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Abstract— Resource allocation problems are concerned with
the allocation of limited resources among competing activities so
as to achieve the best performances. However, in systems which
serve many users there is a need to respect some fairness rules
while looking for the overall efficiency. The concepts of multiple
criteria equitable optimization can effectively be used to generate
various fair and efficient allocation schemes. In this paper we
show how the importance weights allocated to several agents can
be introduced into the fairness concepts and models.

I. INTRODUCTION

Resource allocation problems are concerned with the al-
location of limited resources among competing activities. In
this paper, we focus on approaches that, while allocating
resources to maximize the system efficiency, they also attempt
to provide a fair treatment of all the competing activities [10].
The problems of efficient and fair resource allocation arise in
various systems which serve many users, like in telecommu-
nication systems among others. In networking a central issue
is how to allocate bandwidth to flows efficiently and fairly
[1], [4], [20]. The issue of equity is widely recognized in
location analysis of public services, where the agents of a
system are entitled to fair treatment according to community
regulations. In such problems, the decisions often concern the
placement of a service center or another facility in a position
so that the users are treated in an equitable way, relative to
certain criteria. Moreover, uniform individual outcomes may
be associated with some events rather than physical users,
like in many dynamic optimization problems where uniform
individual criteria represent a similar event in various periods
and all they are equally important.

The generic resource allocation problem may be stated as
follows. Each activity is measured by an individual perfor-
mance function that depends on the corresponding resource
level assigned to that activity. A larger function value is
considered better, like the performance measured in terms of
quality level, capacity, service amount available, etc. Models
with an (aggregated) objective function that maximizes the
mean (or simply the sum) of individual performances are
widely used to formulate resource allocation problems, thus
defining the so-called mean solution concept. This solution
concept is primarily concerned with the overall system ef-
ficiency. As based on averaging, it often provides solution
where some smaller services are discriminated in terms of

allocated resources. An alternative approach depends on the
so-called Max-Min solution concept, where the worst perfor-
mance is maximized. The Max-Min approach is consistent
with Rawlsian theory of justice [21], especially when addi-
tionally regularized with the lexicographic order. The latter
is called the Max-Min Fairness (MMF) and commonly used
in networking [20]. Allocating the resources to optimize the
worst performances may cause, however, a large worsening of
the overall (mean) performances.

Fairness is, essentially, an abstract socio-political concept
that implies impartiality, justice and equity [21]. In order to
ensure fairness in a system, all system entities have to be
equally well provided with the system’s services. This leads
to concepts of fairness expressed by the equitable efficiency
[8], [10]. The concept of equitably efficient solution is a
specific refinement of the Pareto-optimality taking into account
the inequality minimization according to the Pigou-Dalton
approach.

The paper is organized as follows. In the next section
the equitable optimization with the preference structure that
complies with both the efficiency (Pareto-optimality) and with
the Pigou-Dalton principle of transfers is used to formalize the
fair solution concepts. Further the introduction of the agents
weights into the fair dominance relation as well as into specific
fair solution concepts is analyzed.

II. EQUITY AND FAIRNESS

A. Fair Dominance

The generic resource allocation problem may be stated as
follows. There is a system dealing with a set I of m services.
There is given a measure of services realization within a
system. The measure usually expresses the service quality
but may modeled in a more subjective way. There is also
given a set Q of allocation patterns (allocation decisions). For
each service i ∈ I a function fi(x) of the allocation pattern
x ∈ Q has been defined. This function, called the individual
objective function, measures the outcome (effect) yi = fi(x)
of allocation x pattern for service i. In typical formulations
a larger value of the outcome means a better effect (higher
service quality or agent satisfaction). Otherwise, the outcomes
can be replaced with their complements to some large number.
Therefore, without loss of generality, we can assume that each
individual outcome yi is to be maximized which allows us



to view the generic resource allocation problem as a vector
maximization model:

max {f(x) : x ∈ Q} (1)

where f(x) is a vector-function that maps the decision space
X = Rn into the criterion space Y = Rm, and Q ⊂ X
denotes the feasible set.

