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The Reference Point Method (RPM) is a very convenient technique for inter-
active analysis of the multiple criteria optimization problems. The interactive
analysis is navigated with the commonly accepted control parameters express-
ing reference levels for the individual objective functions. The final scalarizing
achievement function is built as the augmented max-min aggregation of par-
tial achievements with respect to the given reference levels. In order to avoid
inconsistencies caused by the regularization, the max-min solution may be reg-
ularized by the Ordered Weighted Averages (OWA) with monotonic weights
which combines all the partial achievements allocating the largest weight to the
worst achievement, the second largest weight to the second worst achievement,
and so on. Further following the concept of the Weighted OWA (WOWA)
the importance weighting of several achievements may be incorporated into
the RPM. Such a WOWA RPM approach uses importance weights to affect
achievement importance by rescaling accordingly its measure within the distri-
bution of achievements rather than by straightforward rescaling of achievement
values. The recent progress in optimization methods for ordered averages al-
lows one to implement the WOWA RPM quite effectively as extension of the
original constraints and criteria with simple linear inequalities.
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1. Introduction

Consider a decision problem defined by m–criteria optimization:

max { (f1(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables to be selected within the

feasible set Q ⊂ Rn, and f(x) = (f1(x), . . . , fm(x)) is a vector function that

maps the feasible set Q into the criterion space Rm. We refer to elements of
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the criterion space as outcome vectors. An outcome vector y is attainable

if it expresses outcomes of a feasible solution, i.e. y = f(x) for some x ∈ Q.

In order to make the multiple criteria model operational for the decision

support process, one needs assume some solution concept well adjusted to

the DM preferences. This can be achieved with the so-called quasi-satisficing

approach proposed and developed mainly by Wierzbicki8 as the Reference

Point Method (RPM) having led to efficient implementations with many

successful applications.1,9 The RPM is an interactive technique working as

follows. The DM specifies requirements in terms of reference levels, i.e., by

introducing reference values for several individual outcomes. Depending on

the specified reference levels, a special scalarizing achievement function is

built which may be directly interpreted as expressing utility to be maxi-

mized. Maximization of the scalarizing achievement function generates an

efficient solution to the multiple criteria problem. The computed efficient

solution is presented to the DM as the current solution in a form that allows

comparison with the previous ones and modification of the reference levels

if necessary.

The scalarizing achievement function can be viewed as two-stage trans-

formation of the original outcomes. First, the strictly monotonic partial

achievement functions are built to measure individual performance with

respect to given reference levels. Having all the outcomes transformed into

a uniform scale of individual achievements they are aggregated at the sec-

ond stage to form a unique scalarization. The RPM is based on the so-called

augmented (or regularized) max-min aggregation. Thus, the worst individ-

ual achievement is essentially maximized but the optimization process is

additionally regularized with the average achievement. The generic scalar-

izing achievement function takes the following form:8

S(y) = min
1≤i≤m

{si(yi)} +
ε

m

m
∑

i=1

si(yi) (2)

where ε is an arbitrary small positive number and si : R → R, for

i = 1, 2, . . . , m, are the partial achievement functions measuring actual

achievement of the individual outcomes yi with respect to the corresponding

reference levels. Let ai denote the partial achievement for the ith outcome

(ai = si(yi)) and a = (a1, a2, . . . , am) represent the achievement vector.

