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Abstract

The portfolio optimization problem is modeled as a meak-bigriteria optimization problem
where the expected return is maximized and some (scal&rjméssure is minimized. In the orig-
inal Markowitz model the risk is measured by the variancelevbeveral polyhedral risk measures
have been introduced leading to Linear Programming (LP)adable portfolio optimization models
in the case of discrete random variables represented hyrdadizations under specified scenarios.
Recently, the second order quantile risk measures haveibgeduced and become popular in fi-
nance and banking. The simplest such measure, now commualtéd the Conditional Value at Risk
(CVaR) or Tail VaR, represents the mean shortfall at a spebdonfidence level. The corresponding
portfolio optimization models can be solved with generapmse LP solvers. However, in the case of
more advanced simulation models employed for scenariorggoe one may get several thousands
of scenarios. This may lead to the LP model with huge numbemadfbles and constraints thus
decreasing the computational efficiency of the model. Abtuthe number of constraints (matrix
rows) is proportional to the number of scenarios. while tamhber of variables (matrix columns) is
proportional to the total of the number of scenarios and thmlrer of instruments. We show that the
computational efficiency can be then dramatically improwét an alternative model taking advan-
tages of the LP duality. In the introduced model the numbstroictural constraints (matrix rows) is
proportional to the number of instruments thus not affectiariously the simplex method efficiency
by the number of scenarios. Moreover, similar reformutatian be applied to more complex quan-
tile risk measures like the Gini's mean difference and tllé3mi’'s measures as well as to the mean
absolute deviation.

Key Words. Risk Measures, Portfolio Optimization, Computability,near Programming, Duality,
CVaR, MAD.

1 Introduction

Following Markowitz [12], the portfolio selection probleisimodeled as a mean-risk bicriteria optimiza-
tion problem where the expected return is maximized and gso®ar) risk measure is minimized. In
the original Markowitz model the risk is measured by theasace while several polyhedral risk measures
have been introduced leading to Linear Programming (LP)pzeaable portfolio optimization models in
the case of discrete random variables represented by #adizations under specified scenarios. The sim-
plest LP computable risk measures are dispersion measoniéar $o the variance. Konno and Yamazaki
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[6] presented the portfolio selection model with the measollie deviation (MAD). Yitzhaki [27] intro-
duced the mean-risk model using Gini’'s mean (absolutegmdiffce as the risk measure. The Gini's mean
difference turn out to be a special aggregation techniqukeomultiple criteria LP model [16] based on
the pointwise comparison of the absolute Lorenz curves.|dter leads the quantile shortfall risk mea-
sures which are more commonly used and accepted. Recémtlgetond order quantile risk measures
have been introduced in different ways by many authors [24515, 22]. The measure, usually called
the Conditional Value at Risk (CVaR) or Tail VaR, represeghtsmean shortfall at a specified confidence
level. The CVaR measures maximization is consistent witstttond degree stochastic dominance [18].
Several empirical analyses confirm its applicability toieas financial optimization problems [1, 10].
This paper is focused on computational efficiency of the C¥al related LP computable portfolio
optimization models.

For returns represented by their realizations uAdscenarios the basic LP model for CVaR portfo-
lio optimization containg” auxiliary variables as well &6 corresponding linear inequalities. Actually,
the number of structural constraints in the LP model (matrixs) is proportional to the number of sce-
narios7’, while the number of variables (matrix columns) is propmrél to the total of the number of
scenarios and the number of instrumerits- n. Hence, its dimensionality is proportional to the number
of scenariosI'. It does not cause any computational difficulties for a fewdreds of scenarios as in
computational analysis based on historical data. Howavéne case of more advanced simulation mod-
els employed for scenario generation one may get sevenasdimols of scenarios [21]. This may lead to
the LP model with huge number of auxiliary variables and taitgts thus decreasing the computational
efficiency of the model. Actually, in the case of fifty thoudastenarios and one hundred instruments the
model may require more than half an hour computation timevj8j the state-of-art LP solver (CPLEX
code). We show that the computational efficiency can be th@matically improved with an alternative
model formulation taking advantages of the LP duality. kithtroduced model the number of structural
constraints is proportional to the number of instrumentsghile only the number of variables is propor-
tional to the number of scenari@sthus not affecting so seriously the simplex method effigiehtdeed,
the computation time is then below 30 seconds.

