
Top (2010) 18: 271–285
DOI 10.1007/s11750-009-0101-8

O R I G I NA L PA P E R

Conditional median as a robust solution concept
for uncapacitated location problems

Włodzimierz Ogryczak

Received: 18 November 2008 / Accepted: 30 April 2009 / Published online: 22 May 2009
© Sociedad de Estadística e Investigación Operativa 2009

Abstract While making location decisions, one intends to increase effects (reduce
distances) for the service recipients (clients). A conventional optimization approach
to location problems considers only the optimality of locational decisions for specific
clients data. Real-world applications inevitably involve errors and uncertainties in
the operating conditions, and thereby the resulting performance may be lower than
expected. In particular, a distribution system design is very sensitive to the varying
demands for goods, and the demand changes may deteriorate drastically the system
efficiency when optimized for different demand structure. Several approaches have
been developed to deal with uncertain or imprecise data. The approaches focused
on the quality or on the variation (stability) of the solution for some data domains
are considered robust. Frequently, uncertainty is represented by limits (intervals) on
possible values of demand weights varying independently rather than by scenarios for
all the weights simultaneously. In this paper we show that a solution concept of the
conditional median can be used to optimize effectively such robust location problems.
The conditional median is a generalization of the minimax solution concept extended
to take into account the number of services (the portion of demand) related to the
worst performances. Namely, for a specified portion of demand, we take into account
the corresponding portion of the maximum results, and we consider their average
as the worst conditional mean to be minimized. Similar to the standard minimax
approach, the minimization of the worst conditional mean can be defined by a linear
objective and a number of auxiliary linear inequalities.
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1 Introduction

While locating facilities to meet some service demand of a given set of clients, the
median solution concept, depending on the minimization of the demands weighted
mean outcome, is well suited for the system efficiency maximization. However, se-
rious uncertainty regarding demand data may significantly lower efficiency of the
selected location pattern. This causes a need for some robust solution concepts.

Several approaches have been developed to deal with uncertain or imprecise data
in optimization problem. The approaches focused on the quality or on the variation
(stability) of the solution for some data domains are considered robust. The notion of
robustness applied to decision problems was first introduced by Gupta and Rosenhead
(1968). Practical importance of the performance sensitivity against data uncertainty
and errors has later attracted considerable attention to the search for robust solutions.
Actually, as suggested by Roy (1998), the concept of robustness should be applied not
only to solutions but, more generally, to various assertions and recommendations gen-
erated within a decision support process. The precise concept of robustness depends
on the way the uncertain data domains and the quality or stability characteristics are
introduced. Typically, in robust analysis one does not attribute any probability dis-
tribution to represent uncertainties. Data uncertainty is rather represented by nonat-
tributed scenarios. Since one wishes to optimize results under each scenario, robust
optimization might be in some sense viewed as a multiobjective optimization problem
where objectives correspond to the scenarios. However, despite of many similarities
of such robust optimization concepts to multiobjective models, there are also some
significant differences (Hites et al. 2006). Actually, robust optimization is a problem
of optimal distribution of objective values under several scenarios (Ogryczak 2002)
rather than a standard multiobjective optimization model.

A conservative notion of robustness focusing on worst-case scenario results is
widely accepted and the minimax optimization is commonly used to seek robust so-
lutions. The worst-case scenario analysis can be applied either to the absolute val-
ues of objectives (the absolute robustness) or to the regret values (the deviational
robustness) (Kouvelis and Yu 1997). The latter, when considered from the multiob-
jective perspective, represents a simplified reference point approach with the utopian
(ideal) objective values for all the scenario used as aspiration levels. Recently, a more
advanced concept of ordered weighted averaging was introduced into robust opti-
mization (Perny et al. 2006), thus, allowing one to optimize combined performances
under the worst-case scenario together with the performances under the second worst
scenario, the third worst, and so on. Such an approach exploits better the entire dis-
tribution of objective vectors in search for robust solutions, and, more importantly,
it introduces some tools for modeling robust preferences. Actually, while more so-
phisticated concepts of robust optimization are considered within the area of discrete
programming models, only the absolute robustness is usually applied to the majority
of decision and design problems.

