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Abstract The reference point method is an interactive

technique for multiple criteria optimization problems. It is

based on the optimization of the scalarizing achievement

function built as the augmented max–min aggregation of

individual outcomes with respect to the given reference

levels. Actually, the worst individual achievement is opti-

mized, but regularized with the term representing the

average achievement. In order to avoid inconsistencies

caused by the regularization, we apply the ordered

weighted averages (OWA) with monotonic weights to

combine all the individual achievements. Further, follow-

ing the concept of the weighted OWA (WOWA), we

incorporate the importance weighting of several achieve-

ments into the RPM. We show that the resulting WOWA

RPM can be quite effectively implemented as an extension

of the original constraints and criteria with simple linear

inequalities.

Keywords Multicriteria decision making �
Aggregation methods � Reference point method �
OWA � WOWA

1 Introduction

Consider a decision problem defined as an optimization

problem with m criteria (objective functions). In this paper,

without loss of generality, it is assumed that all the criteria

are maximized (that is, for each outcome ‘more is better’).

Hence, we consider the following multiple criteria opti-

mization (MCO) problem:

maxfðf1ðxÞ; . . .; fmðxÞÞ : x 2 Qg ð1Þ

where x denotes a vector of decision variables to be

selected from the feasible set Q � Rn; and fðxÞ ¼
ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ is a vector function that maps the

feasible set Q into the criterion space Rm. Note that neither

any specific form of the feasible set Q is assumed nor any

special form of criteria fi(x) is required. We refer to the

elements of the criterion space as outcome vectors. An

outcome vector y is attainable if it expresses outcomes of a

feasible solution, i.e., y = f(x) for some x 2 Q: The set of

all attainable outcome vectors will be denoted by Y.

The model (1) only specifies that we are interested in

maximization of all objective functions fi for i 2 I ¼
f1; 2; . . .;mg: Thus, it allows only to identify (to eliminate)

obviously inefficient solutions leading to dominated outcome

vectors, while still leaving the entire efficient set to look for a

satisfactory compromise solution. In order to make the

multiple criteria model operational for the decision support

process, one needs to assume some solution concept well

adjusted to the DM preferences. This can be achieved with

the so-called quasi-satisficing approach to multiple criteria

decision problems. The best formalization of the quasi-sat-

isficing approach to multiple criteria optimization was pro-

posed and developed mainly by Wierzbicki (1982) as the

reference point method (RPM). The reference point method

was later extended to permit additional information from the

DM and, eventually, led to efficient implementations of the

so-called aspiration/reservation-based decision support

(ARBDS) approach with many successful applications

(Granat and Makowski 2000; Lewandowski and Wierzbicki

1989; Malczewski and Ogryczak 1990; Ogryczak and

Lahoda 1992; Wierzbicki et al. 2000).
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The RPM is an interactive technique. The basic concept

of the interactive scheme is as follows. The DM specifies

requirements in terms of reference levels, i.e., by intro-

ducing reference (target) values for several individual

outcomes. Depending on the specified reference levels, a

special scalarizing achievement function is built, which

may be directly interpreted as expressing utility to be

maximized. Maximization of the scalarizing achievement

function generates an efficient solution to the multiple

criteria problem. The computed efficient solution is pre-

sented to the DM as the current solution in a form that

allows comparison with the previous solutions and modi-

fication of the reference levels if necessary.

The scalarizing achievement function can be viewed as

two-stage transformation of the original outcomes. First,

the strictly monotonic component achievement functions

are built to measure individual performance with respect to

given reference levels. Having all the outcomes trans-

formed into a uniform scale of individual achievements,

they are aggregated at the second stage to form a unique

scalarization. The RPM is based on the so-called aug-

mented (or regularized) max–min aggregation. Thus, the

worst individual achievement is essentially maximized, but

the optimization process is additionally regularized with

the term representing the average achievement. The max–

min aggregation guarantees fair treatment of all individual

achievements by implementing an approximation to the

Rawlsian principle of justice.

