risk measure. Severalother risk measures have been later con-
sidered thus creating the entire family of mean-risk models(see [9] and [10]). These risk measures,
similar to the standard deviation, are not affected by any shift of the outcome scale and are equal to 0 in
the case of a risk-free portfolio while taking positive values for any risky portfolio. Unfortunately, such
risk measures are not consistent with the stochastic dominance order [13] or other axiomatic models of
risk-averse preferences [23] and risk measurement [2].

In stochastic dominance, uncertain returns (modeled as random variables) are compared by point-
wise comparison of some performance functions constructedfrom their distribution functions. The
first performance functionF (1)

x is defined as the right-continuous cumulative distributionfunction:
F

(1)
x (η) = Fx(η) = P{Rx ≤ η} and it defines the first degree stochastic dominance (FSD). The

second function is derived from the first asF
(2)
x (η) =

∫ η

−∞
Fx(ξ) dξ and it defines the second degree

stochastic dominance (SSD). We say that portfoliox
′ dominatesx′′ under the SSD(R

x
′ ≻

SSD
R

x
′′), if

F
(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η, with at least one strict inequality. A feasible portfoliox0 ∈ P is calledSSD

efficientif there is nox ∈ P such thatRx ≻
SSD

R
x

0 .
Stochastic dominance relates the notion of risk to a possible failure of achieving some targets. Note

that functionF
(2)
x , used to define the SSD relation, can also be presented as follows [17]: F

(2)
x (η) =

E{max{η−Rx, 0}} and thereby its values are LP computable for returns represented by their realizations
yt.
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When the meanµ(x) is used instead of the fixed target the valueF
(2)
x (µ(x)) defines the risk measure

known as thedownside mean semideviationfrom the mean

δ̄(x) = E{max{µ(x) − Rx, 0}} = F
(2)
x (µ(x)). (2)

The downside mean semideviation is always equal to the upside one and therefore we refer to it here-
after as to the mean semideviation. The mean semideviation is a half of the mean absolute deviation
(MAD) from the mean [17]δ(x) = E{|Rx − µ(x)|} = 2δ̄(x). Hence the corresponding portfo-

lio optimization model is equivalent to the MAD. Sincēδ(x) = F
(2)
x (µ(x)), the mean semideviation

(2) is LP computable (when minimized), for a discrete randomvariable represented by its realiza-
tions yt. Although, due to the use of distribution dependent target value µ(x), the mean semidevi-
ation cannot be directly considered an SSD consistent risk measure. SSD consistency [17] and co-
herency [10] of the MAD model can be achieved with maximization of for complementary risk measure
µδ(x) = µ(x) − δ̄(x) = E{min{µ(x), Rx}}, which also remains LP computable for a discrete random
variable represented by its realizationsyt.

An alternative characterization of the SSD relation can be achieved with the so-calledAbsolute
Lorenz Curves(ALC) [14, 26] which represent the second quantile functions defined as

F
(−2)
x (p) =

∫ p

0
F

(−1)
x (α)dα for 0 < p ≤ 1 and F

(−2)
x (0) = 0, (3)

whereF
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-continuous inverse of the cumulative distribution

functionFx. The pointwise comparison of ALCs is equivalent to the SSD relation [18] in the sense that
R

x
′ �

SSD
R

x
′′ if and only if F (−2)

x
′ (β) ≥ F

(−2)
x
′′ (β) for all 0 < β ≤ 1. Moreover,

F
(−2)
x (β) = max

η∈R

[

βη − F
(2)
x (η)

]

= max
η∈R

[βη − E{max{η − Rx, 0}}] (4)

whereη is a real variable taking the value ofβ-quantileQβ(x) at the optimum. For a discrete random
variable represented by its realizationsyt problem (4) becomes an LP.

For any real tolerance level0 < β ≤ 1, the normalized value of the ALC defined as

Mβ(x) = F
(−2)
x (β)/β (5)

is called theConditional Value-at-Risk (CVaR)or Tail VaR or Average VaR. The CVaR measure is an
increasing function of the tolerance levelβ, with M1(x) = µ(x). For β = 0.5 the CVaR corresponds
to the mean absolute deviation from the median [9], the risk measure suggested by Sharpe [25] as the
right MAD model. For any0 < β < 1, the CVaR measure is SSD consistent [18] and coherent [20].
Due to (4), for a discrete random variable represented by itsrealizationsyt the CVaR measures are LP
computable. It is important to notice that although the quantile risk measures (VaR and CVaR) were
introduced in banking as extreme risk measures for very small tolerance levels (likeβ = 0.05), for the
portfolio optimization good results have been provided by rather larger tolerance levels [10].