This study is focused on the weighted uncapacitated location problem where the
demands uncertainty represented by intervals of possible values of weights varying
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independently rather than by scenarios for all the weights simultaneously. The center
solution concept defined by the standard minimax optimization is a robust solution
concept related to uncertainty represented by unbounded weights perturbations. This
is usually too restrictive, thus lowering the average system efficiency. The so-called
conditional median solution concept depending on minimization of the mean in β

portion of the worst outcomes (Ogryczak and Zawadzki 2002) offers a compromise
between the center and the median solution concepts. It is usually less restrictive than
the center solution while similarly implementable with auxiliary linear inequalities.
We show that the conditional median allows us to model robust solutions with pro-
portional limits on weights perturbations. Arbitrary limits on possible values of the
demand weights varying independently leads to the worst-case mean optimization
models with variable coefficients (weights). We show that the models can be viewed
as generalized conditional median models and, similarly to the conditional median
solution concept, implemented with auxiliary linear inequalities.

The paper is organized as follows. In the next section we recall the conditional
median solution concept, providing a new proof of the computational model which
remains applicable for more general problems related to the robust solution concepts.
Section 3 contains the main results. We show that the robust solution for proportional
upper limits on weights perturbations is the conditional β-median for an appropri-
ate β value. For proportional upper and lower limits on weights perturbation, the
robust solution may be expressed with problem optimization problem of appropri-
ately combined the median and the conditional median criteria. Finally, a general
robust solution for any arbitrary intervals of demand weights perturbations can be
expressed with optimization problem very similar to the conditional β-median and
thereby easily implementable with auxiliary linear inequalities.

2 Location concepts

The generic location problem that we consider may be stated as follows. There is
given a set I = {1,2, . . . ,m} of m clients (service recipients). Each client is repre-
sented by a specific point in the geographical space, and a set Q of location patterns
(location decisions) is given. For each client i ∈ I , a function fi(y) of the location pat-
tern y is defined. This function, called the individual objective function, measures the
outcome (effect) zi = fi(y) of the location pattern for client i (Marsh and Schilling
1994; Ogryczak 1999). In the simplest problems an outcome usually expresses the
distance. However, we emphasize to the reader that we do not restrict our considera-
tions to the case of outcomes measured as distances. They can be measured (modeled)
as travel time, travel costs, and, in a more subjective way, as relative travel costs (e.g.,
travel costs by clients’ incomes) or ultimately as the levels of clients’ dissatisfaction
(individual disutility) of locations. Let us define the set of attainable outcomes

A = {
z : zi = fi(y) ∀i,y ∈ Q

}
. (1)

In typical formulations of location problems related to desirable facilities, a smaller
value of the outcome (distance) means a better effect (higher service quality or client
satisfaction). This remains valid for location of obnoxious facilities if the distances
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are replaced with their complements to some large number. Therefore, without loss
of generality, we can assume that each individual outcome zi is to be minimized.

Further, some additional client weights wi > 0 are included into location model
to represent the service demand. Integer weights can be interpreted as numbers of
unweighted clients located at exactly the same place (with distances 0 among them).
While discussing such solution concepts, we will use the normalized client weights

w̄i = wi

/ m∑

i=1

wi for i = 1,2, . . . ,m (2)

rather than the original quantities wi . Note that, in the case of unweighted problem
(all wi = 1), all the normalized weights are given as w̄i = 1/m.