The max–min aggregation is crucial for allowing the

RPM to generate all efficient solutions even for nonconvex

(and particularly discrete) problems. On the other hand, the

regularization is necessary to guarantee that only efficient

solutions are generated. The regularization by the average

achievement is easily implementable, but it may disturb

the basic max–min model. Actually, the only consequent

regularization of the max–min aggregation is the lex-min

order or, more practical, the OWA aggregation with

monotonic weights. The latter combines all the component

achievements allocating the largest weight to the worst

achievement, the second largest weight to the second

worst achievement, the third largest weight to the third

worst achievement, and so on. The recent progress in

optimization methods for ordered averages (Ogryczak and

Śliwiński 2003) allows one to implement the OWA RPM

quite effectively. Further, following the concept of

weighted OWA (Torra 1997; Torra and Narukawa 2007),

the importance weighting of several achievements may be

incorporated into the RPM. Such a WOWA enhancement

of the RPM uses importance weights to affect achievement

importance by rescaling accordingly its measure within the

distribution of achievements rather than straightforward

rescaling of achievement values (Ruiz et al. 2009). The

paper analyzes both the theoretical and implementation

issues of the WOWA-enhanced RPM.

The paper is organized as follows. In the next section the

scalarizing achievement functions are discussed and related

to the fuzzy multicriteria optimization. In Sect. 3, the OWA

refinement of the RPM is introduced and analyzed. The

OWA RPM model is further extended in Sect. 4 to accom-

modate the importance weights following the WOWA

methodology. Linear programming computational model

for the WOWA RPM method is introduced. In Sect. 5, an

illustrative example is discussed.

2 RPM and fuzzy targets

In the RPM method, depending on the specified reference

levels, a special scalarizing achievement function is built

which, when optimized, generates an efficient solution to

the problem. While building the scalarizing achievement

function, some basic properties of the preference model are

assumed. First of all, the following property is required:

P1 The preference model corresponding to the scalariz-

ing achievement function optimization is consistent with

the Pareto order and therefore each solution generated by

the scalarizing function optimization is an efficient solution

of the original MCO problem.

To meet this requirement, the preference model corre-

sponding to the scalarizing achievement function optimi-

zation is strictly monotonic in the sense that an increase of

any outcome y i leads to a preferred solution. Actually, the

function must strictly increase with respect to each indi-

vidual outcome.

Second, the scalarizing achievement function optimi-

zation must enforce reaching the reference levels prior to

further improving of criteria. Hence, the following property

is required:

P2 The preference model corresponding to the scalariz-

ing achievement function optimization guarantees that a

solution with all individual outcomes satisfying the corre-

sponding reference levels is preferred to any solution with

at least one individual outcome worse than its reference

level.

Thus, similar to the goal programming approaches, the

reference levels are treated as targets, but following the

quasi-satisficing approach, they are interpreted consistently

with basic concepts of efficiency in the sense that the

optimization is continued even when the target point has

been reached already (Wierzbicki et al. 2000).

The generic scalarizing achievement function takes the

following form (Wierzbicki 1982):
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SðaÞ ¼ min
1� i�m

faig þ
e
m

Xm

i¼1

ai ð2Þ

where e is an arbitrary small positive number and

ai = si(fi(x) for i ¼ 1; 2; . . .;m are the component

achievements measuring actual performances of the

individual outcomes with component achievement

functions si : R! R for i ¼ 1; 2; . . .;m defined with

respect to the corresponding reference levels. Let ai

denote the component achievement for the ith outcome

(ai ¼ siðyiÞ ¼ siðfiðxÞÞÞ;and let a ¼ ða1; a2; . . .; amÞ ¼ sðyÞ
represent the entire achievement vector. During the

interactive analysis, the scalarizing achievement function

is maximized in order to generate an efficient solution as a

current solution, i.e.,

max
x2Q

SðsðfðxÞÞÞ ¼ max
a2A

SðaÞ ð3Þ

where

A ¼ fa ¼ sðyÞ : y 2 Yg ¼ fa ¼ sðfðxÞÞ : x 2 Qg: ð4Þ

Note that we will use simplified notation of optimization

over the achievement set A, although still assuming that

according to Eq. 4 the optimal solution �a is generated by an

optimal decision vector �x such that �a ¼ sðfð�xÞÞ:
The scalarizing achievement function (2) is essentially