Various functions si provide a wide modeling environment for measuring

partial achievements.9 The basic RPM model is based on a single vector

of the reference levels, the aspiration vector ra and the piecewise linear

functions si.
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Real-life applications of the RPM methodology usually deal with more

complex partial achievement functions defined with more than one reference

point.9 In particular, the models taking advantages of two reference vectors:

vector of aspiration levels ra and vector of reservation levels rr1 are used,

thus allowing the DM to specify requirements by introducing acceptable

and required values for several outcomes. The partial achievement function

si can be interpreted then as a measure of the DM’s satisfaction with the

current value of outcome the ith criterion. It is a strictly increasing function

of outcome yi with value ai = 1 if yi = ra
i , and ai = 0 for yi = rr

i . Various

functions can be built meeting those requirements. We use the piece-wise

linear partial achievement function:4

si(yi) =











γ(yi − rr
i )/(ra

i − rr
i ), yi ≤ rr

i

(yi − rr
i )/(ra

i − rr
i ), rr

i < yi < ra
i

α(yi − ra
i )/(ra

i − rr
i ) + 1, yi ≥ ra

i

(3)

where α and γ are arbitrarily defined parameters satisfying 0 < α < 1 < γ.

2. WOWA extension of the RPM

The crucial properties of the RPM are related to the max-min aggrega-

tion of partial achievements while the regularization is only introduced to

guarantee the aggregation monotonicity. Unfortunately, the distribution of

achievements may make the max-min criterion partially passive when one

specific achievement is relatively very small for all the solutions. Maxi-

mization of the worst achievement may then leave all other achievements

unoptimized. Nevertheless, the selection is then made according to linear

aggregation of the regularization term instead of the max-min aggregation,

thus destroying the preference model of the RPM.3

In order to avoid inconsistencies caused by the regularization, the

max-min solution may be regularized according to the ordered averaging

rules.10 This is mathematically formalized as follows. Within the space

of achievement vectors we introduce map Θ = (θ1, θ2, . . . , θm) which or-

ders the coordinates of achievements vectors in a nonincreasing order, i.e.,

Θ(a1, a2, . . . , am) = (θ1(a), θ2(a), . . . , θm(a)) iff there exists a permutation

τ such that θi(a) = aτ(i) for all i and θ1(a) ≥ θ2(a) ≥ . . . ≥ θm(a). The

standard max-min aggregation depends on maximization of θm(a) and it

ignores values of θi(a) for i ≤ m − 1. In order to take into account all the

achievement values, one needs to maximize the weighted combination of the

ordered achievements thus representing the so-called Ordered Weighted Av-

eraging (OWA) aggregation.10 Note that the weights are then assigned to
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the specific positions within the ordered achievements rather than to the

partial achievements themselves. With the OWA aggregation one gets the

following RPM model:

max{
m

∑

i=1

wiθi(a) : ai = si(fi(x)) ∀ i, x ∈ Q } (4)

where w1 < w2 < . . . < wm are positive and strictly increasing weights.

Actually, they should be significantly increasing to represent regularization

of the max-min order. Note that the standard RPM model with the scalar-

izing achievement function (2) can be expressed as the OWA model (4)

with weights w1 = . . . = wm−1 = ε/m and wm = 1 + ε/m thus strictly

increasing in the case of m = 2. Unfortunately, for m > 2 it abandons the

differences in weighting of the largest achievement, the second largest one

etc (w1 = . . . = wm−1 = ε/m). The OWA RPM model (4) allows one to

differentiate all the weights by introducing increasing series (e.g. geometric

ones).

Typical RPM model allow weighting of several achievements only by

straightforward rescaling of the achievement values.6 The OWA RPM model

enables one to introduce importance weights to affect achievement im-

portance by rescaling accordingly its measure within the distribution of

achievements as defined in the so-called Weighted OWA (WOWA) aggre-

gation.7 Let w = (w1, . . . , wm) be a vector of preferential (OWA) weights

and let p = (p1, . . . , pm) denote the vector of importance weights (pi ≥ 0

for i = 1, 2, . . . , m as well as
∑m

i=1 pi = 1). The corresponding Weighted

OWA aggregation of achievements a = (a1, . . . , am) is defined as follows:

Aw,p(a) =

m
∑

i=1

ωiθi(a), ωi = w∗(
∑

k≤i

pτ(k)) − w∗(
∑

k<i

pτ(k)) (5)

where w∗ is a monotone increasing function that interpolates points

( i
m

,
∑

k≤i wk) together with the point (0.0) and τ representing the ordering

permutation for a (i.e. aτ(i) = θi(a)). The WOWA may be expressed with

more direct formula where preferential (OWA) weights wi are applied to

averages of the corresponding portions of ordered achievements (quantile

intervals) according to the distribution defined by importance weights pi:
5

Aw,p(a) =

m
∑

i=1

wim

∫
i

m

i−1

m

F (−1)
a

(ξ) dξ (6)

where F
(−1)

a
is the stepwise function F

(−1)

a
(ξ) = θi(a) for βi−1 < ξ ≤

βi. It can also be mathematically formalized as follows. First, we intro-
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duce the right-continuous cumulative distribution function (cdf) Fa(d) =
∑m

i=1 piδi(d) where δi(d) = 1 if ai ≤ d and 0 otherwise. Next, we introduce

the quantile function F
(−1)
a = inf {η : Fa(η) ≥ ξ} for 0 < ξ ≤ 1 as the left-

continuous inverse of Fa, ie., F
(−1)
a (ξ) = inf {η : Fa(η) ≥ ξ}for 0 < ξ ≤ 1,

and finally F
(−1)

a
(ξ) = F

(−1)
a (1 − ξ).

Formula (6) defines the WOWA value applying preferential weights wi

to importance weighted averages within quantile intervals. It may be refor-

mulated to use the tail averages

Aw,p(a) =

m
∑

k=1

w′
kmL(a,p,

k

m
), L(y,p, ξ) =

∫ ξ

0

F (−1)
y

(α)dα (7)

where weights w′
k = wm−k+1 − wm−k for k = 1, . . . , m − 1 and w′

m = w1

and L(y,p, ξ) is defined by left-tail integrating of F
(−1)
y . Values L(a,p, ξ)

for any 0 ≤ ξ ≤ 1 can be given by optimization:

L(a,p, ξ) = min
si

{

m
∑

i=1

aisi :

m
∑

i=1

si = ξ, 0 ≤ si ≤ pi ∀ i } (8)

Introducing dual variable t corresponding to the equation
∑m

i=1 si = ξ and

variables di corresponding to upper bounds on si one gets the following LP

dual expression of L(a,p, ξ)

L(a,p, ξ) = max
t,di

{ξt −

m
∑

i=1

pidi : t − di ≤ ai, di ≥ 0 ∀ i} (9)

Following (7) and (9) taking into account piecewise linear partial

achievement functions (3) one gets finally the following model for the

WOWA RPM with piecewise linear partial achievement functions (3):

max
m

∑

k=1

w′
kzk s.t. zk = ktk − m

m
∑

i=1

pidik ∀ k

x ∈ Q, yi = fi(x) ∀ i

ai ≥ tk − dik, dik ≥ 0 ∀ i, k

ai ≤ γ(yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ (yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ α(yi − ra
i )/(ra

i − rr
i ) + 1 ∀ i

(10)

thus allowing for implementation of the entire WOWA RPM model as an

LP expansion of the original problem.
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Conclusions

The OWA aggregation with monotonic weights combines all the partial

achievements allocating the largest weight to the worst achievement, the

second largest weight to the second worst achievement, and so on. Fur-

ther following the concept of Weighted OWA7 the importance weighting of

several achievements may be incorporated into the RPM. Such a WOWA

enhancement of the RPM uses importance weights to affect achievement

importance by rescaling accordingly its measure within the distribution of

achievements rather than straightforward rescaling of achievement values.6

The ordered regularizations are more complicated in implementation due

to the requirement of pointwise ordering of partial achievements. However,

the recent progress in optimization methods for ordered averages allows

one to implement the OWA RPM quite effectively by taking advantages of

piecewise linear expression of the cumulated ordered achievements. Simi-

lar, model can be achieved for the WOWA RPM resulting in the original

constraints and criteria with simple linear inequalities.
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