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Abstract The Reference Point Method (RPM) is a very convenient technique for
interactive analysis of the multiple criteria optimization problems. The interactive
analysis is navigated with the commonly accepted control parameters expressing ref-
erence levels for the individual objective functions. The partial achievement functions
quantify the DM satisfaction from the individual outcomes with respect to the given
reference levels, while the final scalarizing achievement function is built as the aug-
mented max–min aggregation of the partial achievements. In order to avoid incon-
sistencies caused by the regularization, the max–min solution may be regularized by
the Ordered Weighted Averages (OWA) with monotonic weights which combines all
the partial achievements allocating the largest weight to the worst achievement, the
second largest weight to the second worst achievement, and so on. Further, following
the concept of the Weighted OWA (WOWA), the importance weighting of several
achievements may be incorporated into the RPM. Such a WOWA RPM approach
uses importance weights to affect achievement importance by rescaling accordingly
its measure within the distribution of achievements rather than by straightforward
rescaling of achievement values. The recent progress in optimization methods for
ordered averages allows one to implement the WOWA RPM quite effectively as ex-
tension of the original constraints and criteria with simple linear inequalities. There
is shown that the OWA and WOWA RPM models meet the crucial requirements with
respect to the efficiency of generated solutions as well as the controllability of inter-
active analysis by the reference levels.
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1 Introduction

Consider a decision problem defined as an optimization problem with m criteria (ob-
jective functions). In this paper, without loss of generality, it is assumed that all the
criteria are maximized (that is, for each outcome, “more is better”). Hence, we con-
sider the following multiple criteria optimization problem:

max
{(

f1(x), . . . , fm(x)
) : x ∈ Q

}
, (1)

where x denotes a vector of decision variables to be selected within the feasible set
Q ⊂ Rn, and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that maps the fea-
sible set Q into the criterion space Rm. Note that neither any specific form of the
feasible set Q is assumed nor any special form of criteria fi(x) is required. We re-
fer to the elements of the criterion space as outcome vectors. An outcome vector y
is attainable if it expresses outcomes of a feasible solution, i.e., y = f(x) for some
x ∈ Q.

Model (1) only specifies that we are interested in maximization of all objective
functions fi for i ∈ I = {1,2, . . . ,m}. Thus it allows one only to identify (to elimi-
nate) obviously inefficient solutions leading to dominated outcome vectors while still
leaving the entire efficient set to look for a satisfactory compromise solution. In or-
der to make the multiple criteria model operational for the decision support process,
one needs to assume some solution concept well adjusted to the DM preferences.
This can be achieved with the so-called quasi-satisficing approach to multiple criteria
decision problems. The best formalization of the quasi-satisficing approach to mul-
tiple criteria optimization was proposed and developed mainly by Wierzbicki (1982)
as the Reference Point Method (RPM). The reference point method was later ex-
tended to permit additional information from the DM and, eventually, led to efficient
implementations of the so-called Aspiration/Reservation-Based Decision Support
(ARBDS) approach with many successful applications (Granat and Makowski 2000;
Lewandowski and Wierzbicki 1989; Ogryczak and Lahoda 1992; Wierzbicki et al.
2000).

The RPM is an interactive technique. The basic concept of the interactive scheme
is as follows. The DM specifies requirements in terms of reference levels, i.e., by in-
troducing reference (target) values for several individual outcomes. Depending on the
specified reference levels, a special scalarizing achievement function is built, which
may be directly interpreted as expressing utility to be maximized. Maximization of
the scalarizing achievement function generates an efficient solution to the multiple
criteria problem. The computed efficient solution is presented to the DM as the cur-
rent solution in a form that allows comparison with the previous ones and modifica-
tion of the reference levels if necessary.
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The scalarizing achievement function can be viewed as a two-stage transformation
of the original outcomes. First, the strictly monotonic partial achievement functions
are built to measure individual performance with respect to given reference levels.
Having all the outcomes transformed into a uniform scale of individual achievements,
they are aggregated at the second stage to form a unique scalarization. The RPM is
based on the so-called augmented (or regularized) max–min aggregation. Thus, the
worst individual achievement is essentially maximized, but the optimization process
is additionally regularized with the term representing the average achievement. The
max–min aggregation guarantees fair treatment of all individual achievements by im-
plementing an approximation to the Rawlsian principle of justice.

The max–min aggregation is crucial for allowing the RPM to generate all effi-
cient solutions even for nonconvex (and particularly discrete) problems. On the other
hand, the regularization is necessary to guarantee that only efficient solutions are gen-
erated. The regularization by the average achievement is easily implementable, but it
may disturb the basic max–min model. Actually, the only consequent regularization
of the max–min aggregation is the lex-min order, but the lexicographic approaches re-
sult in complicated RPM models (Ogryczak 2008, 2009b), and they do not introduce
any explicit scalarizing achievement function which could be directly interpreted as
expressing utility to be maximized. In order to get such an analytical form, one needs
to replace the lexicographic (preemptive) optimization of the ordered achievements
with the so-called Ordered Weighted Averaging (OWA) aggregation (Yager 1988).
The latter combines all the partial achievements allocating the largest weight to the
worst achievement, the second largest weight to the second worst achievement, the
third largest weight to the third worst achievement, and so on. It turns out that a
direct use of the OWA aggregation to the partial achievements improves the RPM
model without any necessity of employment of the lexicographic techniques. More-
over, the recent progress in optimization methods for ordered averages (Ogryczak and
Śliwiński 2003) allows one to implement the OWA RPM quite effectively. We show
that such RPM model meets the crucial requirements with respect to the efficiency
of the generated solution as well as the controllability of interaction analysis by the
reference levels as the only control parameters.

The standard RPM models allow weighting of several achievements only by
straightforward rescaling of the achievement values (Ruiz et al. 2009). However,
there are many decision situations where there is a need for importance weight-
ing of achievements. This can be related to the involvement of multiple DMs
to specify the preferences like in procurement (Teich et al. 2006) or in more
complex policy decisions involving many stakeholders (Makowski et al. 2009).
The OWA RPM model enables us to introduce importance weights to affect an
achievement importance by rescaling accordingly its measure within the distrib-
ution of all achievements. This concept (Ogryczak and Kozłowski 2008) can be
formalized with the so-called Weighted OWA (WOWA) aggregations (Torra 1997;
Torra and Narukawa 2007) of the partial achievements. The paper analyzes both the
theoretical and implementation issues of the WOWA enhanced RPM. We show that
the WOWA RPM model meets the crucial requirements with respect to the efficiency
of the generated solution as well as the controllability of interaction analysis by the
reference levels.
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The paper is organized as follows. In the next section the scalarizing achievement
functions are discussed, and there is introduced and analyzed the OWA refinement
of the RPM. The OWA RPM model is further extended in Sect. 3 to accommodate
the importance weights following the WOWA methodology. Linear Programming
computational model for the WOWA RPM method is introduced, and the crucial
properties of the method are shown. In Sect. 4 an illustrative example is presented.