defined by the worst component achievement, but addi-

tionally regularized with the sum of all component

achievements. The regularization term is introduced in

order to guarantee the efficiency of the optimal solution in

the case when the maximization of the main term (the

worst component achievement) results in a non-unique

optimal solution. Due to combining two terms with an

arbitrarily small parameter e; formula (2) is easily imple-

mentable and provides a direct interpretation of the sca-

larizing achievement function as expressing utility. When

accepting the loss of a direct utility interpretation, one may

consider a limiting case with e! 0þ; which results in

lexicographic order applied to two separate terms of

function (2). That means, the regularization can be

implemented with the second level lexicographic optimi-

zation (Ogryczak and Lahoda 1992). Therefore, RPM may

be also considered as the following lexicographic problem

(Ogryczak 2001 and references therein):

lex max
a2A

min
1� i�m

ai;
Xm

i¼1

ai

 !
ð5Þ

Various functions si provide a wide modeling

environment for measuring component achievements

(Wierzbicki 1986; Wierzbicki et al. 2000; Miettinen and

Mäkelä 2002; Malczewski and Ogryczak 1996; Ogryczak

1997). The basic RPM model is based on the single vector

of the reference levels, the aspiration vector ra. For the

sake of computational simplicity, the piecewise linear

functions si are usually employed. In the simplest models,

and they take the form of two segment piecewise linear

functions:

siðyiÞ ¼
kþi ðyi � ra

i Þ; for yi� ra
i

k�i ðyi � ra
i Þ; for yi\ra

i

�
ð6Þ

where kþi [ k�i are positive scaling factors corresponding

to underachievements and overachievements, respectively,

for the ith outcome. It is usually assumed that kþi is much

larger than k�i : Figure 1 depicts how differentiated scaling

affects the isoline contours of the scalarizing achievement

function.

Real-life applications of the RPM methodology usually

deal with more complex component achievement functions

defined with more than one reference point (Wierzbicki

et al. 2000), which enriches the preference models and

simplifies the interactive analysis. In particular, the models

taking advantages of two reference vectors: vector of

aspiration levels ra and vector of reservation levels rr

(Lewandowski and Wierzbicki 1989) are used, thus

allowing the DM to specify requirements by introducing

acceptable and required values for several outcomes. The

component achievement function si can be interpreted then

as a measure of the DM’s satisfaction with the current

outcome value of the ith criterion. It is a strictly increasing

function of outcome yi with value ai = 1 if yi ¼ ra
i ; and

ai = 0 for yi ¼ rr
i : Thus, the component achievement

functions map the outcomes values onto a normalized scale

of the DM’s satisfaction. Various functions can be built

meeting those requirements. We use the piecewise linear

component achievement function introduced in an imple-

mentation of the ARBDS system for the multiple criteria

transshipment problems with facility location (Ogryczak

et al. 1992):

Fig. 1 Isoline contours for the scalarizing achievement function (2)

with component achievements (6)
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siðyiÞ ¼
cyi�rr

i

ra
i �rr

i
; yi� rr

i

cyi�rr
i

ra
i �rr

i
; rr

i \yi\ra
i

ayi�ra
i

ra
i �rr

i
þ 1; yi� ra

i

8
>><

>>:
ð7Þ

where a and c are arbitrary parameters satisfying

0 \ a\ 1 \ c. The parameter a represents additional

increase of the DM’s satisfaction over level 1 when a cri-

terion generates outcomes better than the corresponding

aspiration level. On the other hand, the parameter c[ 1

represents dissatisfaction connected with outcomes worse

than the reservation level (Fig. 2).

The lexicographic RPM model (5) used with the com-

ponent achievement function (7) guarantees that the crucial

properties of the quasi-satisficing decision model are ful-

filled. Indeed, the following theorem is valid (Ogryczak

1994).