In general, the demand weights may affect the outcome values (distances) for in-
dividual clients since individual objective functions fi(y) actually also depend on
demand weights. Such a situation occurs, for instance, in the capacitated location
problem where distance to the (allocated) service facility depends on the demand
weights values versus the facility capacity as some clients might be allocated to some
further facilities due to limited capacity. Our analysis is focused on the case where
the demand weights do not affect directly outcome values for individual clients, or, in
other words, all constraints of the attainable set A remain unchanged while varying
the demand weights. This is guaranteed for uncapacitated location problems.

Example 1 As an example, one may consider a typical discrete location problem
(Mirchandani and Francis 1990) where a set of m clients and a set of n potential
locations for the facilities are given. Further, the number (or the maximal number)
p of facilities to be located is given (p ≤ n). The main decisions to be made can be
described with the binary variables yj (j = 1,2, . . . , n) equal to 1 if location j is to
be used and equal to 0 otherwise. To meet the problem requirements, the decision
variables yj have to satisfy the following constraints:

n∑

j=1

yj = p, yj ∈ {0,1}, for j = 1,2, . . . , n. (3)

For most location problems, the feasible set has a more complex structure due to
explicit consideration of allocation decisions. These decisions are usually modeled
with the additional allocation variables x′

ij (i = 1,2, . . . ,m; j = 1,2, . . . , n) equal
to 1 if location j is used to service client i and equal to 0 otherwise. The allocation
variables have to satisfy the following constraints:

n∑

j=1

x′
ij = 1 for i = 1,2, . . . ,m; (4)

x′
ij ≤ yj for i = 1,2, . . . ,m and j = 1,2, . . . , n; (5)

x′
ij ∈ {0,1} for i = 1,2, . . . ,m and j = 1,2, . . . , n. (6)
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Let dij ≥ 0 (i = 1,2, . . . ,m; j = 1,2, . . . , n) express the distance between client i

and location j (or other effect of allocation client i to location j ). With the explicit use
of the allocation variables and the corresponding constraints (4)–(5), the individual
outcomes (objective functions) zi can be written in the following linear form:

zi =
n∑

j=1

dij x
′
ij for i = 1,2, . . . ,m. (7)

In the case of location of desirable facilities, a smaller value of the individual
outcome means a better effect (smaller distance). This remains valid for location of
obnoxious facilities if the distance coefficients are replaced with their complements
to some large number: d ′

ij = d − dij , where d > dij for all i = 1,2, . . . ,m and j =
1,2, . . . , n. Therefore, we can assume that each outcome zi is to be minimized. The
attainable set (1) may be considered as A = {z = (z1, z2, . . . , zm) : (3)–(7)}.

We do not assume any special form of the feasible set while analyzing properties
of the solution concepts. We rather allow the feasible set to be a general, possibly dis-
crete (nonconvex), set. Similarly, we do not assume any special form of the individual
objective functions nor their special properties (like convexity) while analyzing prop-
erties of the solution concepts. Therefore, the results of our analysis apply to various
location problems.

A host of operational models has been developed to deal with facility location
optimization (cf. Francis et al. 1992; Love et al. 1988; Malczewski and Ogryczak
1995, 1996; Mirchandani and Francis 1990; Nickel and Puerto 2005). Most classi-
cal location studies focus on the minimization of the mean (or total) distance (the
median concept) or the minimization of the maximum distance (the center concept)
to the service facilities (Morrill and Symons 1977). Both the median and the center
solution concepts are well defined for weighted location models using client weights
wi > 0 to represent several clients (service demand) at the same geographical point.
Exactly, for the weighted location problem, the median solution concept is defined
by minimization of the objective function expressing the mean (average) outcome

μ(z) =
m∑

i=1

w̄izi ,

but it is also equivalent to minimization of the total outcome
∑m

i=1 wizi . The center
solution concept is defined by minimization of the objective function representing the
maximum (worst) outcome