2 Scalarizations of the RPM and ordered partial achievements

While building the scalarizing achievement function, the following properties of the
preference model are assumed. First of all, for any individual outcome yi , more is pre-
ferred to less (maximization). To meet this requirement, the function must be strictly
increasing with respect to each outcome. Second, a solution with all individual out-
comes yi satisfying the corresponding reference levels is preferred to any solution
with at least one individual outcome worse (smaller) than its reference level. That
means, the scalarizing achievement function maximization must enforce reaching the
reference levels prior to further improving of criteria. Thus, similar to the goal pro-
gramming approaches, the reference levels are treated as the targets, but following
the quasi-satisficing approach, they are interpreted consistently with basic concepts
of efficiency in the sense that the optimization is continued even when the target point
has been already reached.

The generic scalarizing achievement function takes the following form (Wierzbicki
1982):

S(y) = min
1≤i≤m

{
si(yi)

} + ε

m

m∑

i=1

si(yi), (2)

where ε is an arbitrary small positive number, and si : R → R, i = 1,2, . . . ,m, are
the partial achievement functions measuring actual achievement of the individual out-
comes yi with respect to the corresponding reference levels. Let ai denote the partial
achievement for the ith outcome (ai = si(yi)), and a = (a1, a2, . . . , am) represent the
achievement vector. The scalarizing achievement function (2) is, essentially, defined
by the worst partial (individual) achievement but additionally regularized with the
sum of all partial achievements. The regularization term is introduced only to guar-
antee the solution efficiency in the case where the maximization of the main term (the
worst partial achievement) results in a nonunique optimal solution. Due to combining
two terms with arbitrarily small parameter ε, formula (2) is easily implementable and
provides a direct interpretation of the scalarizing achievement function as expressing
utility.

Various functions si provide a wide modeling environment for measuring partial
achievements (Wierzbicki 1986; Wierzbicki et al. 2000; Miettinen and Mäkelä 2002).
The basic RPM model is based on a single vector of the reference levels, the aspira-
tion vector ra , and the piecewise linear functions si . It can be effectively applied to
multiple criteria linear programming problems (Steuer 1986), nonlinear (Miettinen
1999) or discrete.
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Real-life applications of the RPM methodology usually deal with more complex
partial achievement functions defined with more than one reference point (Wierzbicki
et al. 2000) which enriches the preference models and simplifies the interactive analy-
sis. In particular, the models taking advantages of two reference vectors, vector of
aspiration levels ra and vector of reservation levels rr (Lewandowski and Wierzbicki
1989), are used, thus allowing the DM to specify requirements by introducing ac-
ceptable and required values for several outcomes. The partial achievement function
si can be interpreted then as a measure of the DM’s satisfaction with the current
value of outcome the ith criterion. It is a strictly increasing function of outcome yi

with value ai = 1 if yi = ra
i , and ai = 0 for yi = rr

i . Thus the partial achievement
functions map the outcomes values onto a normalized scale of the DM’s satisfaction.
Various functions can be built meeting those requirements. We use the piecewise lin-
ear partial achievement function introduced in an implementation of the ARBDS sys-
tem for the multiple criteria transshipment problems with facility location (Ogryczak
et al. 1992):

si(yi) =

⎧
⎪⎨

⎪⎩

γ (yi − rr
i )/(ra

i − rr
i ), yi ≤ rr

i ,

(yi − rr
i )/(ra

i − rr
i ), rr

i < yi < ra
i ,

α(yi − ra
i )/(ra

i − rr
i ) + 1, yi ≥ ra

i ,

(3)

where α and γ are arbitrarily defined parameters satisfying 0 < α < 1 < γ . Parameter
α represents additional increase of the DM’s satisfaction over level 1 when a criterion
generates outcomes better than the corresponding aspiration level. On the other hand,
parameter γ > 1 represents dissatisfaction connected with outcomes worse than the
reservation level.

For outcomes between the reservation and the aspiration levels, the partial achieve-
ment function si can be interpreted as a membership function μi for a fuzzy target.
However, such a membership function remains constant with value 1 for all outcomes
greater than the corresponding aspiration level and with value 0 for all outcomes be-
low the reservation level. Hence, the fuzzy membership function is neither strictly
monotonic nor concave and thus not representing typical utility for a maximized out-
come. The partial achievement function (3) can be viewed as an extension of the
fuzzy membership function to a strictly monotonic and concave utility. Since partial
achievement function (3) is strictly increasing and concave, it can be expressed in the
form

si(yi) = min

{
γ

yi − rr
i

ra
i − rr

i

,
yi − rr

i

ra
i − rr

i

, α
yi − ra

i

ra
i − rr

i

+ 1

}
(4)

which guarantees LP computability with respect to outcomes yi . Finally, maximiza-
tion of the entire scalarizing achievement function (2) can be implemented by the
following auxiliary LP constraints:

max z + ε

m

m∑

i=1

ai
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s.t. z ≤ ai, ∀i ∈ I,

ai ≤ γ
(
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I, (5)

ai ≤ (
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I,

ai ≤ α
(
yi − ra

i

)/(
ra
i − rr

i

) + 1, ∀i ∈ I,

x ∈ Q, yi = fi(x), ∀i ∈ I,

where ai for i = 1, . . . ,m and z are unbounded variables introduced to represent
values of several partial achievement functions and their minimum, respectively.

For any reference levels ra
i > rr

i (attainable or not), the RPM always generates an
efficient solution. That means, if x̄ ∈ Q, together with ā, ȳ, z̄, is an optimal solution
of problem (5), then x̄ is an efficient solution of the corresponding multiple criteria
optimization problem (1). Moreover, the RPM supports controllability of the interac-
tive process by the reference levels in the sense that various efficient solutions can be
selected by appropriate setting of the reference levels. Actually, only lexicographic
forms of the RPM (Ogryczak 1994, 2001; Ogryczak and Lahoda 1992) maintain
the complete controllability guaranteeing that for any efficient solution, there exist
reference levels allowing one to identify that solution as optimal. While using the an-
alytic forms of the scalarizing achievement function, the regularization term causes
that only properly efficient solutions (Geoffrion 1968) with bounded tradeoffs can
be generated (Kaliszewski 1994; Wierzbicki 1999). Recall that an efficient solution
x̄ ∈ Q with corresponding outcome vector ȳ = f(x̄) is properly efficient with tradeoffs
bounded by Δ if and only if, for any attainable outcome vector y, the implication

yi > ȳi and yk < ȳk ⇒ yi − ȳi

ȳk − yk

≤ Δ (6)

is valid for any i, k ∈ I . Each properly efficient solution x̄ with tradeoffs bounded
by Δ = m+ε