Model (1) only specifies that we are interested in maximiza-
tion of all objective functions fi for i ∈ I = {1, 2, . . . ,m}.
In order to make it operational, one needs to assume some
solution concept specifying what it means to maximize multi-
ple objective functions. The solution concepts may be defined
by properties of the corresponding preference model. The
preference model is completely characterized by the relation
of weak preference, denoted hereafter with �. Namely, the
corresponding relations of strict preference � and indifference
∼= are defined by the following formulas:

y′ � y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal
(efficient) solution concept assumes that the preference relation
� is reflexive:

y � y, (2)

transitive:

(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:

y + εei � y for ε > 0; i = 1, . . . ,m, (4)

where ei denotes the i–th unit vector in the criterion space.
The last assumption expresses that for each individual objec-
tive function more is better (maximization). The preference
relations satisfying axioms (2)–(4) are called hereafter rational
preference relations. The rational preference relations allow us
to formalize the Pareto-optimality (efficiency) concept with the
following definitions. We say that outcome vector y′ rationally
dominates y′′ (y′ �r y′′), iff y′ � y′′ for all rational
preference relations �. We say that feasible solution x ∈ Q
is a Pareto-optimal (efficient) solution of the multiple criteria
problem (1), iff y = f(x) is rationally nondominated.

In order to ensure fairness in a system, all system entities
have to be equally well provided with the system’s services.
This leads to concepts of fairness expressed by the equitable
rational preferences [8]. First of all, the fairness requires
impartiality of evaluation, thus focusing on the distribution of
outcome values while ignoring their ordering. That means, in
the multiple criteria problem (1) we are interested in a set of
outcome values without taking into account which outcome is
taking a specific value. Hence, we assume that the preference
model is impartial (anonymous, symmetric):

(yπ(1), . . . , yπ(m)) ∼= (y1, . . . , ym) ∀ π ∈ Π(I) (5)

where Π(I) denotes the set of all permutations of I . The
impartiality axiom (5) means that any permuted outcome

vector is indifferent in terms of the preference relation. Further,
fairness requires equitability of outcomes which causes that the
preference model should satisfy the (Pigou–Dalton) principle
of transfers. The principle of transfers states that a transfer
of any small amount from an outcome to any other relatively
worse–off outcome results in a more preferred outcome vector,
i.e., whenever yi′ > yi′′ then

y − εei′ + εei′′ � y for 0 < ε < (yi′ − yi′′) (6)

The rational preference relations satisfying additionally ax-
ioms (5) and (6) are called hereafter fair (equitable) rational
preference relations. We say that outcome vector y′ fairly
(equitably) dominates y′′ (y′ �e y′′), iff y′ � y′′ for all
fair rational preference relations �. In other words, y′ fairly
dominates y′′, if there exists a finite sequence of vectors yj

(j = 1, 2, . . . , s) such that y1 = y′′, ys = y′ and yj is
constructed from yj−1 by application of either permutation of
coordinates, equitable transfer, or increase of a coordinate. An
allocation pattern x ∈ Q is called fairly (equitably) efficient
or simply fair if y = f(x) is fairly nondominated. Note that
each fairly efficient solution is also Pareto-optimal, but not
vice verse.

Example 1: Let us consider a simple resource allocation
problem with three agents and three potential allocations. The
potential resource allocations schemes generate the outcome
vectors y′ = (5, 3, 1), y′′ = (3, 3, 3) and y′′′ = (4, 5, 9),
respectively. Note that the perfectly equal outcome vector
y′′ with all the outcomes 3 fairly dominates y′ since y′′ =
(3, 3, 3) can be obtained from y′ = (5, 3, 1) by application of
one equitable transfer. On the other hand, outcome vector y′′ is
obviously worse than unequal vector y′′′ with all the outcomes
greater than 3. Actually, the perfectly equal outcome vector
y′′ is fairly dominated by unequal vector y′′′ since y′′′ =
(4, 5, 9) ≥ (3, 3, 3) = y′′. One may also notice that despite
y′ is not Pareto dominated by y′′′, it is fairly dominated since
vector y′′′ appropriately rearranged (permuted) to (9, 5, 4) gets
all the outcomes greater than the corresponding outcomes of
y′ = (5, 3, 1).