Forβ approaching 0, the CVaR measure tends to the Minimax measure

M(x) = min
t=1,...,T

yt (6)

introduced to portfolio optimization by Young [28].
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3 Computational LP Models for Basic Risk Measures

Let us consider portfolio optimization problem with security returns given by discrete random variables
with realizationrjt. Following (4) and (5), the CVaR portfolio optimization model can be formulated as
the following LP problem:

maximize η −
1

β

T
∑

t=1

ptdt

subject to
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt − η +
n

∑

j=1

rjtxj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(7)

whereη is unbounded variable. Except from the core portfolio constraints (1), model (7) containsT
nonnegative variablesdt plus singleη variable andT corresponding linear inequalities. Hence, its di-
mensionality is proportional to the number of scenariosT . Exactly, the LP model containsT + n + 1
variables andT + 1 constraints. It does not cause any computational difficulties for a few hundreds of
scenarios as in several computational analysis based on historical data [11]. However, in the case of more
advanced simulation models employed for scenario generation one may get several thousands of scenar-
ios. This may lead to the LP model (7) with huge number of variables and constraints thus decreasing
the computational efficiency of the model. If the core portfolio constraints contain only linear relations,
like (1), then the computational efficiency can easily be achieved by taking advantages of the LP dual to
model (7). The LP dual model takes the following form:

minimize q

subject to q −

T
∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T
∑

t=1

ut = 1

0 ≤ ut ≤ pt/β for t = 1, . . . , T

(8)

The dual LP model containsT variablesut, but theT constraints corresponding to variablesdt from (7)
take the form of simple upper bounds (SUB) onut thus not affecting the problem complexity. Actually,
the number of constraints in (8) is proportional to the totalof portfolio sizen, thus it is independent from
the number of scenarios. Exactly, there areT +1 variables andn+1 constraints. This guarantees a high
computational efficiency of the dual model even for vary large number of scenarios. Note that introducing
a lower bound on the required expected return in the primal portfolio optimization model (7) result only
in a single additional variable in the dual model (8). Similarly, other portfolio structure requirements are
modeled with rather small number of constraints thus generating small number of additional variables in
the dual model.

We have run computational test on 10 randomly generated testinstances developed by Lim et al.
[8]. They were originally generated from a multivariate normal distribution for 50 securities with the
number of scenarios 50,000 just providing an adequate approximation to the underlying unknown con-
tinuous price distribution. Scenarios were generated using the Triangular Factorization Method [24] as
recommended in [3]. All computations were performed on a PC with the Pentium 4 2.6GHz processor
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and 1GB RAM employing the simplex code of the CPLEX 9.1 package. An attempt to solve the primal
model (7) resulted in 2600 seconds of computation (much morethan reported in [8]). On the other hand,
the dual models (8) were solved in 14.3 to 27.7 CPU seconds on average, depending on the tolerance
level (see Table 1).

Table 1: Computational times (in seconds) for the dual CVaR model (averages of 10 instances with
50,000 scenarios)

Tolerance levelβ 0.05 0.1 0.2 0.3 0.4 0.5
CPU time 14.3 18.7 23.6 26.4 27.4 27.7

The Min-max Portfolio optimization model representing a limiting CVaR model forβ tending to 0 is
even simpler than the general CVaR model. It can be written asthe following LP problem:

maximize η

subject to
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

−η +

n
∑

j=1

rjtxj ≥ 0, for t = 1, . . . , T

(9)

Except from the portfolio weightsxj, the model contains only one additional variableη. Nevertheless,
it still containsT linear inequalities in addition to the core constraints (1). Hence, its dimensionality is
(T + 1) × (n + 1). The LP dual model takes then the following form:

minimize q

subject to q −

T
∑

t=1

rjtut ≥ 0 for j = 1, . . . , n

T
∑

t=1

ut = 1

ut ≥ 0 for t = 1, . . . , T

(10)

with dimensionality(n + 1) × (T + 1). This guarantees a high computational efficiency of the dual
model even for vary large number of scenarios. Comparing themodel to the dual CVaR model (8) one
may notice that upper bounds are skipped. Indeed, the upper boundspt/β tend to the infinity withβ
approaching 0. Similar to the CVaR model, introducing a lower bound on the required expected return in
the primal portfolio optimization model (9) result only in asingle additional variable in the dual model
(10).