α(m−1)ε
is an optimal solution to the RPM problem (5) for aspiration levels

ra
i = fi(x̄) and reservation levels rr

i = fi(x̄) − 1, i = 1,2, . . . ,m.
The crucial properties of the RPM are related to the max–min aggregation of par-

tial achievements, while the regularization is only introduced to guarantee the aggre-
gation monotonicity. Unfortunately, the distribution of achievements may make the
max–min criterion partially passive when one specific achievement is relatively very
small for all the solutions. Maximization of the worst achievement may then leave all
other achievements unoptimized. Nevertheless, the selection is then made according
to linear aggregation of the regularization term instead of the max–min aggregation,
thus destroying the preference model of the RPM. This can be illustrated with an
example of a simple discrete problem of seven alternative feasible solutions to be
selected according to six criteria. Table 1 presents six partial achievements for all the
solutions where the partial achievements have been defined according to the aspira-
tion/reservation model (3), thus allocating 1 to outcomes reaching the corresponding
aspiration level. All the solutions are efficient. Solution S1 to S5 oversteps the aspi-
ration levels (achievement values 1.2) for four of the first five criteria while failing
to reach one of them and the aspiration level for the sixth criterion as well (achieve-
ment values 0.3). Solution S6 meets the aspiration levels (achievement values 1.0)
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Table 1 Sample achievements
with passive max–min criterion Sol. a1 a2 a3 a4 a5 a6 min

∑

S1 0.3 1.2 1.2 1.2 1.2 0.3 0.3 5.4

S2 1.2 0.3 1.2 1.2 1.2 0.3 0.3 5.4

S3 1.2 1.2 0.3 1.2 1.2 0.3 0.3 5.4

S4 1.2 1.2 1.2 0.3 1.2 0.3 0.3 5.4

S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 5.4

S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 5.3

S7 0.3 0.3 0.3 1.0 0.6 1.0 0.3 3.5

for the first five criteria while failing to reach only the aspiration level for the sixth
criterion (achievement values 0.3). All the solutions generate the same worst achieve-
ment value 0.3, and the final selection of the RPM depends on the total achievement
(regularization term). Actually, one of solutions S1 to S5 will be selected as better
than S6.

In order to avoid inconsistencies caused by the regularization, the max–min so-
lution may be regularized lexicographically (Ogryczak 2008) or according to the or-
dered averaging rules (Yager 1988). This is mathematically formalized as follows.
Within the space of achievement vectors, we introduce the map Θ = (θ1, θ2, . . . , θm)

which orders the coordinates of achievements vectors in a nonincreasing order, i.e.,
Θ(a1, a2, . . . , am) = (θ1(a), θ2(a), . . . , θm(a)) iff there exists a permutation τ such
that θi(a) = aτ(i) for all i and θ1(a) ≥ θ2(a) ≥ · · · ≥ θm(a). The standard max–min
aggregation depends on maximization of θm(a) and ignores the values of θi(a) for
i ≤ m − 1. In order to take into account all the achievement values, one needs to
maximize the weighted combination of the ordered achievements, thus representing
the so-called Ordered Weighted Averaging (OWA) aggregation (Yager 1988). Note
that the weights are then assigned to the specific positions within the ordered achieve-
ments rather than to the partial achievements themselves. With the OWA aggregation,
one gets the following RPM model:

max

{
m∑

i=1

wiθi(a) : x ∈ Q,ai = si
(
fi(x)

) ∀i ∈ I

}

, (7)

where w1 < w2 < · · · < wm are positive and strictly increasing weights. Note that the
standard RPM model with the scalarizing achievement function (2) can be expressed
as the OWA model max((1 + ε

m
)θm(a) + ε

m

∑m−1
i=1 θi(a)). Hence, the standard RPM

model exactly represents the OWA aggregation (7) with strictly increasing weights
in the case of m = 2 (w1 = ε/2 < w2 = 1 + ε/2). For m > 2, it abandons the differ-
ences in weighting the largest achievement, the second largest one, etc. (w1 = · · · =
wm−1 = ε/m). The OWA RPM model (7) allows one to distinguish all the weights by
introducing increasing series. One may notice in Table 2 that application of increasing
weights w = (0.02,0.03,0.05,0.15,0.25,0.5) within the OWA RPM enables selec-
tion of solution S6 from Table 1. Actually, the OWA weights should be significantly
increasing to represent regularization of the max–min order. When differences among
weights tend to infinity, the OWA aggregation approximates the leximin ranking of
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Table 2 Ordered achievements
values Sol. θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 1.2 1.2 1.2 1.2 0.3 0.3 0.525

S2 1.2 1.2 1.2 1.2 0.3 0.3 0.525

S3 1.2 1.2 1.2 1.2 0.3 0.3 0.525

S4 1.2 1.2 1.2 1.2 0.3 0.3 0.525

S5 1.2 1.2 1.2 1.2 0.3 0.3 0.525

S6 1.0 1.0 1.0 1.0 1.0 0.3 0.650

S7 1.0 1.0 0.6 0.3 0.3 0.3 0.305

w 0.02 0.03 0.05 0.15 0.25 0.5

the ordered outcome vectors (Yager 1997), thus allowing the corresponding OWA
RPM to approximate the leximin (nucleolar) RPM concept (Kostreva et al. 2004;
Ogryczak 2008). However, any finite differences small enough to allow for numer-
ical computation of the OWA values provide the analytic form of the scalarizing
achievement function. Hence, we recommend the use of geometric increasing series
to define the OWA RPM weights wi . Note that, similar to the regularization parame-
ter ε in the standard scalarizing achievement function (2), the OWA weights wi are
the RPM internal parameters rather than the control parameters to be set by the DM
during the interactive process.

An important advantage of the RPM depends on its easy implementation as an
expansion of the original multiple criteria model. Actually, even complicated partial
achievement functions of the form (3) are strictly increasing and concave, thus allow-
ing for implementation of the entire RPM model (2) by an LP expansion (Ogryczak
et al. 1992).

The OWA aggregation is obviously a piecewise linear function since it remains
linear within every area of the fixed order of arguments. The ordered achievements
used in the OWA aggregation are, in general, hard to implement due to the point-
wise ordering. However, its optimization can be implemented with the use of the
cumulated ordered achievements θ̄k(a) = ∑k

i=1 θm−i+1(a) expressing, respectively:
the worst (smallest) achievement, the total of the two worst achievements, the total
of the three worst achievements, etc. Indeed,

m∑

i=1

wiθi(a) =
m∑

i=1

w′
i θ̄i (a),

where w′
i = wm−i+1 −wm−i for i = 1, . . . ,m−1, and w′

m = w1. This simplifies dra-
matically the optimization problem since quantities θ̄k(a) can be optimized without
use of any integer variables (Ogryczak and Śliwiński 2003). First, let us notice that
for any given vector a, the cumulated ordered value θ̄k(a) can be found as the optimal
value of the following LP problem:

θ̄k(a) = min
uik

{
m∑

i=1

aiuik :
m∑

i=1

uik = k,0 ≤ uik ≤ 1 ∀i

}

. (8)
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The above problem is an LP for a given outcome vector a, while it becomes nonlinear
for a being a vector of variables. This difficulty can be overcome by taking advantage
of the LP dual to (8). Introducing a dual variable tk corresponding to the equation∑m

i=1 uik = k and variables dik corresponding to upper bounds on uik , one gets the
following LP dual of problem (8):