Moreover, similar reformulation can be applied to the dtzdsLP portfolio optimization model
based on the mean absolute deviation as well as to more cooydatile risk measures. The Tail Gini's
measures or the Weighted CVaR measures defined as combsafi€VVaR measures fon tolerance
levels lead to LP models with the number of structural camsts (matrix rows) proportional to the re-
spectively multiplied number of scenariasl’. In the alternative model taking advantages of the LP
duality the number of structural constraints is propordicio the total of the number of instruments and
number of tolerance levels+m. This guarantees a high computational efficiency of the chaalel even
for a very large number of scenarios. The standard LP modeteé Gini’'s mean difference [27] and its
downside version [7] requir&? auxiliary constraints which makes them hard already foriomachum-
bers of scenarios, like a few hundred scenarios given byrital data. The models taking advantages
of the LP duality allow one to limit the number of structuranstraints making it proportional to the
number of scenario®’ thus increasing dramatically computational performarfoesnedium numbers
of scenario although still remaining hard for very large iens of scenarios.
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2 Portfolio Optimization and Risk Measures

The portfolio optimization problem considered in this pajeiows the original Markowitz’ formulation
and is based on a single period model of investment. At thanbimy of a period, an investor allocates
the capital among various securities, thus assigning aagative weight (share of the capital) to each
security. Let/ = {1,2,...,n} denote a set of securities considered for an investmeneder security

Jj € J, its rate of return is represented by a random varia@®jewith a given meary; = E{R;}.
Further, letx = (z;);=1,2,...» denote a vector of decision variables expressing the weights defining
a portfolio. The weights must satisfy a set of constrainteefwresent a portfolio. The simplest way of
defining a feasible sé® is by a requirement that the weights must sum to one and tleegamegative
(short sales are not allowed), i.e.

P:{X:ijzl, x; >0 forj=1,...,n} @
=1

Hereafter, we perform detailed analysis for theBagiven with constraints (1). Although the presented
results can easily be adapted to a general LP feasible seth gis a system of linear equations and
inequalities, thus allowing one to include short salesgumounds on single shares or portfolio structure
restrictions which may be faced by a real-life investor.

Each portfoliox defines a corresponding random varialllg = 2?21 Rjz; that represents the
portfolio rate of return while the expected value can be oot asu(x) = Z;‘:l w;x;. We consider
T scenarios with probabilities; (wheret = 1,...,T). We assume that for each random variakleits
realizationr;; under the scenaribis known. Typically, the realizations are derived from oigtal data
treating’ historical periods as equally probable scenarjgs< 1/T"). The realizations of the portfolio
return Ry are given ag; = Z;‘:l (ST

The portfolio optimization problem is modeled as a meak-bisriteria optimization problem where
the meanu(x) is maximized and the risk measuséx) is minimized. In the original Markowitz model,
the standard deviation was used as the risk measure. Seteealrisk measures have been later con-
sidered thus creating the entire family of mean-risk modse¢ée [9] and [10]). These risk measures,
similar to the standard deviation, are not affected by aiify shthe outcome scale and are equal to 0 in
the case of a risk-free portfolio while taking positive v@dufor any risky portfolio. Unfortunately, such
risk measures are not consistent with the stochastic doroénarder [13] or other axiomatic models of
risk-averse preferences [23] and risk measurement [2].

In stochastic dominance, uncertain returns (modeled atorarvariables) are compared by point-
wise comparison of some performance functions construfttad their distribution functions. The
first performance functiorF,El) is defined as the right-continuous cumulative distributfanction:
F,El)(n) = Fx(n) = P{Rx < n} and it defines the first degree stochastic dominance (FSDB¥. Th

second function is derived from the first &% (n) = [ Fx(€) d¢ and it defines the second degree
stochastic dominance (SSD). We say that portfalidominatesx” under the SSRRy >, Rx~), if
F)E,z) (n) < F,E,z,) (n) for all n, with at least one strict inequality. A feasible portfok8 € P is calledSSD
efficientif there is nox € P such thatRy >, Ryo.