The relation of equitable dominance �e can be expressed as
a vector inequality on the cumulative ordered outcomes. For
the unweighted problem this can be mathematically formalized
as follows. First, we introduce the ordering map Θ : Rm →
Rm such that Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where
θ1(y) ≤ θ2(y) ≤ · · · ≤ θm(y) and there exists a permutation
τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. This
allows us to focus on distributions of outcomes impartially.
Next, we apply cumulation to the ordered outcome vectors to
get quantities

θ̄i(y) =

i∑
j=1

θj(y) for i = 1, . . . ,m. (7)

expressing, respectively, the worst outcome, the total of the
two worst outcomes, the total of the three worst outcomes,
etc. Pointwise comparison of the cumulated ordered outcomes
Θ̄(y) for vectors with equal means was extensively analyzed



within the theory of equity [26] or the mathematical theory
of majorization [11], where it is called the relation of Lorenz
dominance or weak majorization, respectively. It includes the
classical results allowing to express an improvement in terms
of the Lorenz dominance as a finite sequence of Pigou-
Dalton equitable transfers. It can be generalized to vectors
with various means, which allows one to justify the following
statement [8], [13]. Outcome vector y′ ∈ Y fairly dominates
y′′ ∈ Y , if and only if θ̄i(y′) ≥ θ̄i(y′′) for all i ∈ I where at
least one strict inequality holds.

B. Fair Solution Concepts

Simple solution concepts for multiple criteria problems are
defined by aggregation (or utility) functions g : Y → R to be
maximized. Thus the multiple criteria problem (1) is replaced
with the maximization problem

max {g(f(x)) : x ∈ Q} (8)

In order to guarantee the consistency of the aggregated prob-
lem (8) with the maximization of all individual objective
functions in the original multiple criteria problem (or Pareto-
optimality of the solution), the aggregation function must be
strictly increasing with respect to every coordinate. In order to
guarantee fairness of the solution concept (8), the aggregation
function must be additionally symmetric (impartial) as well as
be equitable (to satisfy the principle of transfers), i.e.,

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, . . . , ym) (9)

for any 0 < ε < (yi′−yi′′). In the case of a strictly increasing
symmetric function satisfying the requirement (9), we call the
corresponding problem (8) a fair (equitable) aggregation of
problem (1). Every optimal solution to the fair aggregation (8)
of a multiple criteria problem (1) defines some fair (equitable)
solution.

The simplest aggregation functions commonly used for the
multiple criteria problem (1) are defined as the mean (average)
outcome

µ(y) =
1

m

m∑
i=1

yi (10)

or the worst outcome

M(y) = min
i=1,...,m

yi. (11)

The mean (10) is a strictly increasing function while the
minimum (11) is only nondecreasing. Both the simplest ag-
gregation functions, the sum (10) and the minimum (11),
are symmetric although they do not satisfy the equitability
requirement (9). To guarantee the fairness of solutions, some
enforcement of concave properties is required. For any strictly
concave, increasing utility function u : R → R, the function
g(y) =

∑m
i=1 u(yi) is a strictly monotonic and equitable thus

defining a family of the fair aggregations

max {
m∑
i=1

u(fi(x)) : x ∈ Q} (12)

Various concave utility functions u can be used to define the
fair aggregations (12) and the resulting fair solution concepts.
In the case of the outcomes restricted to positive values, one
may use logarithmic function thus resulting in the Proportional
Fairness (PF) solution concept [7]. Actually, it corresponds to
the so-called Nash criterion which maximizes the product of
additional utilities compared to the status quo. Various other
concave functions u can be used to define fair aggregations
and the resulting resource allocation schemes [9], [12].