θ̄k(a) = max
tk,dik

{

ktk −
m∑

i=1

dik : ai ≥ tk − dik, dik ≥ 0 ∀i

}

. (9)

Due the duality theory, for any given vector a, the cumulated ordered coefficient θ̄k(a)

can be found as the optimal value of the above LP problem.
Taking advantages of the LP expression (9) for θ̄i , the entire OWA aggregation of

the partial achievement functions (7) can be expressed in terms of LP. Moreover, in
the case of concave piecewise linear partial achievement functions, as typically used
in the RPM approaches, the resulting formulation extends the original constraints
and criteria with auxiliary linear inequalities. In particular, for strictly increasing and
concave partial achievement functions (3), the OWA RPM can be expressed in the
form

max
m∑

k=1

w′
kzk

s.t. zk = ktk −
m∑

i=1

dik, ∀k ∈ I,

x ∈ Q, yi = fi(x), ∀i ∈ I,

ai ≥ tk − dik, dik ≥ 0, ∀i, k ∈ I

ai ≤ γ
(
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I,

ai ≤ (
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I,

ai ≤ α
(
yi − ra

i

)/(
ra
i − rr

i

) + 1, ∀i ∈ I.

(10)

Theorem 1 For any reference levels ra
i > rr

i , i ∈ I , and any positive weights w′,
if x̄ ∈ Q, together with ā, ȳ, z̄, t̄, d̄, is an optimal solution of the OWA RPM problem
(10), then x̄ is an efficient solution of the corresponding multiple criteria optimization
problem (1).

Proof Let (x̄, ā, ȳ, z̄, t̄, d̄) be an optimal solution of problem (10) with some pos-
itive weighting vector w′. Following formulas (4) and (9), one may notice that
problem (10) is equivalent to the OWA RPM problem (7) with partial achieve-
ment functions si defined by (3) and positive strictly increasing OWA weights
wk = ∑m

i=m−k+1 w′
i . Suppose that x̄ is not efficient to the multiple criteria opti-

mization problem (1). This means there exists a decision vector x ∈ Q such that
fi(x) ≥ fi(x̄) for all i ∈ I and fio(x) > fio(x̄) for some outcome index io ∈ I . Let
us define ai = si(fi(x)) according to formula (3). The pair (x,a) is then a feasible
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solution of problem (7). Moreover, ai ≥ āi for all i ∈ I , where at least one strict
inequality ai0 > āi0 holds. Hence, due to the strict monotonicity of the OWA aggre-
gation with positive weighting vectors (Llamazares 2004), one gets Aw(a) > Aw(ā),
which contradicts the optimality of (x̄, ā) for problem (7). �

The following theorem shows that, for each properly efficient solution x̄ with
tradeoffs bounded by appropriate Δ, there exist aspiration and reservation vectors
such that x̄ with the corresponding values of the achievements is an optimal solution
of problem (10), thus justifying the controllability of the interactive process by the
reference levels.

Theorem 2 For any positive and strictly increasing OWA weights 0 < w1 < w2 <

· · · < wm, if x̄ ∈ Q is a properly efficient solution with tradeoffs bounded by Δ =
γwm/

∑m−1
i=1 wi , then there exist aspirations levels ra

i and reservation levels rr
i such

that x̄, together with appropriate ā, ȳ, z̄, t̄, d̄, is an optimal solution of the correspond-
ing problem (10).

Proof Let x̄ with the corresponding outcome vector ȳ be a properly efficient solu-
tion with tradeoffs bounded by Δ. Let us set the reference levels as rr

i = ȳi and
ra
i = ȳi + 1 for i ∈ I and define achievements āi = si(ȳi) according to formula (3).

We will show that (x̄, ā) is an optimal solution of the corresponding OWA RPM
problem (7). Suppose that there exists a feasible vector x ∈ Q with outcomes y such
that for its achievements ai = si(fi(x)), i = 1,2, . . . ,m, one gets a better scalariz-
ing achievement value

∑m
i=1 wiθi(a) >

∑m
i=1 wiθi(ā). Note that āi = 0 for all i ∈ I .

Hence, θi(a) − θi(ā) = aτ(i) − āτ (i) for all i ∈ I , where τ is the ordering permutation
for the achievements vector a. Moreover, due to efficiency of x̄, 0 > aτ(m) − āτ (m) ≥
γ (yτ(m) − ȳτ (m)), and due to formula (3), aτ(i) − āτ (i) ≤ yτ(i) − ȳτ (i) whenever
yτ(i) − ȳτ (i) > 0. Thus, taking advantages of the proper efficiency inequalities (6)
for k = τ(m), one gets

m−1∑

i=1

wi(yτ(i) − ȳτ (i)) ≤ −
m−1∑

i=1

wiΔ(yτ(m) − ȳτ (m)) ≤ −wmγ (yτ(m) − ȳτ (m))

which contradicts the inequality
∑m

i=1 wiθi(a) >
∑m

i=1 wiθi(ā) and thereby confirms
the optimality of (x̄, ā) for the corresponding OWA RPM problem (7).

Since, following formulas (4) and (9), problem (10) is equivalent to the OWA
RPM problem (7) with partial achievement functions si defined by (3), the optimal
solution (x̄, ā) with outcomes ȳ can be expanded with appropriate values of z̄, t̄, d̄
to an optimal solution of problem (10). Actually, one needs to introduce (Ogryczak
and Tamir 2003): t̄k = θk(ā) for k ∈ I , d̄ik = max{t̄k − āi ,0} for i, k ∈ I , and z̄k =
kt̄k − ∑m

i=1 d̄ik for k ∈ I . �

The OWA RPM while taking into account all the ordered achievements tends to
find an efficient solution with possibly equal partial achievements. The following the-
orem shows that for any reference levels ra

i > rr
i and any positive weights w′, if there
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exists a properly efficient solution x̄ with tradeoffs bounded by Δ = wm/(
∑m−1

i=1 wi)

generating equal achievements ā1 = ā2 = · · · = ām, then x̄ with the corresponding
values of auxiliary variables is an optimal solution of problem (10).

Theorem 3 For any reference levels ra
i > rr

i , any positive and strictly increasing
OWA weights 0 < w1 < w2 < · · · < wm, if x̄ ∈ Q is a properly efficient solution with
tradeoffs bounded by Δ = wm/(

∑m−1
i=1 wi) such that all its partial achievements are

perfectly equal ā1 = ā2 = · · · = ām, then x̄, together with appropriate ā, ȳ, z̄, t̄, d̄, is
an optimal solution of the corresponding problem (10).