Stochastic dominance relates the notion of risk to a pasédilure of achieving some targets. Note
that functionF,Ez), used to define the SSD relation, can also be presented es$diL7]: F,EQ) (n) =
E{max{n— Rx,0}} and thereby its values are LP computable for returns repreddy their realizations

Yt-
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When the meap(x) is used instead of the fixed target the valgé (1(x)) defines the risk measure
known as thelownside mean semideviatitlm the mean

5(x) = E{max{u(x) - Rx,0}} = F (u(x)). 2)

The downside mean semideviation is always equal to the esie and therefore we refer to it here-
after as to the mean semideviation. The mean semideviaianhialf of the mean absolute deviation
(MAD) from the mean [17]6(x) = E{|Rx — u(x)|} = 25(x). Hence the corresponding portfo-

lio optimization model is equivalent to the MAD. Sinééx) = £ (1(x)), the mean semideviation
(2) is LP computable (when minimized), for a discrete randeariable represented by its realiza-
tions y;. Although, due to the use of distribution dependent targdtie/.(x), the mean semidevi-
ation cannot be directly considered an SSD consistent risasore. SSD consistency [17] and co-
herency [10] of the MAD model can be achieved with maxim@atf for complementary risk measure
ps(x) = p(x) — 6(x) = E{min{u(x), Rx}}, which also remains LP computable for a discrete random
variable represented by its realizatiaps

An alternative characterization of the SSD relation can ti@exved with the so-calledbsolute
Lorenz CurvegALC) [14, 26] which represent the second quantile functidefined as

P
FSP(p) = / FY(@)da foro<p<1 and EC2(0) =0, (3)
0

whereF,ﬁ_l)(p) = inf {n : Fx(n) > p} is the left-continuous inverse of the cumulative distribat
function Fy. The pointwise comparison of ALCs is equivalent to the SSBti@n [18] in the sense that

Ry >, Ry if and only if F}E,_m B) = F,Eiz) (6) forall0 < 3 < 1. Moreover,
B (8) = a0 — B ()| = ma (90— E{max{n = R, 0} )

wheren is a real variable taking the value GfquantileQ(x) at the optimum. For a discrete random
variable represented by its realizatiapgroblem (4) becomes an LP.
For any real tolerance levél< 3 < 1, the normalized value of the ALC defined as

Mjs(x) = B 2(8)/8 5)

is called theConditional Value-at-Risk (CVaR) Tail VaR or Average VaR. The CVaR measure is an
increasing function of the tolerance levglwith M;(x) = p(x). For 3 = 0.5 the CVaR corresponds
to the mean absolute deviation from the median [9], the riglasure suggested by Sharpe [25] as the
right MAD model. For any0 < § < 1, the CVaR measure is SSD consistent [18] and coherent [20].
Due to (4), for a discrete random variable represented lng#kzationsy, the CVaR measures are LP
computable. It is important to notice that although the gilmmisk measures (VaR and CVaR) were
introduced in banking as extreme risk measures for veryldwniarance levels (likes = 0.05), for the
portfolio optimization good results have been provideddther larger tolerance levels [10].