M(z) = max
i=1,...,m

zi,

and it is not affected by the client weights at all.
For unweighted location problems, a compromise solution concept was introduced

by Slater (1978) as the so-called k-centrum where the sum of the k largest distances
is minimized. Consistently with typical distribution characteristics, Peeters (1998) in-
troduced four optimization criteria on outcomes (distances): upper (lower) k-median,
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where the sum of the k largest (smallest) outcomes was minimized, and upper (lower)
k-center, where the kth largest (smallest) outcome itself was minimized. According
to this classification, the k-centrum should be rather called the upper k-median. The
k-centrum concept is restricted to unweighted problems. Although some weights are
used to scale the specific distances (Tamir 2001) (which may be considered as a
definition of distance dependent outcomes), the demand weights as defining the dis-
tribution of clients are not considered. Ogryczak and Zawadzki (2002) introduced a
parametric generalization of the k-centrum concept applied to weighted problems by
taking into account the portion of demand related to the largest outcomes (distances)
rather than the specific number of worst outcomes. Namely, for a specified portion
β of demand, the entire β portion (quantile) of the largest outcomes is taken into
account, and their average is considered as the (worst) conditional β-mean outcome.
Following the Peeters’ classification (Peeters 1998), we call an (upper) conditional
median every location pattern which minimizes the corresponding conditional mean
outcome. According to this definition, the concept of conditional median is based on
averaging restricted to the portion of the worst outcomes. For the unweighted loca-
tion problems and β = k/m, the conditional β-mean represents the average of the k

largest outcomes, thus modeling the k-centrum solution concept.
The conditional mean can be mathematically formalized as follows (Ogryczak

2002; Ogryczak and Ruszczyński 2002). First, we introduce the left-continuous right
tail cumulative distribution function (cdf):

Fz(d) =
m∑

i=1

w̄iκi(d), where κi(d) =
{

1 if zi ≥ d,

0 otherwise,
(8)

which for any real (outcome) value d provides the measure of outcomes greater or
equal to d . Next, we introduce the quantile function F

(−1)
z as the right-continuous

inverse of the cumulative distribution function Fz:

F (−1)
z (β) = sup

{
η : Fz(η) ≥ β

}
for 0 < β ≤ 1.

By integrating F
(−1)
z one gets the (worst) conditional mean

μβ(z) = 1

β

∫ β

0
F (−1)

z (α)dα for 0 < β ≤ 1. (9)

Minimization of the conditional β-mean

min
z∈A

μβ(z) (10)

defines the conditional β-median solution concept. When parameter β approaches 0,
the conditional β-mean tends to the largest outcome (M(z) = limβ→0+ μβ(z)), and
the conditional median becomes the center. On the other hand, for β = 1, the corre-
sponding conditional mean becomes the standard mean (μ1(z) = μ(z)), and one gets
the median location.
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Note that, due to the finite distribution of outcomes zi (i = 1,2, . . . ,m) in our
location problems, the conditional β-mean is well defined by the following optimiza-
tion:

μβ(z) = 1

β
max

ui

{
m∑

i=1

ziui :
m∑

i=1

ui = β, 0 ≤ ui ≤ w̄i ∀i

}

. (11)

The above problem is a Linear Program (LP) for a given outcome vector z, while it
becomes nonlinear for z being a vector of variables as in the β-median problem (10).
It turns out that this difficulty can be overcome by an equivalent LP formulation of
the β-mean that allows one to implement the β-median problem (10) with auxiliary
linear inequalities. Namely, the following theorem is valid (Ogryczak and Zawadzki
2002), although we introduce a new proof which can be further generalized for a
family of robust location solution concepts we consider.