Proof Let x̄ with the corresponding outcome vector ȳ be a properly efficient solution
with tradeoffs bounded by Δ such that achievements āi = si(ȳi ) according to for-
mula (3) are equal, i.e., āi = δ for all i ∈ I with some constant δ. We will show that
(x̄, ā) is an optimal solution of the corresponding OWA RPM problem (7). Suppose
that there exists a feasible vector x ∈ Q with outcomes y such that for its achieve-
ments ai = si(fi(x)), i = 1,2, . . . ,m, one gets a better scalarizing achievement value∑m

i=1 wiθi(a) >
∑m

i=1 wiθi(ā). Note that θi(a) − θi(ā) = aτ(i) − āτ (i) for all i ∈ I ,
where τ is the ordering permutation for the achievements vector a. Moreover, due
to efficiency of x̄, 0 > aτ(m) − āτ (m) ≥ σ(yτ(m) − ȳτ (m)), and due to formula (3),
aτ(i) − āτ (i) ≤ σ(yτ(i) − ȳτ (i)) whenever yτ(i) − ȳτ (i) > 0, where σ = α for δ > 1,
σ = γ for δ < 0, and σ = 1 otherwise. Thus, taking advantages of the proper effi-
ciency inequalities (6) for k = τ(m), one gets

m−1∑

i=1

wiσ(yτ(i) − ȳτ (i)) ≤ −
m−1∑

i=1

wiσΔ(yτ(m) − ȳτ (m)) = −wmσ(yτ(m) − ȳτ (m))

which contradicts the inequality
∑m

i=1 wiθi(a) >
∑m

i=1 wiθi(ā) and thereby confirms
the optimality of (x̄, ā) for the corresponding OWA RPM problem (7).

Since problem (10) is equivalent to the OWA RPM problem (7) with partial
achievement functions si defined by (3), the optimal solution (x̄, ā) with outcomes
ȳ can be expanded with appropriate values of z̄, t̄, d̄ to an optimal solution of prob-
lem (10). Actually, one needs to introduce (Ogryczak and Tamir 2003): t̄k = θk(ā) for
k ∈ I , d̄ik = max{t̄k − āi ,0} for i, k ∈ I , and z̄k = kt̄k − ∑m

i=1 d̄ik for k ∈ I . �

When there does not exist any properly efficient solution with perfectly equal par-
tial achievements, then the OWA RPM model generates another efficient solution still
providing equitability of partial achievements with respect to the Pigou–Dalton prin-
ciple of transfers (Kostreva et al. 2004). That means, a transfer of small amount from
an individual achievement to any relatively worse-off individual achievement results
in a more preferred achievement vector, i.e., whenever ai < aj and 0 < ε ≤ aj − ai ,
then a + εei − εej is strictly preferred to a, where ei denotes the ith unit vector.
Recall that this equitability property applies to uniformly measured partial achieve-
ments, and it does not enforce any equitability of the original outcomes.
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3 Importance weighting of partial achievements

The standard RPM models allow weighting of several achievements only by straight-
forward rescaling of the achievement values (Ruiz et al. 2009). However, there are
many decision situations where there is need for importance weighting of achieve-
ments. This can be related to the involvement of multiple DMs to specify the pref-
erences like in procurement (Teich et al. 2006) or in more complex policy deci-
sions. In public policy decisions the interests of multiple stakeholders have to be
taken into account. Even when the decision is ultimately made by one individual, a
politician, that individual has to consider the interests of different parties (Miettinen
et al. 2008 and references therein). For instance, multicriteria analysis was needed
for exploring stakeholders preferences for diverse future energy technologies devel-
oped with the European Integrated Project NEEDS (Makowski et al. 2009). Such
Meta-criteria, which evaluate the distribution of results across several criteria, oc-
cur not only in multiperson decisions. The hierarchical importance of achievements
can be introduced into RPM models by partitioning the set of achievements (cri-
teria) into multiple preemptive optimization levels (Ogryczak 1997), while addi-
tional goal programming techniques applied to model requirements regarding rel-
evant achievement function were considered in the so-called Meta-goal program-
ming approach (Rodriguez et al. 2002). The OWA RPM model enables us to intro-
duce importance weights to affect an achievement (criterion) importance by rescal-
ing accordingly its measure within the distribution of all achievements (criteria).
This concept (Ogryczak and Kozłowski 2008) can be formalized with the so-called
Weighted OWA (WOWA) aggregations (Torra 1997; Torra and Narukawa 2007;
Liu 2006) of the partial achievements.

Let w = (w1, . . . ,wm) and p = (p1, . . . , pm) be weighting vectors of dimension m

such that wi ≥ 0 and pi ≥ 0 for i = 1,2, . . . ,m and
∑m

i=1 pi = 1 and
∑m

i=1 wi = 1.
The corresponding Weighted OWA aggregation of outcomes a = (a1, . . . , am) is orig-
inally (Torra 1997) defined as follows:

Aw,p(a) =
m∑

i=1

vi(a)θi(a), where vi(a) = V

(∑

k≤i

pτ(k)

)
− V

(∑

k<i

pτ(k)

)
(11)

with V a monotone increasing function that interpolates points ( i
m

,
∑

k≤i wk) for i =
1,2, . . . ,m together with the point (0,0) and τ representing the ordering permutation
for a (i.e., aτ(i) = θi(a)). We use linear interpolation leading to the piecewise linear
function V which is a straight line in the case of equal preferential weights (wi = 1/m

for i = 1,2, . . . ,m), thus allowing the WOWA to cover the standard weighted mean
as a special case.

Consider, for instance, two achievements vectors a′ = (0,1) and a′′ = (1,0).
While introducing preferential weights w = (0.1,0.9), one may calculate the OWA
averages: Aw(a′) = Aw(a′′) = 0.1 · 1 + 0.9 · 0 = 0.1. Further, let us introduce impor-
tance weights p = (0.75,0.25) to express that results under the first achievement are
three times more important than those related to the second criterion. To take into
account the importance weights in the WOWA aggregation (11), we introduce the
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piecewise linear function

V (ξ) =
{

0.1ξ/0.5 for 0 ≤ ξ ≤ 0.5,

0.1 + 0.9(ξ − 0.5)/0.5 for 0.5 < ξ ≤ 1.0

and calculate weights vi according to formula (11) as V increments corresponding
to importance weights of the ordered outcomes. In particular, for vector a′, one gets
v1(a′) = V (p2) = 0.05 and v2(a′) = 1 − V (p2) = 0.95, while v1(a′′) = V (p1) =
0.55 and v2(a′′) = 1 − V (p1) = 0.45. Finally, Aw,p(a′) = 0.05 · 1 + 0.95 · 0 = 0.05
and Aw,p(a′′) = 0.55 · 1 + 0.45 · 0 = 0.55.