Theorem 1 The preference model corresponding to the

lexicographic optimization (5) and (7) has the following

properties:

1. It is strictly monotonic in the sense that an increase of

any outcome yi leads to a preferred solution.

2. It guarantees that for any given target value .; the

solution generating all component achievements equal

to . (ai ¼ .8i) is preferred to any solution generating

at least one component achievement worse than .:

Note that following the property 1, every solution

optimal to the lexicographic optimization (5) with (7) is an

efficient solution to the MCO problem (the property P1).

Further, following the property 2, the solution reaching all

the reservation levels is preferred to any solution failing to

achieve at least one reservation level (. ¼ 0) as well as the

solution reaching all the aspiration levels is preferred to

any solution failing to achieve at least one aspiration level

(. ¼ 1). Thus, the property P2 is satisfied in terms of the

ARBDS methodology. Note that this property is only

approximated in the case of the analytic scalarizing

achievement function (2) since the regularization term may

disturb those preferences.

For outcomes between the reservation and the aspiration

levels, the component achievement function si can be

interpreted as a membership function li for a fuzzy target

(Zimmermann 1996).

liðyiÞ ¼
0; yi� rr

i
yi�rr

i

ra
i �rir

; rr
i \yi\ra

i

1; yi� ra
i

8
<

: ð8Þ

However, such a membership function remains constant

with value 1 for all outcomes greater than the corre-

sponding aspiration level, and with value 0 for all out-

comes below the reservation level (Fig. 3). Hence, the

fuzzy membership function is neither strictly monotonic

nor concave, thus not representing typical utility for a

maximized outcome. The component achievement function

(7) can be viewed as an extension of the fuzzy membership

function to a strictly monotonic and concave utility. One

may also notice that the aggregation scheme used to build

the scalarizing achievement function (2) from the compo-

nent functions may also be interpreted as some fuzzy

aggregation operator (Wierzbicki et al. 2000). In other

words, maximization of the scalarizing achievement func-

tion (2) is consistent with the fuzzy methodology in the

case of not attainable aspiration levels and satisfiable all

reservation levels while modeling a reasonable utility for

any values of aspiration and reservation levels.

Theorem 2 If outcome vector �y 2 Y generates an optimal

solution of the lexicographic RPM problem (5) with the

piecewise linear component achievement functions (7),

then �y is an optimal solution of the corresponding fuzzy

targets intersection optimization problem

max
y2Y
½ min
1� i�m

liðyiÞ� ð9Þ

Proof Let �a ¼ sð�yÞ; with si defined according to (7), be an

optimal solution of the lexicographic RPM problem (5).

Suppose that �y is not optimal to problem (9). This means

min1� i�m lið�yiÞ ¼ li0ð�yi0Þ ¼ �.\1 and there exists ~y 2 Y

such that lið~yiÞ� ~.[ �. for all i 2 I: Note that �.\1 and

~.[ 0: Hence, sið~yiÞ� lið~yiÞ for all i 2 I and li0ð�yi0Þ�
si0ð�yi0Þ: Thus, sið~yiÞ� ~. [ �.� si0ð�yi0Þ� min1� i�m sið�yiÞ;
which contradicts optimality of �y with respect to the

maxmin optimization maxy2Y ½min1� i�m siðyiÞ� and also to

the lexicographic RPM problem (5).

Fig. 2 Component achievement function (7) Fig. 3 Fuzzy membership function (8)
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Under the assumption that the parameters a and c
and satisfy inequalities 0 \ a\ 1 \ c, the component

achievement function (7) strictly increases and is concave.

Hence, it can be expressed in the form:

siðyiÞ ¼ min c
yi � rr

i

ra
i � rr

i

;
yi � rr

i

ra
i � rr

i

; a
yi � ra

i

ra
i � rr

i

þ 1

� �
;

which guarantees LP computability with respect to

outcomes yi. Finally, maximization of the entire

scalarizing achievement function (5) can be implemented

by the following auxiliary LP constraints:

lex max a;
Xm

i¼1

ai

 !

s.t. a� ai 8i 2 I

ai� c
yi � rr

i

ra
i � rr

i

8i 2 I

ai�
yi � rr

i

ra
i � rr

i

8i 2 I

ai� a
yi � ra

i

ra
i � rr

i

þ 1 8i 2 I

where ai for i ¼ 1; . . .;m and a are unbounded variables

introduced to represent values of several component

achievement functions and their minimum, respectively.