For 5 approaching 0, the CVaR measure tends to the Minimax measure

M(x) = min g, (6)

introduced to portfolio optimization by Young [28].
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3 Computational LP Models for Basic Risk Measures

Let us consider portfolio optimization problem with setyrieturns given by discrete random variables
with realizationr;;. Following (4) and (5), the CVaR portfolio optimization melatan be formulated as
the following LP problem:

T
.. 1
maximize n — = Zptdt
P
n
subjectto » w;=1, ;>0 forj=1,...n )
=

n
dy—n+> rpr;>0,d >0 fort=1,...,T
j=1

wheren is unbounded variable. Except from the core portfolio aaists (1), model (7) contain®
nonnegative variableg; plus singlern variable andl’ corresponding linear inequalities. Hence, its di-
mensionality is proportional to the number of scenafibsExactly, the LP model contairiE + n + 1
variables and” + 1 constraints. It does not cause any computational diffiesitfor a few hundreds of
scenarios as in several computational analysis basedtonités data [11]. However, in the case of more
advanced simulation models employed for scenario geoeratie may get several thousands of scenar-
ios. This may lead to the LP model (7) with huge number of Vdeis and constraints thus decreasing
the computational efficiency of the model. If the core pditfaonstraints contain only linear relations,
like (1), then the computational efficiency can easily baeaad by taking advantages of the LP dual to
model (7). The LP dual model takes the following form:

minimize ¢

T
subjectto g — Y rju >0 forj=1,...,n

T t=1 (8)
St
t=1

0<wu <p/p fort=1,...,T

The dual LP model contairig variablesu,, but theT" constraints corresponding to variabtgsgrom (7)
take the form of simple upper bounds (SUB)®@nthus not affecting the problem complexity. Actually,
the number of constraints in (8) is proportional to the tofglortfolio sizen, thus it is independent from
the number of scenarios. Exactly, there &re 1 variables andh + 1 constraints. This guarantees a high
computational efficiency of the dual model even for varyéamgmber of scenarios. Note that introducing
a lower bound on the required expected return in the primafgim optimization model (7) result only
in a single additional variable in the dual model (8). Simiylaother portfolio structure requirements are
modeled with rather small number of constraints thus gdingramall number of additional variables in
the dual model.

We have run computational test on 10 randomly generatednstsinces developed by Lim et al.
[8]. They were originally generated from a multivariate mait distribution for 50 securities with the
number of scenarios 50,000 just providing an adequate gimpation to the underlying unknown con-
tinuous price distribution. Scenarios were generatedgusia Triangular Factorization Method [24] as
recommended in [3]. All computations were performed on a R@ the Pentium 4 2.6GHz processor

5
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and 1GB RAM employing the simplex code of the CPLEX 9.1 paekan attempt to solve the primal
model (7) resulted in 2600 seconds of computation (much tihare reported in [8]). On the other hand,
the dual models (8) were solved in 14.3 to 27.7 CPU secondvenage, depending on the tolerance
level (see Table 1).

Table 1. Computational times (in seconds) for the dual CVaRieh (averages of 10 instances with

50,000 scenarios)
ToleranceleveB | 0.05 01 02 03 04 05

CPU time ‘14.3 18.7 236 264 274 27.7

The Min-max Portfolio optimization model representingraiting CVaR model for3 tending to 0 is
even simpler than the general CVaR model. It can be writteheafollowing LP problem:

maximize n
n

subjectto Y “z;=1, z; >0 forj=1,...,n
= )

n
—77—|—ZT‘jt:L'j20, fort=1,...,T
j=1

Except from the portfolio weights;, the model contains only one additional variableNevertheless,
it still containsT’ linear inequalities in addition to the core constraints @gnce, its dimensionality is
(T 4+ 1) x (n+ 1). The LP dual model takes then the following form:
minimize ¢
T
subjectto ¢ — ertut >0 forj=1,...,n
=1 (10)

T
Z’U,t =1
t=1

u >0 fort=1,...,T

with dimensionality(n + 1) x (7" + 1). This guarantees a high computational efficiency of the dual
model even for vary large number of scenarios. Comparingrtbéel to the dual CVaR model (8) one
may notice that upper bounds are skipped. Indeed, the ugperdsp, /S tend to the infinity withj
approaching 0. Similar to the CVaR model, introducing a Ilola@.ind on the required expected return in
the primal portfolio optimization model (9) result only irsangle additional variable in the dual model
(10).

The Min-max models are computationally very easy. Runnimgutational test on 10 randomly
generated test instances of 50 securities with the numbssesfarios 50,000 we were able to solve the
dual model (10) in 3.5 seconds on average. Actually, evemptingal model (9) could be solved in 7.1
seconds on average, despite its huge number of constraints.