One may alternatively compute the WOWA values by using the importance
weights to replicate corresponding achievements and then calculate OWA aggre-
gations. In the case of our importance weights p we need to consider three copies
of achievement a1 and one copy of achievement a2, thus generating vectors ã′ =
(0,0,0,1) and ã′′ = (1,1,1,0) of four equally important achievements. Original
preferential weights must be then applied respectively to the average of the two small-
est outcomes and the average of two largest outcomes. Indeed, we get Aw,p(a′) =
0.1 · 0.5 + 0.9 · 0 = 0.05 and Aw,p(a′′) = 0.1 · 1 + 0.9 · 0.5 = 0.55. This approach to
WOWA calculation can easily be formalized for the case of a uniform quantile grid
βj = j/J , j = 0,1, . . . , J , enabling both the preferential and the importance weight-
ing systems in the sense that there exists a positive integer l such that J = ml and
there exist positive integers mi = piJ for i = 1,2, . . . ,m. Then

Aw,p(a) =
m∑

i=1

wi

l

il∑

j=(i−1)l+1

θk(βj )(a), (12)

where k(βj ) = k for
∑

i<k pτ(i) < βj ≤ ∑
i≤k pτ(i), i = 1,2, . . . ,m, with τ repre-

senting the ordering permutation for a (i.e., aτ(i) = θi(a)).
Note that formula (12) allows one to express the WOWA aggregation with origi-

nal preferential (OWA) weights wi applied to averages of the corresponding portions
of ordered achievements. Actually, this is a special case of the general formula ex-
pressing the WOWA as the weighted combination of averages within the quantile
intervals according to the distribution defined by importance weights pi (Ogryczak
and Śliwiński 2007, 2009):

Aw,p(a) =
m∑

i=1

wim

∫ i
m

i−1
m

F
(−1)

a (ξ) dξ, (13)

where F
(−1)

a is the (decreasing) quantile function for the distribution defined by im-
portance weights pi . It can also be mathematically formalized as follows. First, we
introduce the right-continuous cumulative distribution function (cdf)
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Fa(d) =
m∑

i=1

piδi(d), (14)

where δi(d) = 1 if ai ≤ d and 0 otherwise. Next, we introduce the left-continuous
inverse of the cumulative distribution function Fa, ie., F

(−1)
a (ξ) = inf{η : Fa(η) ≥ ξ}

for 0 < ξ ≤ 1 and finally the quantile function F
(−1)

a (ξ) = F
(−1)
a (1 − ξ).

The WOWA RPM can be formulated as based on the following optimization prob-
lem:

max
{
Aw,p(a) : x ∈ Q,ai = si

(
fi(x)

) ∀i ∈ I
}

(15)

used to generate current solutions according to the specified preferences. Such
WOWA RPM model depends on two sets of weights w and p and obviously uses
the reference levels. Let us recall that it is an extension of the OWA RPM with addi-
tional capability to introduce the importance weights p. Hence, the OWA weights wi

are the RPM internal parameters rather than the control parameters to be set by the
DM during the interactive process. Geometric increasing series can be used to define
the OWA RPM weights wi , thus replacing the regularization parameter ε in the stan-
dard scalarizing achievement function (2). The importance weights p are designed to
represent the preference information. Actually, depending on the decision situation,
they may represent either a priori preference information not changed during the in-
teractive analysis based then solely on the reference levels, or they can be used as
additional control parameters supporting the interactive analysis. Note that in many
applications, especially related to committee decision makers, the ability to use the
importance weights may remarkably ease the organization of the interactive analysis.

Let us recall the RPM applied to the example of seven alternatives as given
in Table 1. Applying importance weighting p = ( 4

12 , 3
12 , 2

12 , 1
12 , 1

12 , 1
12 ) to solution

achievements from Table 1 and using them together with the OWA weights w from
Table 2, one gets the WOWA aggregations from Table 3. The corresponding RPM
method then selects solution S6, similarly to the case of equal importance weights.
On the other hand, when increasing the importance of the last outcome achievements
with p = ( 1

12 , 1
12 , 1

12 , 1
12 , 1

12 , 7
12 ), one gets the WOWA values from Table 4.

Formula (13) defines the WOWA value applying preferential weights wi to im-
portance weighted averages within quantile intervals. It may be reformulated with
the tail averages:

Aw,p(a) =
m∑

k=1

w′
kmL

(
a,p,

k

m

)
, where L(y,p, ξ) =

∫ ξ

0
F (−1)

y (α)dα (16)

with weights w′
k = wm−k+1 − wm−k for k = 1, . . . ,m − 1 and w′

m = w1. The func-

tions L(y,p, ξ) defined by left-tail integrating of F
(−1)
y take the form of convex piece-

wise linear curves, the so-called absolute Lorenz curves (Ogryczak and Ruszczyński
2002) connected to the relation of the second-order stochastic dominance (SSD).
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Table 3 WOWA RPM with importance weighting p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12 ) applied to solution
achievements from Table 1 according to formula (12) with J = 12 and l = 2

θ
k( 1

12 )
θ
k( 2

12 )
θ
k( 3

12 )
θ
k( 4

12 )
θ
k( 5

12 )
θ
k( 6

12 )
θ
k( 7

12 )
θ
k( 8

12 )
θ
k( 9

12 )
θ
k( 10

12 )
θ
k( 11

12 )
θ
k( 12

12 )
Aw,p

S1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.458

S2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.525

S3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.638

S4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.750

S5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.750

S6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.825

S7 1.0 1.0 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.319

w 0.02 0.03 0.05 0.15 0.25 0.5

Table 4 WOWA RPM with importance weighting p = ( 1
12 , 1

12 , 1
12 , 1

12 , 1
12 , 7

12 ) applied to solution
achievements from Table 1 according to formula (12) with J = 12 and l = 2

θ
k( 1

12 )
θ
k( 2

12 )
θ
k( 3

12 )
θ
k( 4

12 )
θ
k( 5

12 )
θ
k( 6

12 )
θ
k( 7

12 )
θ
k( 8

12 )
θ
k( 9

12 )
θ
k( 10

12 )
θ
k( 11

12 )
θ
k( 12

12 )
Aw,p

S1 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345

S2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345

S3 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345

S4 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345

S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345

S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.353

S7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.3 0.3 0.3 0.513

w 0.02 0.03 0.05 0.15 0.25 0.5

According to (16), values of the function L(a,p, ξ) for any 0 ≤ ξ ≤ 1 can be given
by optimization:

L(a,p, ξ) = min
ui

{
m∑

i=1

aiui :
m∑

i=1

ui = ξ, 0 ≤ ui ≤ pi ∀i

}

. (17)

Introducing the dual variable t corresponding to the equation
∑m

i=1 ui = ξ and the
variables di corresponding to upper bounds on ui , one gets the following LP dual
expression of L(a,p, ξ):

L(a,p, ξ) = max
t,di

{

ξ t −
m∑

i=1

pidi : t − di ≤ ai, di ≥ 0 ∀i

}

. (18)

Following (16) and (18) and taking into account piecewise linear partial achieve-
ment functions (3), one gets finally the following model for the WOWA Reference
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Point Method with piecewise linear partial achievement functions (3):

max
m∑

k=1

w′
kzk

s.t. zk = ktk − m

m∑

i=1

pidik, ∀k ∈ I,

x ∈ Q, yi = fi(x), ∀i ∈ I,

ai ≥ tk − dik, dik ≥ 0, ∀i, k ∈ I,

ai ≤ γ
(
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I,

ai ≤ (
yi − rr

i

)/(
ra
i − rr

i

)
, ∀i ∈ I,

ai ≤ α
(
yi − ra

i

)/(
ra
i − rr

i

) + 1, ∀i ∈ I.