On the other hand, the fuzzy model (9) requires the use

of some binary variables. In the simplest form it can be

formulated as follows:

max a

s.t. a� ai 8i 2 I

ai� 1� ui 8i 2 I

ai�
yi � ri

ai � ri
þMui 8i 2 I

ui�
ri � yi

Mðai � riÞ
þ 1 8i 2 I

where M is a large constant and ui are binary variables

satisfying yi [ ri ) ui ¼ 0; due to the last inequality.

Hence, the lexicographic RPM problem (5) with the

piecewise linear component achievement functions (7)

allow us to select efficient solutions among various alter-

native optimal solutions of the corresponding fuzzy targets

intersection optimization problem (9). Simultaneously, the

corresponding RPM problem is much more simpler with

respect to its computational complexity.

3 OWA refinement of the RPM

The crucial properties of the RPM are related to the max–

min aggregation of the component achievements. The

regularization is introduced in order to guarantee the

aggregation monotonicity. Unfortunately, the distribution

of achievements may make the max–min criterion partially

passive when one specific achievement is relatively very

small for all the solutions. Maximization of the worst

achievement may then leave all other achievements un-

optimized. The selection is then made according to linear

aggregation of the regularization term instead of the max–

min aggregation, thus destroying the preference model of

the RPM. This can be illustrated with an example of a

simple discrete problem of seven alternative feasible

solutions to be selected according to six criteria. Table 1

presents six component achievements for all the solutions,

where the component achievements have been defined

according to the aspiration/reservation model (7), thus

allocating 1 to outcomes reaching the corresponding aspi-

ration level. All the solutions are efficient. Solution S1–S5

reach aspiration levels (achievement values 1.0) for four of

the first five criteria while failing to reach one of them and

the aspiration level for the sixth criterion as well

(achievement values 0.1). Solution S6 is close to the

aspiration levels (achievement values 0.8) for the first five

criteria while failing to reach the aspiration level for the

sixth criterion (achievement values 0.1). All the solutions

generate the same worst achievement value of 0.1 and the

final selection of the RPM depends on the total achieve-

ment (regularization term). Actually, one of solutions of

S1–S5 will be selected as better than S6.

One may easily notice that eliminating from the con-

sideration alternative S7, we get the sixth component

achievement (and the corresponding criterion) constant for

the six alternatives under consideration. Hence, one may

expect the same solution selected while taking into account

this criterion or not. If focusing on five first criteria, then

the RPM (either lexicographic (5) or analytic (2)) obvi-

ously selects solution S6 as reaching the worst achievement

value of 0.8.

In order to avoid inconsistencies caused by the regu-

larization, the max–min solution may be regularized

according to the ordered averaging rules (Yager 1988).

This is mathematically formalized as follows. Within the

Table 1 Sample achievements with passive max–min criterion

Sol. a1 a2 a3 a4 a5 a6 Min
P

S1 0.1 1.0 1.0 1.0 1.0 0.1 0.1 4.2

S2 1.0 0.1 1.0 1.0 1.0 0.1 0.1 4.2

S3 1.0 1.0 0.1 1.0 1.0 0.1 0.1 4.2

S4 1.0 1.0 1.0 0.1 1.0 0.1 0.1 4.2

S5 1.0 1.0 1.0 1.0 0.1 0.1 0.1 4.2

S6 0.8 0.8 0.8 0.8 0.8 0.1 0.1 4.1

S7 0.1 0.1 0.1 0.8 0.4 0.8 0.1 2.3
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space of achievement vectors, we introduce map H ¼
ðh1; h2; . . .; hmÞ; which orders the coordinates of achieve-