The Min-max models are computationally very easy. Running computational test on 10 randomly
generated test instances of 50 securities with the number ofscenarios 50,000 we were able to solve the
dual model (10) in 3.5 seconds on average. Actually, even theprimal model (9) could be solved in 7.1
seconds on average, despite its huge number of constraints.

The standard MAD model [6], when implemented with the mean semideviation as the risk measure
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(δ̄(x) = E{max{µ(x) − Rx, 0}}), leads to the following LP problem:

maximize −

T
∑

t=1

ptdt

subject to
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt −

n
∑

j=1

(µj − rjt)xj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(11)

where nonnegative variablesdt represent downside deviations from the mean under several scenariost.
The above LP formulation, similar to the CVaR model (7), usesT + n variables andT + 1 constraints to
model the mean semideviation. The LP dual model takes then the following form:

minimize q

subject to q +

T
∑

t=1

(µj − rjt)ut ≥ 0 for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T

(12)

with dimensionalityn× (T + 1) which guarantees the high computational efficiency even forvary large
number of scenarios.

The SSD consistent and coherent MAD model with complementary risk measure (µδ(x) = µ(x) −
δ̄(x) = E{min{µ(x), Rx}}), leads to the following LP problem:

maximize
n

∑

j=1

µjxj −

T
∑

t=1

ptdt

subject to
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dt −
n

∑

j=1

(µj − rjt)xj ≥ 0, dt ≥ 0 for t = 1, . . . , T

(13)

where nonnegative variablesdt represent downside deviations from the mean under several scenariost.
The above LP formulation, similar to the CVaR model (7), usesT + n variables andT + 1 constraints to
model the mean semideviation. The LP dual model takes then the following form:

minimize q

subject to q +
T

∑

t=1

(µj − rjt)ut ≥ µj for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T

(14)

with dimensionalityn× (T + 1) which guarantees the high computational efficiency even forvary large
number of scenarios. Indeed, the 10 test problems of 50 securities with the number of scenarios 50,000
we were able to solve the dual model (14) in 25.3 seconds on average.
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4 Gini’s Mean Difference and Related Models

Yitzhaki [27] introduced the GMD portfolio optimization model using Gini’s mean (absolute) difference
as risk measure. TheGini’s mean difference(GMD) is given asΓ(x) = 1

2

∫ ∫

|η − ξ|dFx(η)dFx(ξ)
although several alternative formulae exist. For a discrete random variable represented by its realizations
yt, the measureΓ(x) =

∑T
t′=1

∑

t′′ 6=t′−1 max{yt′ − yt′′ , 0}pt′pt′′ is LP computable (when minimized)
leading to the following portfolio optimization model:

max −
T

∑

t=1

∑

t′ 6=t

ptpt′dtt′

s.t.
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dtt′ ≥

n
∑

j=1

rjtxj −

n
∑

j=1

rjt′xj, dtt′ ≥ 0 for t, t′ = 1, . . . , T ; t 6= t′

(15)

which containsT (T − 1) nonnegative variablesdtt′ andT (T − 1) inequalities to define them. This
generate a huge LP problem even for the historical data case where the number of scenarios is 100 or 200.
Actually, as shown with the earlier experiments [7], the CPUtime of 7 seconds on average forT = 52
has increased to above 30 sec. withT = 104 and even more than 180 sec. forT = 156. However,
similar to the CVaR models, variablesdtt′ are associated with the singleton coefficient columns. Hence,
while solving the dual instead of the original primal, the corresponding dual constraints take the form of
simple upper bounds (SUB) which are handled implicitly outside the LP matrix. For the simplest form
of the feasible set (1) the dual GMD model takes the followingform:

min v

s.t. v −

T
∑

t=1

∑

t′ 6=t

(rjt − rjt′)utt′ ≥ 0 for j = 1, . . . , n

0 ≤ utt′ ≤ ptpt′ for t, t′ = 1, . . . , T ; t 6= t′

(16)

where original portfolio variablesxj are dual prices to the inequalities. The dual model containsT (T−1)
variablesutt′ but the number of constraints (excluding the SUB structure)n + 1 is proportional to the
number of securities. The above dual formulation can be further simplified by introducing variables:

ūtt′ = utt′ − ut′t for for t, t′ = 1, . . . , T ; t < t′ (17)

which allows us to reduce the number of variables toT (T − 1)/2 by replacing (16) with the following:

min v

s.t. v −

T
∑

t=1

∑

t′>t

(rjt − rjt′)ūtt′ ≥ 0 for j = 1, . . . , n

−ptpt′ ≤ ūtt′ ≤ ptpt′ for t, t′ = 1, . . . , T ; t < t′

(18)

Such a dual approach may dramatically improve the LP model efficiency in the case of larger number
of scenarios. Actually, as shown with the earlier experiments [7], the above dual formulations let us
to reduce the optimization time below 10 seconds forT = 104 andT = 156. Nevertheless, the case
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of really large number of scenarios still may cause computational difficulties, due to huge number of
variables (T (T − 1)/2). This may require some column generation techniques [4] ornondifferentiable
optimization algorithms [8].

As shown by Yitzhaki [27] for the SSD consistency of the GMD model one needs to maximize the
complementary measure

µΓ(x) = µ(x) − Γ(x) = E{Rx ∧ Rx} (19)

where the cumulative distribution function ofRx ∧ Rx for any η ∈ R is given asFx(η)(2 − Fx(η)).
Hence, (19) is the expectation of the minimum of two independent identically distributed random vari-
ables (i.i.d.r.v.) Rx [27] thus representing themean worse return. This provides us with another LP
model although it is not more compact than that of (15) and itsdual (16). Alternatively, the GMD may
be expressed with integral of the absolute Lorenz curve as

Γ(x) = 2

∫ 1

0
(αµ(x) − F

(−2)
x (α))dα = 2

∫ 1

0
α(µ(x) − Mα(x))dα

and respectively

µΓ(x) = µ(x) − Γ(x) = 2

∫ 1

0
F

(−2)
x (α)dα = 2

∫ 1

0
αMα(x)dα (20)

thus combining all the CVaR measures. In order to enrich the modeling capabilities, one may treat
differently some more or less extreme events. In order to model downside risk aversion, instead of the
Gini’s mean difference, thetail Gini’s measure [18, 19] can be used:

µΓβ
(x) = µ(x) −

2

β2

β
∫

0

(µ(x)α − F
(−2)
x (α))dα =

2

β2

β
∫

0

F
(−2)
x (α)dα (21)

In the simplest case of equally probableT scenarios withpt = 1/T (historical data forT periods),
the tail Gini’s measure forβ = K/T may be expressed as the weighted combination of CVaRsMβk

(x)
with tolerance levelsβk = k/T for k = 1, 2, . . . ,K and properly defined weights [19]. In a general case,
we may resort to an approximation based on some reasonably chosen gridβk, k = 1, . . . ,m and weights
wk expressing the corresponding trapezoidal approximation of the integral in the formula (21). Exactly,
for any0 < β ≤ 1, while using the grid ofm tolerance levels0 < β1 < . . . < βk < . . . < βm = β one
may define weights:

wk =
(βk+1 − βk−1)βk

β2
, for k = 1, . . . ,m − 1, and wm =

β − βm−1

β
(22)

whereβ0 = 0. This leads us to the Weighted CVaR (WCVaR) measure [11] defined as

M
(m)
w (x) =

m
∑

k=1

wkMβk
(x),

m
∑

k=1

wk = 1, wk > 0 for k = 1, . . . ,m (23)

We emphasize that despite being only an approximation to (21), any WCVaR measure itself is a well
defined LP computable measure with guaranteed SSD consistency and coherency, as a combination of
the CVaR measures. Hence, it needs not to be built on a very dense grid to provide proper modeling
of risk averse preferences. While analyzed on the real-lifedata from the Milan Stock Exchange the
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weighted CVaR models have usually performed better than theGMD itself, the Minimax or the extremal
CVaR models [11].