(19)

Theorem 4 For any reference levels ra
i > rr

i and any positive weights w and p, if
x̄ ∈ Q, together with ā, ȳ, z̄, t̄, d̄, is an optimal solution of problem (19), then x̄ is an
efficient solution of the corresponding multiple criteria optimization problem (1).

Proof Let (x̄, ā, ȳ, z̄, t̄, d̄) be an optimal solution of problem (19) with some pos-
itive weighting vectors w and p. Following formulas (4) and (18), one may no-
tice that problem (19) is equivalent to the WOWA RPM problem (15) with par-
tial achievement functions si defined by (3). Suppose that x̄ is not efficient to the
multiple criteria optimization problem (1). This means that there exists a decision
vector x ∈ Q such that fi(x) ≥ fi(x̄) for all i ∈ I and fio(x) > fio(x̄) for some
outcome index io ∈ I . Let us define ai = si(fi(x)) according to formula (3). The
pair (x,a) is then a feasible solution of problem (15). Moreover, ai ≥ āi for all
i ∈ I , where at least one strict inequality ai0 > āi0 holds. Then (Ogryczak and

Ruszczyński 2002) F
(−1)

a (ξ) ≥ F
(−1)

ā (ξ) for any 0 ≤ ξ ≤ 1, and simultaneously
∫ 1

0 F
(−1)

a (ξ) dξ = ∑m
i=1 piai >

∑m
i=1 piāi = ∫ 1

0 F
(−1)

ā (ξ) dξ . Hence, following for-
mula (13), one gets Aw,p(a) > Aw,p(ā), which contradicts the optimality of (x̄, ā) for
problem (15). �

When considering controllability of the interactive process by both the refer-
ence levels and the importance weights, one may use uniform importance weights
pi = 1/m for i ∈ I , thus taking advantages of the OWA RPM controllability. Fol-
lowing Theorem 2, one may easily justify that for each properly efficient solution
x̄ with tradeoffs bounded by Δ = γwm/(

∑m−1
i=1 wi), there exist importance weights

and aspiration and reservation vectors such that x̄ with the corresponding values of
the achievements is an optimal solution of problem (19).

Theorem 5 For any positive and strictly increasing normalized preferential weights
0 < w1 < w2 < · · · < wm with

∑m
i=1 wi = 1, if x̄ ∈ Q is a properly efficient solu-

tion with tradeoffs bounded by Δ = γwm/(
∑m−1

i=1 wi), then there exist aspirations
levels ra

i , reservation levels rr
i , and positive importance weights pi such that x̄, to-
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gether with appropriate ā, ȳ, z̄, t̄, d̄, is an optimal solution of the corresponding prob-
lem (19).

Proof When assuming equal importance weights pi = 1/m for i ∈ I , the WOWA
RPM model (19) becomes the corresponding OWA RPM model (10). Thus Theo-
rem 2 guarantees the existence of aspirations levels ra

i and reservation levels rr
i such

that x̄, together with appropriate ā, ȳ, z̄, t̄, d̄, is an optimal solution of the correspond-
ing problem (19) with assumed importance weights. �

Certainly, while dealing with given importance weights pi , it might be more dif-
ficult to identify a specific efficient solution. Nevertheless, as shown in the follow-
ing theorem, for any positive importance weights, for any properly efficient solution
x̄ ∈ Q with tradeoffs bounded by appropriate Δ, there exist aspiration and reservation
levels such that x̄ with the corresponding values of the achievements is an optimal so-
lution of problem (19).

Theorem 6 For any positive and strictly increasing normalized preferential weights
0 < w1 < w2 < · · · < wm and any positive importance weights pi , if x̄ ∈ Q is a
properly efficient solution with tradeoffs bounded by

Δ = mp̄γwm

(1 − mp̄wm)
, where p̄ = min

i∈I
pi,

then there exist aspirations levels ra
i and reservation levels rr

i such that x̄, to-
gether with appropriate ā, ȳ, z̄, t̄, d̄, is an optimal solution of the corresponding prob-
lem (19).

Proof Let x̄ with the corresponding outcome vector ȳ be a properly efficient solu-
tion with tradeoffs bounded by Δ. Let us set the reference levels as rr

i = ȳi and
ra
i = ȳi + 1 for i ∈ I and define achievements āi = si(ȳi) according to formula (3).

We will show that (x̄, ā) is an optimal solution of the corresponding WOWA RPM
problem (15). Suppose that there exists a feasible vector x ∈ Q with outcomes y such
that for its achievements ai = si(fi(x)), i = 1,2, . . . ,m, one gets a better scalariz-
ing achievement value Aw,p(a) > Aw,p(ā). Note that āi = 0 for all i ∈ I . Hence,
following formula (11), Aw,p(a) − Aw,p(ā) = ∑m

i=1 vi(a)θi(a) − ∑m
i=1 vi(ā)θi(ā) =∑m

i=1 vi(a)(aτ(i) − āτ (i)) where τ is the ordering permutation for the achievements
vector a. Moreover, due to the efficiency of x̄, 0 > aτ(m) − āτ (m) ≥ γ (yτ(m) − ȳτ (m)),
and due to formula (3), aτ(i) − āτ (i) ≤ yτ(i) − ȳτ (i) whenever yτ(i) − ȳτ (i) > 0. Thus,
taking advantages of the proper efficiency inequalities (6) for k = τ(m), one gets

m−1∑

i=1

vi(a)(yτ(i) − ȳτ (i)) ≤ −
m−1∑

i=1

vi(a)Δ(yτ(m) − ȳτ (m)) ≤ −vm(a)γ (yτ(m) − ȳτ (m))

which contradicts to the inequality
∑m

i=1 wiθi(a) >
∑m

i=1 wiθi(ā) and thereby con-
firms the optimality of (x̄, ā) for the corresponding WOWA RPM problem (15).

Since, following formulas (4) and (18), problem (19) is equivalent to the WOWA
RPM problem (15) with partial achievement functions si defined by (3), the optimal
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solution (x̄, ā) with outcomes ȳ can be expanded with appropriate values of z̄, t̄, d̄ to
an optimal solution of problem (19). Actually, one needs to introduce (Ogryczak and

Ruszczyński 2002): t̄k = F
(−1)

ā (k/m) for k ∈ I , d̄ik = max{t̄k − āi ,0} for i, k ∈ I ,
and z̄k = kt̄k − m

∑m
i=1 pid̄ik for k ∈ I . �

Due to introducing importance weights, the WOWA RPM allows one to distin-
guish various individual achievements. Therefore, opposite to the OWA RPM, it
does not generally provide any direct equitability of partial achievements, although
it can be considered equitable with respect to the importance weighted achievements
in the sense that a + ε

pi
ei − ε

pj
ej is strictly preferred to a whenever ai < aj and

0 < ε < (aj − ai)min{pi,pj } (Ogryczak 2009a).