The Max-Min solution may be regularized according to
the Rawlsian principle of justice, leading to the lexicographic
Max-Min concepts or the so-called Max-Min Fairness [6], [2]
Actually, a wider class of fair solutions to problem (1) can be
expressed as Pareto-optimal solutions for the multiple criteria
problem with objectives Θ̄(f(x))

max {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q} (13)

The aggregation maximizing the sum of outcomes, corre-
sponds to maximization of the last objective (θ̄m(f(x))) in
problem (13). Similar, the Max-Min corresponds to maximiza-
tion of the first objective (θ̄1(f(x))). For modeling various
fair preferences one may use some combinations the crite-
ria. In particular, for the weighted sum aggregation on gets∑m
i=1 siθ̄i(y), which can be expressed in the form with

weights wi =
∑m
j=i sj (i = 1, . . . ,m) allocated to coordinates

of the ordered outcome vector, i.e., as the so-called Ordered
Weighted Average (OWA) [25]:

max {
m∑
i=1

wiθi(f(x)) : x ∈ Q} (14)

If weights wi are strictly decreasing and positive, i.e. w1 >
w2 > · · · > wm−1 > wm > 0, then each optimal solution
of the OWA problem (14) is a fair solution of (1). The recent
progress in optimization methods for ordered averages allows
one to implement the OWA optimization quite effectively as
an extension of the original constraints and criteria with simple
linear inequalities [17].

III. FAIRNESS WITH IMPORTANCE WEIGHTS

A. Importance Weighted Agents
Frequently, one may be interested in putting into allocation

models some additional agent weights vi > 0. Typically
the model of distribution weights is introduced to represent
the agent importance thus defining distribution of outcomes
yi = fi(x) according to measures defined by the weights
vi for i = 1, . . . ,m. Note that such distribution weights
allow us for a clear interpretation of weights as the agent
repetitions [3]. Splitting an agent into two agents does not
cause any change of the final distribution of outcomes. For
theoretical considerations one may assume that the problem
is transformed (disaggregated) to the unweighted one (that
means all the agent weights are equal to 1). Note that such a
disaggregation is possible for integer as well as rational agent
weights, but it usually dramatically increases the problem size.
Therefore, we are interested in solution concepts which can
be applied directly to the weighted problem.



As mentioned, for some theoretical considerations it might
be convenient to disaggregate the weighted problems into
the unweighted one. Therefore, to simplify the analysis we
will assume integer weights vi, although while discussing
solution concepts we will use the normalized agent weights
v̄i = vi/

∑m
i=1 vi for i = 1, . . . ,m, rather than the original

quantities vi. Note that, in the case of unweighted problem (all
vi = 1), all the normalized weights are given as v̄i = 1/m.
Furthermore, to avoid possible misunderstandings between
the weighted outcomes and the corresponding unweighted
form of outcomes we will use the following notation. Index
set I will always denote unweighted agents (with possible
repetitions if originally weighted) and vector y = (yi)i∈I =
(y1, y2, . . . , ym) will denote the unweighted outcomes. While
directly dealing with the weighted problem (without its disag-
gregation to the unweighted one) we will use Iv to denote
the set of agents and the corresponding outcomes will be
represented by vector y = (yvi)i∈Iv . We illustrate this with
the following small example.

Example 2: Let us consider a weighted resource allocation
problem with two agents C1 and C2 having assigned demand
weights v1 = 1 and v2 = 9, respectively. Their outcomes
relate to two potential resource allocation decisions A1 and
A2 are given as follows:

C1 C2
A1 10 0
A2 0 0

Hence, Iv = {1, 2} and the potential resource allocations gen-
erate two outcome vectors y′ = (101, 09) and y′′ = (01, 09),
respectively. The demand weights are understood as agents
repetitions. Thus, the problem is understood as equivalent to
the unweighted problem with 10 agents (I = {1, 2, . . . , 10})
where the first one corresponds to C1 and the further nine
unweighted agents correspond to single agent C2. In this dis-
aggregated form, the outcome vectors generated by two alloca-
tions A1 and A2 are given as y′ = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and y′′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), respectively. Note that
outcome vector y′′ with all the coordinates 0 is obviously
worse than unequal vector y′ with one outcome 10. Actually,
y′ Pareto dominates y′′.