Theorem 1 For any outcome vector y with the corresponding demand weights wi

and for any real value 0 < β ≤ 1, the conditional β-mean outcome is given by the
following linear program:

μβ(z) = min
t,di

{

t + 1

β

m∑

i=1

w̄idi : zi ≤ t + di, di ≥ 0 ∀i

}

. (12)

Proof The theorem can be proven by taking advantage of the LP dual to (11). Intro-
ducing dual variable t corresponding to the equation

∑m
i=1 ui = β and variables di

corresponding to upper bounds on ui , one gets the LP dual (12). Due to the duality
theory, for any given vector z, the conditional β-mean μβ(z) can be found as the
optimal value of the LP problem (12). �

Following Theorem 1, the conditional β-median can be found as an optimal solu-
tion to the optimization problem

min
z,d,t

{

t + 1

β

m∑

i=1

w̄idi : z ∈ A; zi ≤ t + di, di ≥ 0 ∀i

}

(13)

or, in a more compact form,

min
z,t

{

t + 1

β

m∑

i=1

w̄i(zi − t)+ : z ∈ A

}

,

where (.)+ denotes the nonnegative part of a number.
For the special case of an unweighted location problem (wi = 1/m for all i ∈ I )

and β = k/m, one gets the conditional k/m-median. Model (13) takes then the form

min
z,d,t

{

t + 1

k

m∑

i=1

di : z ∈ A; zi ≤ t + di, di ≥ 0 ∀i

}

, (14)
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which is the same as the computational formulation of the k-centrum introduced in
Ogryczak and Tamir (2003). Hence, Theorem 1 and model (13) generalize the k-
centrum formulation of Ogryczak and Tamir (2003) allowing one to consider de-
mand weights and arbitrary size parameter β but preserving the simple structure and
dimension of the optimization problem.

3 Robust locations

The median solution concept is usually very attractive solution concept due to max-
imizing the system efficiency taking into account the demands. The median solution
is defined as

min
z∈A

{
m∑

i=1

w̄izi

}

. (15)

However, in practical problems the demand weights may vary. Therefore, a robust
solution is sought which performs well under uncertain demand weights. Recall that
our analysis is focused on the case where the demand weights perturbations do not
affect directly outcome values for individual clients, or in other words, all constraints
of the attainable set A remain unchanged while varying the demand weights. This is
clearly guaranteed for uncapacitated location problems.

The simplest representation of uncertainty depends on a number of predefined
scenarios s = 1, . . . , r . Let w̄s

i denote the realization of demand i under scenario s.
Then one may seek for a robust solution by minimizing the mean distance under the
worst scenario

min
z∈A

max
s=1,...,r

{
m∑

i=1

w̄s
i zi

}

= min
z∈A

{

ζ : ζ ≥
m∑

i=1

w̄s
i zi ∀s

}

or by minimizing the maximum regret (Fernandez et al. 2001; Puerto et al. 2009)

min
z∈A

max
s=1,...,r

{
m∑

i=1

w̄s
i zi − b̄s

}

= min
z∈A

{
ζ : ζ ≥

m∑

i=1

w̄s
i zi − b̄s ∀s

}
,

where b̄s represents the best value under scenario s,

b̄s = min
z∈A

{
m∑

i=1

w̄s
i zi

}

.

Frequently, uncertainty is represented by limits (intervals) on possible values of
weights varying independently rather than by scenarios for all the weights simulta-
neously. We focus on such representation to define robust location concept. Assume
that the demand weights w̄i may be affected by perturbations varying within intervals
[−δi,Δi]. Note that the weights are normalized, and, although varying independently,
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they must total to 1. Thus the demand weights belong to the hypercube:

u ∈ W =
{

(u1, u2, . . . , um) :
m∑

i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + Δi ∀i

}

.