4 Illustrative example

In order to illustrate the WOWA RPM approach, let us analyze a simplified multiple
criteria problem of information system selection. The decision is based on six criteria
related to the system reliability, processing efficiency, investment costs, installation
time, operational costs, and warranty period. All these attributes may be viewed as
criteria, either maximized or minimized. Table 5 presents all the criteria with their
measures units and optimization directions. There are also given the aspiration and
reservation levels for each criterion and the normalized importance weights (p) for
several achievements. Five candidate systems have been accepted for the final selec-
tion procedure. All they meet the minimal requirements defined by the reservation
levels. Table 6 presents, for all the systems (columns), their criteria values yi and the
corresponding partial achievement values ai . The latter have been computed accord-
ing to the piecewise linear formula (3) with α = 0.1.

Table 7 presents, for all the systems (rows), their partial achievement values or-
dered from the largest to the smallest taking into account replications according to
the importance weights allowing for easy WOWA aggregation computations accord-
ing to formula (12). One may notice that, except of system D, all the other systems
have the same worst achievement value mini ai = 0.33. Selection among systems A,
B, C, and E depends only on the regularization of achievements aggregation used in

Table 5 Criteria and their reference levels for the sample system selection

f1 f2 f3 f4 f5 f6

Attributes Reliability Efficiency Invest. cost Install. time Oprnl. cost Warranty period

Units 1–10 CAPS mln. EUR months mln. EUR years

Optimization max max min min min max

Reservation 8 50 2 12 1.25 0.5

Aspiration 10 200 0 6 0.5 2

Importance weights 0.25 0.25 0.083 0.083 0.25 0.083
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Table 6 Criteria values yi and partial achievements ai for five systems

System A System B System C System D System E Importance
weighti yi ai yi ai yi ai yi ai yi ai

1 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00 0.250

2 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67 0.250

3 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75 0.083

4 8 0.67 3 1.05 8 0.67 8 0.67 5 1.02 0.083

5 1 0.33 1 0.33 0.6 0.87 0.2 1.04 1 0.33 0.250

6 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67 0.083

Table 7 WOWA RPM selection for the sample system selection with calculations according to formula
(12) for J = 12 and l = 2

θ
k( 1

12 )
θ
k( 2

12 )
θ
k( 3

12 )
θ
k( 4

12 )
θ
k( 5

12 )
θ
k( 6

12 )
θ
k( 7

12 )
θ
k( 8

12 )
θ
k( 9

12 )
θ
k( 10

12 )
θ
k( 11

12 )
θ
k( 12

12 )
Aw,p

A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.50 0.33 0.33 0.33 0.47

B 1.05 1.00 0.85 0.50 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33 0.37

C 1.00 1.00 1.00 0.87 0.87 0.87 0.80 0.80 0.80 0.67 0.60 0.33 0.56

D 1.04 1.04 1.04 1.00 0.90 0.67 0.50 0.50 0.50 0.27 0.27 0.27 0.37

E 1.02 1.00 1.00 1.00 0.75 0.67 0.67 0.67 0.67 0.33 0.33 0.33 0.45

w 0.02 0.03 0.05 0.1 0.2 0.6

the RPM approach. The WOWA RPM method, taking into account the importance
weights together with the preferential weights w = (0.02,0.03,0.05,0.1,0.2,0.6),
points out system C as the best one. The standard RPM (2) will select system A as
better than all the others. Certainly, the WOWA RPM selection will change dramati-
cally when decreasing importance of criterion f5 and increasing importance of f6.

Conclusions

The reference point method is a very convenient technique for interactive analysis
of the multiple criteria optimization problems. It provides the DM with a tool for
an open analysis of the efficient frontier. The interactive analysis is navigated with
the commonly accepted control parameters expressing reference levels for the indi-
vidual objective functions. The partial achievement functions quantify the DM satis-
faction from the individual outcomes with respect to the given reference levels. The
final scalarizing function is built as the augmented max–min aggregation of partial
achievements, which means that the worst individual achievement is essentially max-
imized, but the optimization process is additionally regularized with the term repre-
senting the average achievement. The regularization by the average achievement is
easily implementable, but it may disturb the basic max–min aggregation. In order to
avoid inconsistencies caused by the regularization, the max–min solution may be reg-
ularized by taking into account also the second worst achievement, the third worse,
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and so on, thus resulting in much better modeling of the reference levels concept
(Kostreva et al. 2004). We have shown that it can be achieved by a direct use of the
OWA aggregation of the partial achievements as the final scalarizing achievement
function. The corresponding OWA RPM method preserves the crucial requirements
with respect to the efficiency of the generated solution and the controllability of inter-
action analysis by the reference levels as the only control parameters. Similar earlier
ordered regularizations of the RPM have been based on the lexicographic approaches,
thus resulting in complicated RPM models (Ogryczak 2008, 2009b) and not offering
any explicit scalarizing achievement function which could be directly interpreted as
expressing utility to be maximized. Developed optimization methods for ordered av-
erages (Ogryczak and Śliwiński 2003) allow one to implement the OWA RPM quite
effectively. The OWA RPM model with concave piecewise linear partial achievement
functions (typically used in the RPM) can be formulated by the original constraints
and criteria with simple auxiliary linear inequalities thus allowing for an efficient
implementation.

Further, the OWA RPM model enables us to introduce importance weights to affect
achievements importance by rescaling accordingly their measure within the distribu-
tion of all achievements. This concept (Ogryczak and Kozłowski 2008) takes advan-
tages of the so-called Weighted OWA (WOWA) aggregations (Torra and Narukawa
2007) of the partial achievements. The standard RPM models allow weighting of
several achievements only by straightforward rescaling of the achievement values
(Ruiz et al. 2009), whereas there are many decision situations with a clear need for
importance weighting of achievements. This can be related to the involvement of
multiple DMs to specify the preferences like in complex policy decisions involving
many stakeholders. We have shown that the WOWA RPM model meets the crucial
requirements with respect to the efficiency of the generated solution and the control-
lability of interaction analysis by the reference levels and the importance weights.
Moreover, opposite to similar earlier weighted ordered regularizations of the RPM
based on the lexicographic approaches (Ogryczak 2009b), the WOWA RPM pro-
vides explicitly an analytical scalarizing achievement function which can be directly
interpreted as expressing utility. The recent progress in optimization methods for the
WOWA aggregations (Ogryczak and Śliwiński 2009) allows one to implement the
WOWA RPM quite effectively by taking advantages of piecewise linear expression
of the cumulated ordered achievements. Actually, in the case of concave piecewise
linear partial achievement functions, the resulting formulation extends the original
constraints and criteria with simple linear inequalities, thus allowing for a quite effi-
cient implementation.

Our analysis has been focused on the RPM approaches. The OWA and WOWA
aggregation can be similarly applied to regularize other max–min approaches to mul-
tiple criteria decision support. In particular, they can be used within goal program-
ming methodology to reach better modeling of preferences with respect to reaching
the aspiration levels for multiple goals (Rodriguez et al. 2002).
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