B. Weighted Fair Dominance

The fair dominance for general weighted problems can be
derived by their disaggregation to the unweighted ones. It can
be mathematically formalized as follows. First, we introduce
the right-continuous cumulative distribution function (cdf):

Fy(d) =
∑
i∈Iv

v̄iδi(d), δi(d) =

{
1 if yvi ≤ d
0 otherwise (15)

which for any real (outcome) value d provides the measure
of outcomes smaller or equal to d. Next, we introduce the
quantile function F

(−1)
y as the left-continuous inverse of the

cumulative distribution function Fy:

F (−1)
y (β) = inf {η : Fy(η) ≥ β} for 0 < β ≤ 1. (16)

By integrating F (−1)
y one gets F (−2)

y (0) = 0 and

F (−2)
y (β) =

∫ β

0

F (−1)
y (α)dα ∀ 0 < β ≤ 1, (17)

where F
(−2)
y (1) = µ(y). The graph of function F

(−2)
y (β)

(with respect to β) take the form of concave curves. It is called
Absolute Lorenz Curve (ALC) [16], due to its relation to the
classical Lorenz curve used in income economics as a cumu-
lative population versus income curve to compare equity of
income distributions. Indeed, the Lorenz curve may be viewed
as function LC(ξ) = 1

µ(y)

∫ ξ
0
F

(−1)
y (α)dα thus equivalent

to function F (−2)
y (β) normalized by the distribution average.

Therefore, the classical Lorenz model is focused on equity
while ignoring the average result and any perfectly equal distri-
bution of income has the diagonal line as the Lorenz curve (the
same independently from the income value). Within the ALC
model both equity and values of outcomes are represented.
The ALC defines the relation (partial order) equivalent to the
equitable dominance. Exactly, outcome vector y′ equitably
dominates y′′, if and only if F (−2)

y′ (β) ≥ F
(−2)
y′′ (β) for all

β ∈ (0, 1] where at least one strict inequality holds. Note that
for the expanded form to the unweighted outcomes, the ALC
is completely defined by the values of the (cumulated) ordered
outcomes. Hence, θ̄i(y) = mF

(−2)
y (i/m) for i = 1, . . . ,m,

and pointwise comparison of cumulated ordered outcomes is
enough to justify equitable dominance.

Finally, the impartiality of the allocation process (5) is
considered in terms that two allocation schemes leading to
the same distribution (cdf) of outcomes are indifferent

Fy′ = Fy′′ ⇒ y′ ∼= y′′. (18)

The principle of transfers (6) is considered for single units
of demand. Although it can can be applied directly to the
outcomes of importance weighted agents in the following
form: if yvi′ > yvi′′ then

yε = y − ε

v̄i′
evi′ +

ε

v̄i′′
evi′′ � y (19)

whenever 0 < ε ≤ (yi′ − yi′′) min{v̄i′ , v̄i′′} and Fyε 6= Fy.
Alternatively, the fair dominance can be expressed on the

cumulative distribution functions. one may further integrate
the cdf (15) to get the second order cumulative distribution
function F

(2)
y (η) =

∫ η
−∞ Fy(ξ)dξ for η ∈ R, representing

average shortage to any real target η. By the theory of convex
conjugate functions, the pointwise comparison of the second
order cumulative distribution functions provides an alternative
characterization of the equitable dominance relation [16]. Ex-
actly, y′ fairly dominates y′′, if and only if F (2)

y′ (η) ≤ F (2)
y′′ (η)

for all η where at least one strict inequality holds.
Furthermore, the classical results of majorization theory [11]

allow us to refer the equitable dominance to the mean utility.
For any convex, increasing utility function u : R → R, if
outcome vector y′ fairly dominates y′′, then

m∑
i=1

u(y′i)

m
=
∑
i∈Iv

v̄iu(y′vi) ≥
m∑
i=1

u(y′′i )

m
=
∑
i∈Iv

v̄iu(y′′vi).



Finally, there are three alternative analytical characterizations
of the relation of fair dominance as specified in the following
theorem. Note that according to condition (iii), the fair domi-
nance is actually the so-called increasing convex order which
is more commonly known as the second degree stochastic
dominance (SSD) [14].