The standard MAD model [6], when implemented with the meamnideviation as the risk measure
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(0(x) = E{max{u(x) — Rx,0}}), leads to the following LP problem:

T
maximize — Zptdt

=
subjectto Y z;=1, z; >0 forj=1,...,n (11)
=
dt—Z(,uj—’l"jt)fL'j >0,d, >0 fort=1,...,T
=1

where nonnegative variabléds represent downside deviations from the mean under seveahs0<.
The above LP formulation, similar to the CVaR model (7), uBesn variables and” + 1 constraints to
model the mean semideviation. The LP dual model takes treefottowing form:

minimize ¢

T
subject to q—|—Z(,uj—rjt)ut20 forj=1,....n (12)
t=1
0§ut§pt fOI’tZI,...,T

with dimensionalityn x (T + 1) which guarantees the high computational efficiency evendoy large
number of scenarios.

The SSD consistent and coherent MAD model with complemenisk measures(x) = u(x) —
§(x) = E{min{u(x), Rx}}), leads to the following LP problem:

n T
maximize Y pjaz; — > pidy
=1

j=1
subjectto Y “z;=1, z; >0 forj=1,...,n (13)

j=1

dt—Z(,uj—rjt)ijO, dg>0 fort=1,....T

j=1

where nonnegative variablés represent downside deviations from the mean under sevaahg0st.
The above LP formulation, similar to the CVaR model (7), uBesn variables and” + 1 constraints to
model the mean semideviation. The LP dual model takes thefottowing form:

minimize ¢

T
subjectto g+ Y (p; —rj)uy > p; forj=1,....n (14)
=1
0§ut§pt fortzl,...,T

with dimensionalityn x (T + 1) which guarantees the high computational efficiency evendoy large
number of scenarios. Indeed, the 10 test problems of 50ieswwith the number of scenarios 50,000
we were able to solve the dual model (14) in 25.3 seconds aagee
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4 Gini's Mean Difference and Related Models

Yitzhaki [27] introduced the GMD portfolio optimization rdel using Gini's mean (absolute) difference
as risk measure. Th@ini's mean differencéGMD) is given asl'(x) = 1 [ [ |n — &|dFx(n)dFx(€)
although several alternative formulae exist. For a disar@hdom variable represented by its realizations
yt, the measuré' (x) = ZT,zl > p—y max{yy — yur, 0}pypyr is LP computable (when minimized)
leading to the following portfolio optimization model:

T
max —Z Zptpt’dtt’

t=1 t'#t
n
st. Y zyj=1, 2;>0 forj=1,....n (15)
j=1

n

n
dyyr > ertmj — ert/xj, dy >0 fort,t' =1,...,T; t#t
j=1 =1

which containsT'(T' — 1) nonnegative variabled,y and T (T — 1) inequalities to define them. This
generate a huge LP problem even for the historical data casesvthe number of scenarios is 100 or 200.
Actually, as shown with the earlier experiments [7], the Cithe of 7 seconds on average fbr= 52
has increased to above 30 sec. with= 104 and even more than 180 sec. fBr= 156. However,
similar to the CVaR models, variabldg, are associated with the singleton coefficient columns. Eenc
while solving the dual instead of the original primal, theresponding dual constraints take the form of
simple upper bounds (SUB) which are handled implicitly @éghe LP matrix. For the simplest form
of the feasible set (1) the dual GMD model takes the followfiomgn:

min v
T

st v— Z Z(rjt —rjp)uw >0 forj=1,...,n (16)
t=1 1/t

0 < uw < pepy fort,t’:l,...,T;t;&t’

where original portfolio variables; are dual prices to the inequalities. The dual model contA{f15-1)
variablesu,s but the number of constraints (excluding the SUB structure) 1 is proportional to the
number of securities. The above dual formulation can bééursimplified by introducing variables:

Uy = ugy — uyy for  for t, t = 1,....T5t < t (17)
which allows us to reduce the number of variableg't@ — 1) /2 by replacing (16) with the following:
min v
T
st v-— Z Z(rjt —rjp)uy >0 forj=1,...,n (18)
t=1 t/>t
—pipy < Uy <pepp fort ' =1, Tt <t

Such a dual approach may dramatically improve the LP modieieicy in the case of larger number
of scenarios. Actually, as shown with the earlier experitedii], the above dual formulations let us
to reduce the optimization time below 10 secondsfo= 104 andT = 156. Nevertheless, the case

8
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of really large number of scenarios still may cause comjartat difficulties, due to huge number of
variables T'(T — 1)/2). This may require some column generation techniques [4padifferentiable
optimization algorithms [8].
As shown by Yitzhaki [27] for the SSD consistency of the GMDdabone needs to maximize the
complementary measure
NF(X) = M(X) - F(X) = E{Rx A Rx} (19)

where the cumulative distribution function & A Ry for anyn € R is given asFx(n)(2 — Fx(n)).
Hence, (19) is the expectation of the minimum of two indegenddentically distributed random vari-
ables (i.i.d.r.v.) Ry [27] thus representing thenean worse return This provides us with another LP
model although it is not more compact than that of (15) andutsl (16). Alternatively, the GMD may
be expressed with integral of the absolute Lorenz curve as

1 1
P(x) =2 /0 (ap(x) — FE2 (a))da = 2 /0 a(j1(x) — My (x))da

and respectively

1 1

1 (x) = pu(x) — T(x) = 2 / F(a)da = 2 / oM, (x)da (20)
0 0

thus combining all the CVaR measures. In order to enrich tbeealing capabilities, one may treat

differently some more or less extreme events. In order toghddwnside risk aversion, instead of the

Gini’'s mean difference, th&il Gini's measure [18, 19] can be used:

B B
e, = n(x) = 5 [ (nlx)a = B @))da = = [ B a)da (21)

0 0

In the simplest case of equally probafilescenarios witlp; = 1/T (historical data fofl" periods),
the tail Gini's measure fof = K /T may be expressed as the weighted combination of CVERSx)
with tolerance levelg, = k/T for k = 1,2, ..., K and properly defined weights [19]. In a general case,
we may resort to an approximation based on some reasonaidemlyrids,, £ = 1, ..., m and weights
wy, expressing the corresponding trapezoidal approximatidheointegral in the formula (21). Exactly,
forany0 < g < 1, while using the grid ofn tolerance level® < 6; < ... < B < ... < B, = f0ne
may define weights:

wp = Dt = BB g 1 and awy, = DOt 22)

B g
where(y = 0. This leads us to the Weighted CVaR (WCVaR) measure [11] eéfas

Mévm)(x) = ZwkMﬁk(X)7 Zwk =1, wpy>0 fork=1,...,m (23)
k=1 k=1

We emphasize that despite being only an approximation tj gy WCVaR measure itself is a well
defined LP computable measure with guaranteed SSD corwsisteinl coherency, as a combination of
the CVaR measures. Hence, it needs not to be built on a vesedgid to provide proper modeling
of risk averse preferences. While analyzed on the realdéfa from the Milan Stock Exchange the

9
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weighted CVaR models have usually performed better thaMPB itself, the Minimax or the extremal
CVaR models [11].

Here we analyze only computational efficiency of the LP medepresenting the WCVaR portfolio
optimization. For returns represented by their realizegtiove get the following LP optimization problem:

m m T
W
max E wknk—E 6—§ Dedyk
k=1 R =)

n
st. Y =1, z;20 forj=1,...,n (24)
j=1
n
dy — e+ Y _rjew; 20, dye >0 fort=1,.... Ty k=1,...,m
j=1
wheren, (for k = 1,...,m) are unbounded variables taking the values of the correlpgi,-quantiles