Alternatively one may consider completely independent perturbations of unnormal-
ized weights wi and normalize them later to define set W . Focusing on the mean
outcome as the primary system efficiency measure to be optimized, we get the robust
median solution concept

min
z

max
u

{
m∑

i=1

uizi : u ∈ W, z ∈ A

}

. (16)

Further, taking into account the assumption that all the constraints of attainable set
A remain unchanged while the demand weights are perturbed, the robust median
solution can be rewritten as

min
z∈A

max
u∈W

m∑

i=1

uizi = min
z∈A

{

max
u∈W

m∑

i=1

uizi

}

= min
z∈A

μw(z), (17)

where

μw(z) = max
u∈W

m∑

i=1

uizi

= max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + Δi ∀i

}

(18)

represents the worst-case mean distance for given outcome vector z ∈ A.
Note that in the case of δi = Δi = 0 (no perturbations/uncertainty at all) one gets

the standard mean outcome μw(z) = ∑m
i=1 ziw̄i and thus the original median solution

concept. On the other hand, for the case of unlimited perturbations (δi = w̄i and
Δi = 1 − w̄i ), the worst-case mean outcome

μw(z) = max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, 0 ≤ ui ≤ 1 ∀i

}

= max
i=1,...,m

zi

becomes the worst outcome, thus leading to the center solution concept.
For the special case of proportional perturbation limits δi = δw̄i and Δi = Δw̄i

with positive parameters δ and Δ, one gets

μw(z) = max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, w̄i(1 − δ) ≤ ui ≤ w̄i(1 + Δ) ∀i

}

. (19)

In particular, when lower limits are relaxed (δ = 1), this becomes the classical condi-
tional mean outcome (Ogryczak and Śliwiński 2002; Ogryczak and Zawadzki 2002)
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with β = 1/(1 + Δ). Thus the conditional median represents the robust median solu-
tion concept for proportionally upper bounded perturbations.

Theorem 2 The conditional β-median represents a concept of robust median so-
lution (17) for proportionally upper bounded perturbations Δi = Δw̄i with Δ =
(1 − β)/β and relaxed lower ones δi = w̄i for all i ∈ I .

Proof For proportionally bounded upper perturbations Δi = Δw̄i and δi = w̄i , the
corresponding worst-case mean distance (18) can be expressed as follows:

μw(z) = max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, 0 ≤ ui ≤ w̄i(1 + Δ) ∀i

}

= (1 + Δ)max
u′

i

{
m∑

i=1

ziu
′
i :

m∑

i=1

u′
i = 1

1 + Δ
, 0 ≤ u′

i ≤ w̄i ∀i

}

= (1 + Δ)μ 1
1+Δ

(z). �

As the conditional median is easily defined by auxiliary LP constraints, the same
applies to the robust median solution concept for proportionally bounded upper per-
turbations and relaxed lower ones.

Corollary 1 The robust median solution concept (17) for proportionally bounded
upper perturbations Δi = Δw̄i and relaxed lower limits δi = w̄i for all i ∈ I can
be found by simple expansion of the optimization problem with auxiliary linear con-
straints and variables to the following:

min
z,d,t

{

t + (1 + Δ)

m∑

i=1

w̄idi : z ∈ A; zi ≤ t + di, di ≥ 0 ∀i

}

. (20)

In the general case of proportional perturbation limits (19) the robust median so-
lution concepts cannot be directly expressed as an appropriate conditional β-median.
It turns out, however, that it can be expressed by the optimization with combined
criteria of the conditional β-median and the original median.

Theorem 3 The robust median solution concept (17) for proportionally bounded
perturbations Δi = Δw̄i and δi = δw̄i for all i ∈ I is equivalent to the convex com-
bination of the median and conditional β-median criteria minimization

min
z∈A

μw(z) = min
z∈A

(1 + Δ)
[
λμβ(z) + (1 − λ)μ(z)

]
(21)

with β = δ/(Δ + δ) and λ = (Δ + δ)/(1 + Δ).
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Proof For proportionally bounded perturbations Δi = Δw̄i and δi = δw̄i the corre-
sponding worst-case mean distance (18) can be expressed as follows:

μw(z) = max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, w̄i(1 − δ) ≤ ui ≤ w̄i(1 + Δ) ∀i