Here we analyze only computational efficiency of the LP models representing the WCVaR portfolio
optimization. For returns represented by their realizations we get the following LP optimization problem:

max

m
∑

k=1

wkηk −

m
∑

k=1

wk

βk

T
∑

t=1

ptdtk

s.t.
n

∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n

dtk − ηk +

n
∑

j=1

rjtxj ≥ 0, dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . ,m

(24)

whereηk (for k = 1, . . . ,m) are unbounded variables taking the values of the correspondingβk-quantiles
(in the optimal solution). Except from the core portfolio constraints (1), model (24) containsT nonneg-
ative variablesdtk and T corresponding linear inequalities for eachk. Hence, its dimensionality is
proportional to the number of scenariosT and to the number of tolerance levelsm. Exactly, the LP
model containsm × T + n variables andm × T + 1 constraints. It does not cause any computational
difficulties for a few hundreds of scenarios and a few tolerance levels, as in our computational analysis
based on historical data. However, in the case of more advanced simulation models employed for sce-
nario generation one may get several thousands of scenarios. This may lead to the LP model (24) with
huge number of variables and constraints thus decreasing the computational efficiency of the model. If
the core portfolio constraints contain only linear relations, like (1), then the computational efficiency can
easily be achieved by taking advantages of the LP dual to model (24). The LP dual model takes the
following form:

minimize q

subject to q −

T
∑

t=1

rjt

m
∑

k=1

utk ≥ 0 for j = 1, . . . , n

T
∑

t=1

utk = wk for k = 1, . . . ,m

0 ≤ utk ≤ ptwk/βk for t = 1, . . . , T ; k = 1, . . . ,m

(25)

The dual LP model containsm×T variablesutk, but them×T constraints corresponding to variablesdtk

from (24) take the form of simple upper bounds (SUB) onutk thus not affecting the problem complexity.
Actually, the number of constraints in (25) is proportionalto the total of portfolio sizen and the number
of tolerance levelsm, thus it is independent from the number of scenarios. Exactly, there arem× T + 1
variables andm + n constraints. This guarantees a high computational efficiency of the dual model
even for very large number of scenarios. Similar to the CVaR model, introducing a lower bound on the
required expected return in the primal portfolio optimization model (24) result only in a single additional
variable in the dual model (25).

We have tested computational efficiency of the dual model (25) using the same 10 randomly gener-
ated test instances [8] as for testing the CVaR models. Recall that they were originally generated from a
multivariate normal distribution for 50 securities with the number of scenarios 50,000. Form = 3 with
tolerance levelsβ1 = 0.1, β2 = 0.25, β3 = 0.5 and weightsw1 = 0.1, w2 = 0.4 andw3 = 0.5, thus
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representing the parameters leading to good results on reallife data [11], the dual model (25) was solved
in 123.2 seconds on average. Form = 5 with uniformly distributed tolerance levelsβ1 = 0.1, β2 = 0.2,
β3 = 0.3, β4 = 0.4, β5 = 0.5 and weights defined according to (22) the dual model was solved in 296.2
seconds on average The corresponding primal models could not be solved in one hour computations.

5 Concluding Remarks

The classical Markowitz model uses the variance as the risk measure, thus resulting in a quadratic op-
timization problem. There were introduced several alternative risk measures which are computationally
attractive as (for discrete random variables) they result in solving linear programming (LP) problems.
The LP solvability is very important for applications to real-life financial decisions where the constructed
portfolios have to meet numerous side constraints and take into account transaction costs. A gamut of
LP computable risk measures has been presented in the portfolio optimization literature although most
of them are related to the absolute Lorenz curve and thereby the CVaR measures. We have shown that
all the risk measures used in the LP solvable portfolio optimization models can be derived from the SSD
shortfall criteria. This allows to guarantee their SSD consistency for any distribution of outcomes.

The corresponding portfolio optimization models can be solved with general purpose LP solvers.
However, in the case of more advanced simulation models employed for scenario generation one may
get several thousands of scenarios. This may lead to the LP model with huge number of variables
and constraints thus decreasing the computational efficiency of the model. For the CVaR model, the
number of constraints (matrix rows) is proportional to the number of scenarios. while the number of
variables (matrix columns) is proportional to the total of the number of scenarios and the number of
instruments. We have shown that the computational efficiency can be then dramatically improved with an
alternative model taking advantages of the LP duality. In the introduced model the number of structural
constraints (matrix rows) is proportional to the number of instruments thus not affecting seriously the
simplex method efficiency by the number of scenarios and resulting in computation times below 30
seconds. Moreover, similar reformulation can be applied tomore complex quantile risk measures like
the Gini’s mean difference and the tail Gini’s measures as well as to the mean absolute deviation.
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