(in the optimal solution). Except from the core portfolionstraints (1), model (24) contaidiSnonneg-
ative variablesd;, and T corresponding linear inequalities for eakh Hence, its dimensionality is
proportional to the number of scenari®@sand to the number of tolerance levels Exactly, the LP
model containsn x T + n variables andn x T + 1 constraints. It does not cause any computational
difficulties for a few hundreds of scenarios and a few toleedevels, as in our computational analysis
based on historical data. However, in the case of more addasinulation models employed for sce-
nario generation one may get several thousands of scenditiis may lead to the LP model (24) with
huge number of variables and constraints thus decreasingotinputational efficiency of the model. If
the core portfolio constraints contain only linear relatiplike (1), then the computational efficiency can
easily be achieved by taking advantages of the LP dual to {@d®& The LP dual model takes the
following form:
minimize ¢
T m
subjectto g — > 7Y uw >0 forj=1,...,n
t=1 k=1 (25)

T

Zutk:wk fOl'kZl,...,m

t=1

0 < uyg §ptwk/ﬂk fOI’t:L...,T; k:l,...,m

The dual LP model containa x T variablesu;,, but them x T' constraints corresponding to variablgs
from (24) take the form of simple upper bounds (SUB)gnthus not affecting the problem complexity.
Actually, the number of constraints in (25) is proportiot@the total of portfolio size: and the number
of tolerance levelsn, thus it is independent from the number of scenarios. Exdtibre aren x T+ 1
variables andn + n constraints. This guarantees a high computational effigief the dual model
even for very large number of scenarios. Similar to the CVaileh introducing a lower bound on the
required expected return in the primal portfolio optimiaatmodel (24) result only in a single additional
variable in the dual model (25).

We have tested computational efficiency of the dual modél (kg the same 10 randomly gener-
ated test instances [8] as for testing the CVaR models. Rbealthey were originally generated from a
multivariate normal distribution for 50 securities witrethumber of scenarios 50,000. Far= 3 with
tolerance levelsl; = 0.1, B, = 0.25, 83 = 0.5 and weightsw; = 0.1, wy, = 0.4 andws = 0.5, thus

10
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representing the parameters leading to good results otifeedfta [11], the dual model (25) was solved
in 123.2 seconds on average. For= 5 with uniformly distributed tolerance level = 0.1, 5, = 0.2,
B3 = 0.3, B4 = 0.4, 35 = 0.5 and weights defined according to (22) the dual model was dahv296.2
seconds on average The corresponding primal models cotiltersmlved in one hour computations.

5 Concluding Remarks

The classical Markowitz model uses the variance as the risksore, thus resulting in a quadratic op-
timization problem. There were introduced several altiraaisk measures which are computationally
attractive as (for discrete random variables) they resuftalving linear programming (LP) problems.
The LP solvability is very important for applications to ke financial decisions where the constructed
portfolios have to meet numerous side constraints and takeaccount transaction costs. A gamut of
LP computable risk measures has been presented in theljpodjfdimization literature although most
of them are related to the absolute Lorenz curve and therfebZVaR measures. We have shown that
all the risk measures used in the LP solvable portfolio ojatition models can be derived from the SSD
shortfall criteria. This allows to guarantee their SSD ¢stesicy for any distribution of outcomes.

The corresponding portfolio optimization models can beesblwith general purpose LP solvers.
However, in the case of more advanced simulation models®@mglfor scenario generation one may
get several thousands of scenarios. This may lead to the Ldelmdth huge number of variables
and constraints thus decreasing the computational eftigiehthe model. For the CVaR model, the
number of constraints (matrix rows) is proportional to thanter of scenarios. while the number of
variables (matrix columns) is proportional to the total lo& humber of scenarios and the number of
instruments. We have shown that the computational effigiean be then dramatically improved with an
alternative model taking advantages of the LP duality. &ittiroduced model the number of structural
constraints (matrix rows) is proportional to the numberndtiuments thus not affecting seriously the
simplex method efficiency by the number of scenarios andltreguin computation times below 30
seconds. Moreover, similar reformulation can be appliethéwe complex quantile risk measures like
the Gini's mean difference and the tail Gini's measures dbkagego the mean absolute deviation.
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