}

= (1 + Δ)max
u′

i

{
m∑

i=1

ziu
′
i :

m∑

i=1

u′
i = 1

1 + Δ
, w̄i

1 − δ

1 + Δ
≤ u′

i ≤ w̄i ∀i

}

= (1 + Δ)max
u′′

i

{
m∑

i=1

ziu
′′
i :

m∑

i=1

u′′
i = δ

1 + Δ
, 0 ≤ u′′

i ≤ w̄i

Δ + δ

1 + Δ
∀i

}

+ (1 − δ)

m∑

i=1

ziw̄i

= (Δ + δ)max
u′′′

i

{
m∑

i=1

ziu
′′′
i :

m∑

i=1

u′′′
i = δ

Δ + δ
, 0 ≤ u′′′

i ≤ w̄i ∀i

}

+ (1 − δ)μ(z)

= (1 + Δ)

[
Δ + δ

1 + Δ
μ δ

Δ+δ
(z) + 1 − δ

1 + Δ
μ(z)

]
,

which completes the proof. �

Following Theorems 1 and 3, the robust median solution concept (17) can be
expressed as an LP expansion of the original median problem.

Corollary 2 The robust median solution concept (17) for proportionally bounded
perturbations Δi = Δw̄i and δi = δw̄i for all i ∈ I can be found by simple expansion
of the median problem with auxiliary linear constraints and variables to the follow-
ing:

min
z,d,t

{
m∑

i=1

w̄izi + Δ + δ

1 − δ
t + (Δ + δ)2

δ(1 − δ)

m∑

i=1

w̄idi : z ∈ A; zi ≤ t +di, di ≥ 0 ∀i

}

. (22)

In the general case of arbitrary intervals of demand weights perturbations, the
worst-case mean distance (18) cannot be expressed as a conditional β-mean or its
combination. Nevertheless, the structure of optimization problem (18) remains very
similar to that of the conditional β-mean (11). Note that problem (18) is an LP for a
given outcome vector z, while it becomes nonlinear for z being a vector of variables.
This difficulty can be overcome similar to Theorem 1 for the conditional β-mean.
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Theorem 4 For any arbitrary intervals [−δi,Δi] (for all i ∈ I ) of demand weights
perturbations, the corresponding worst-case mean outcome (18) can be given as

μw(z) = min
t,du

i ,dl
i

{

t +
m∑

i=1

(w̄i + Δi)d
u
i −

m∑

i=1

(w̄i − δi)d
l
i :

t + du
i − dl

i ≥ zi, du
i , dl

i ≥ 0 ∀i

}

. (23)

Proof The theorem can be proven by taking advantages of the LP dual to (18). In-
troducing the dual variable t corresponding to the equation

∑m
i=1 ui = 1 and the

variables du
i and dl

i corresponding to upper and lower bounds on ui , respectively, one
gets the following LP dual to problem (18). Due to the duality theory, for any given
vector z, the worst-case mean outcome μw(z) can be found as the optimal value of
the LP problem (23). �

Following Theorem 4, the robust median solution concept (17) can be expressed
similar to the conditional β-median with auxiliary linear inequalities expanding the
original constraints.

Corollary 3 For any arbitrary intervals [−δi,Δi] (for all i ∈ I ) of demand weights
perturbations, the corresponding robust median solution (17) can be given by the
following optimization problem:

min
z,t,du

i ,dl
i

{

t +
m∑

i=1

(w̄i + Δi)d
u
i −

m∑

i=1

(w̄i − δi)d
l
i :

z ∈ A; t + du
i − dl

i ≥ zi, du
i , dl

i ≥ 0 ∀i

}

. (24)

Actually, there is a possibility to represent general robust median solution (17)
with optimization problem even more similar to the conditional β-median and
thereby with lower number of auxiliary variables than in (24).