Theorem 1: For any outcome vectors y′,y′′ ∈ A each of
the three following conditions is equivalent to the (weak)
equitable dominance y′ �e y′′:

(i) F (−2)
y′ (β) ≥ F (−2)

y′′ (β) for all β ∈ (0, 1];
(ii) F (2)

y′ (η) ≤ F (2)
y′′ (η) for all real η;

(iii)
∑
i∈Iv v̄iu(y′i) ≥

∑
i∈Iv v̄iu(y′′i ) for any concave,

increasing function u.
Proof: Due to the finite number of agents m, for all

vectors y the corresponding distributions Fy are discrete.
Therefore, the equivalence of the (weak) equitable dominance
y′ �e y′′ and the ALC inequalities (i) follows as the limiting
result from the duplication of agents according to their impor-
tance weights. Note that the replacement of possibly various
outcomes corresponding to different copies of the same agent
with their mean is clearly achievable by the equitable transfers.
Alternatively, one may adapt the standard constructive proof
for the unweighted case [11] to the modified axioms of the
impartiality (18) and equitable transfers (19).

The equivalence of (i) and (ii) has been shown in [16] by
demonstrating that for any distribution, the functions F (2) and
F (−2) are convex conjugate functions.

The equivalence of (ii) and (iii) is the standard result of the
stochastic orders [14].

Following Theorem 1, the importance weighted fair prefer-
ence models are mathematically equivalent to the risk averse
preference models for the decisions under risk, where the
scenarios correspond to the agents and the importance weights
define their probabilities while the agent outcomes represent
realizations of a return under various scenarios.

C. Weighted Fair Aggregations

The classical solution concepts of mean and Max-Min are
well defined for aggregated models using importance weights
vi > 0. Exactly, the Max-Min solution concept is defined by
maximization of the minimum outcome

M(y) = max
i∈I

yi = max
i∈Iv

yvi , (20)

thus not affected by the importance weights at all. The same
applies to its lexicographic regularization expressed as the
MMF concept.

The solution concept of the mean outcome (10) can easily
accommodate the importance weights as

µ(y) =
1

m

∑
i∈I

yi =
∑
i∈Iv

v̄iyvi . (21)

Similarly, for any utility function u : R→ R we get

µ(u(y)) =
1

m

∑
i∈I

u(yi) =
∑
i∈Iv

v̄iu(yvi). (22)

Various increasing concave utility functions u can be used to
define the fair aggregations (22) and the resulting fair solution
concepts [15]. In particular, for the case of outcomes restricted
to positive values, one may use logarithmic function thus
representing the Proportional Fairness approach [7].

The OWA aggregation (14) is built for equally important
outcomes where only distribution of outcome values is eval-
uated. For instance, considering two outcomes with the OWA
weights w1 = 0.9 and w2 = 0.1 both symmetric outcome
vectors y1 = (0, 1) and y2 = (1, 0) result in the same OWA
aggregation OWA1 = OWA2 = 0.9 · 0 + 0.1 · 1 = 0.1.
Nevertheless, the importance weights of outcomes can be
introduced into the OWA aggregation following the rule that
the importance weights vi define a repetition measure within
the distribution (population) of outcome values while the OWA
weights wi are applied to averages within specific quantiles
of size 1/m for this distribution. For instance, introducing
importance weights v1 = 0.75 and v2 = 0.25 we replace y1 =
(0, 1) with the distribution taking value 0 with the repetition
measure 0.75 and taking value 1 with the repetition measure
0.25 while y2 = (1, 0) is replaced with the distribution taking
value 1 with the repetition measure 0.75 and taking value 0
with the repetition measure 0.25. In this specific case, the
distributions may easily be equivalently interpreted in terms
of four dimensional space of equally important outcomes
(measure 1/4 each) where the original first outcome has been
triplicated, thus y1 = (0, 0, 0, 1) and y2 = (1, 1, 1, 0). The
OWA aggregation with weights s1 = 0.9 and s2 = 0.1 applied
to the corresponding averages within quantiles of size 1/2
results then in aggregation values 0.9·0+0.1·(0+1)/2 = 0.05
for y1 and 0.9 · (0 + 1)/2 + 0.1 ·1 = 0.55 for y2, respectively.
Certainly, one do not need to transform all the cases to
equally important outcomes in order to calculate appropriate
OWA value. Such an importance weighting OWA formula
was introduced as the WOWA aggregation formally defined
as follows [24]