Theorem 5 For any arbitrary intervals [−δi,Δi] (for all i ∈ I ) of demand weights
perturbations, the corresponding robust median solution (17) can be given by the
following optimization problem:

min
z,t,di

{
m∑

i=1

(w̄i − δi)zi + δ̄t +
m∑

i=1

(Δi + δi)di : z ∈ A; t + di ≥ zi, di ≥ 0 ∀i

}

, (25)

where δ̄ = ∑m
i=1 δi .
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Proof Note that the worst-case mean (18) may be transformed as follows:

μw(z) = max
ui

{
m∑

i=1

ziui :
m∑

i=1

ui = 1, w̄i − δi ≤ ui ≤ w̄i + Δi ∀i

}

= max
u′

i

{
m∑

i=1

ziu
′
i :

m∑

i=1

u′
i =

m∑

i=1

δi, 0 ≤ u′
i ≤ Δi + δi ∀i

}

+
m∑

i=1

zi(w̄i − δi). (26)

Next, replacing the maximization over variables ui with the corresponding dual, we
get

μw(z) = min
t,di

{(
m∑

i=1

δi

)

t +
m∑

i=1

(Δi +δi)di : t +di ≥ zi, di ≥ 0 ∀i

}

+
m∑

i=1

(w̄i −δi)zi .

Further, minimization over z ∈ A leads us to formula (25), which completes the
proof. �

For a special case of arbitrary upper bounds Δi and completely relaxed lower
bound, we get the following result.

Corollary 4 For any arbitrary upper bounds Δi and relaxed lower ones δi = w̄i

(for all i ∈ I ) on demand weights perturbations, the corresponding robust median
solution (17) can be given by the following optimization problem:

min
z,t,di

{

t +
m∑

i=1

(Δi + w̄i)di : z ∈ A; t + di ≥ zi, di ≥ 0 ∀i

}

. (27)

Note that optimization problem (27) is very similar to the conditional β-median
model (13). Indeed, in the case of proportional upper limits Δi = Δw̄i (for all i ∈ I )
problem (27) simplifies to (20), as stated in Corollary 1.

Concluding remarks

For location problem with demand weights, the median solution concept is well suited
for system efficiency maximization. However, real-life demand weights inevitably in-
volve errors and uncertainties in the operating conditions, and thereby the resulting
performance may be lower than expected. We have analyzed the robust median solu-
tion concept where demands uncertainty is represented by limits (intervals) on pos-
sible values of weights varying independently. Such an approach, in general, leads
to complex optimization models with variable coefficients (weights). We have shown
that in the case of uncapacitated location problem the robust median solution con-
cepts can be expressed with auxiliary linear inequalities, similarly to the conditional
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β-median solution concept (Ogryczak and Zawadzki 2002) based on minimization
of the mean in β portion of the worst outcomes. Actually, the robust median solution
for proportional upper limits on weights perturbations turns out to be the conditional
β-median for an appropriate β value. For proportional upper and lower limits on
weights perturbation, the robust median solution may be sought by optimization of
appropriately combined the median and the conditional median criteria. Finally, a
general robust median solution for any arbitrary intervals of demand weights pertur-
bations can be expressed with an optimization problem very similar to the conditional
β-median and thereby easily implementable with auxiliary linear inequalities.

The robust median optimization problems, similar to the standard minimax ap-
proach, may be modeled with a number of simple linear inequalities. As the con-
ditional median problems, with the use of a simple general-purpose MIP code they
usually need computational efforts larger than that for the median but smaller than
that for the center (Ogryczak and Zawadzki 2002). Certainly, large-scale real-life
location problems will require some specialized algorithms. Therefore, research on
efficient specialized algorithms for various specific types of location problems should
be continued.

Our analysis has shown that the robust median solution concept is closely related
with the conditional median, which is the basic equitable solution concept (Kostreva
and Ogryczak 1999b). It corresponds to recent approaches to the robust optimization
based on the equitable optimization (Miettinen et al. 2008; Perny et al. 2006; Kostreva
et al. 2004). Further study on equitable location concepts (Kostreva and Ogryczak
1999a; Ogryczak 2009) and their relations to robust solutions seems to be a promising
research direction.
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