WOWA(y) =

m∑
i=1

ωiθi(y) (23)

with

ωi = ω∗(

i∑
k=1

v̄τ(k))− ω∗(
i−1∑
k=1

v̄τ(k)) (24)

where ω∗ is piecewise linear function interpolating points
( im ,

∑i
k=1 wk) together with (0.0) and τ representing the

ordering permutation for y (i.e. yτ(i) = θi(y)). Function w∗

can be defined by its generation function

g(ξ) = mwk for (k − 1)/m < ξ ≤ k/m, k = 1, . . . ,m

with the formula w∗(α) =
∫ α
0
g(ξ) dξ. Introducing break-

points αi =
∑
k≤i vτ(k) and α0 = 0 allows us to express

ωi =

∫ αi

0

g(ξ) dξ −
∫ αi−1

0

g(ξ) dξ =

∫ αi

αi−1

g(ξ) dξ



and the entire WOWA aggregation as

WOWA(y) =

m∑
i=1

θi(y)

∫ αi

αi−1

g(ξ) dξ =

∫ 1

0

g(ξ)F (−1)
y (ξ) dξ

where F
(−1)
y is the inverse of the cumulative distribution

function. It is a stepwise function F
(−1)
y (ξ) = θi(y) for

αi−1 < ξ ≤ αi. Hence,

WOWA(y) =

m∑
k=1

wkm

∫ k/m

(k−1)/m
F (−1)
y (ξ) dξ (25)

Note that m
∫ k/m
(k−1)/m F

(−1)
y (ξ) dξ represents the average

within the k-th portion of 1/m smallest outcomes, the cor-
responding conditional mean. Hence, the formula (25) defines
WOWA aggregations with preferential weights w as the cor-
responding OWA aggregation but applied to the conditional
means calculated according to the importance weights v̄
instead of the original outcomes.

Theorem 2: For any importance weights v, the WOWA
aggregation defined by decreasing preferential weights w1 ≥
w2 ≥ . . . ≥ wm represents fair preferences in terms of the
fair dominance, i.e.,

y′ �e y′′ ⇒WOWA(y′) ≥WOWA(y′′)
Proof: Formula (25) may be transformed to use the left-

tail averages

WOWA(y) =

m∑
k=1

m(wk − wk+1)

∫ k/m

0

F (−1)
y (xi)dξ

where wm+1 = 0. Hence.

WOWA(y) =

m∑
k=1

w′kF
(−2)
y (

k

m
) (26)

with weights

w′k = m(wk − wk+1), k = 1, . . . ,m− 1
w′m = mwm

(27)

Formula (26) represents the WOWA aggregation with decreas-
ing preferential weights as the weighted combination of the
m ALC values with the positive weights (27). Therefore,
maximization of the WOWA aggregation with decreasing
preferential weights is consisted with fair dominance and it
represents the fair preferences.

The WOWA aggregation is a special case of the Choquet
integral which in general may require the branch and bound
algorithm for optimization [5]. However, maximization of
the WOWA with increasing preferential weights, similarly to
the OWA optimization, can be effectively implemented with
simple auxiliary linear inequalities [18].

CONCLUDING REMARKS

This paper is devoted to fairness issues in resource al-
location problems. It has been shown that the importance
weights can easily be accommodated in the fair preference
models leading to the corresponding fair solution concepts.

The considered fairness model is primarily well suited for
the centralized resource allocation problems, like the band-
width allocation problem [1], [4], [19], [20]. Nevertheless,
the classical unweighted fairness models are used as the basis
for some distributed systems managements (c.f., [22]). Many
distributed systems face the problem of importance weighted
agents and the analyzed weighted fairness models may help to
resolve them though still requiring further research on possible
implementations for specific environments.
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