ments vectors in a nonincreasing order, i.e., Hða1; a2; . . .;

amÞ ¼ ðh1ðaÞ; h2ðaÞ; . . .; hmðaÞÞ if there exists a permuta-

tion s such that hiðaÞ ¼ asðiÞ for all i and h1ðaÞ�
h2ðaÞ� . . .� hmðaÞ: The standard max–min aggregation

depends on maximization of hmðaÞ and it ignores values of

hiðaÞ for i�m� 1: In order to take into account all the

achievement values, one needs to maximize the weighted

combination of the ordered achievements thus representing

the so-called ordered weighted averaging (OWA) aggre-

gation (Yager 1988). Note that the weights are then

assigned to the specific positions within the ordered

achievements rather than to the component achievements

themselves. With the OWA aggregation, one gets the fol-

lowing RPM model:

max
a2A

Xm

i¼1

wihiðaÞ ð10Þ

where w1\w2\. . .\wm are positive and strictly

increasing weights. Actually, they should be significantly

increasing to represent regularization of the max–min order.

When differences among weights tend to infinity, the OWA

aggregation approximates the leximin ranking of the

ordered outcome vectors (Yager 1997). Note that the

standard RPM model with the scalarizing achievement

function (2) can be expressed as the following OWA model:

max
a2A

1þ e
m

� �
hmðaÞ þ

e
m

Xm�1

i¼1

hiðaÞ
 !

Hence, the standard RPM model exactly represents the

OWA aggregation (10) with strictly increasing weights in

the case of m = 2 (w1 ¼ e=2\w2 ¼ 1þ e=2). For m [ 2 it

abandons the differences in weighting of the largest achieve-

ment, the second largest one, etc. (w1 ¼ . . . ¼wm�1 ¼ e=m).

The OWA RPM model (10) allows one to distinguish all the

weights by introducing increasing series (e.g., geometric

ones). One may notice in Table 2 that application of

increasing weights w = (0.02, 0.03, 0.05, 0.15, 0.25, 0.5)

within the OWA RPM enables the selection of solution S6

from Table 1. On the other hand, the OWA RPM model

(10), similar to that of (2), does not fulfill completely the

preference model of the reference vectors (property P2).

When accepting the loss of a direct utility interpretation,

one may consider more powerful lexicographic preference

modeling (Ogryczak 1997, 2001) based on the linear

component achievement function

ai ¼ siðfiðxÞÞ ¼ ðfiðxÞ � rr
i Þ=ðra

i � rr
i Þ 8i 2 I ð11Þ

but split into separate preemptive multilevel interval

achievement measures: the reservation level under-

achievement

ar
i ¼ sr

i ðfiðxÞÞ ¼
ðrr

i � fiðxÞÞþ
ra

i � rr
i

8 i 2 I;

the aspiration level underachievement

aa
i ¼ sa

i ðfiðxÞÞ ¼ min
ðra

i � fiðxÞÞþ
ra

i � rr
i

; 1

� �
8 i 2 I

and the aspiration level overachievement

ao
i ¼ so

i ðfiðxÞÞ ¼
ðfiðxÞ � ra

i Þþ
ra

i � rr
i

8 i 2 I:

Taking into account (11), they can be rewritten as

ar
i ¼ ð�aiÞþ 8 i 2 I

aa
i ¼ minfð1� aiÞþ; 1g 8 i 2 I

ao
i ¼ ðai � 1Þþ 8 i 2 I

: ð12Þ

For instance, sample achievements from Table 1 represent

all the results between the reservation and aspiration levels.

Hence, the corresponding reservation underachievements

are equal to zero (ar ¼ 0) and similarly all the aspiration

overachievements (ao ¼ 0), while the aspiration under-

achievement are given in Table 3.

Maximization of the scalarizing achievement function

(10) is replaced with the lexicographic minimization of the

multilevel aggregations:

lex min
a2A
fðAwðarÞ;AwðaaÞ;Awð�aoÞÞ : Eqs. ð11Þ � ð12Þg

ð13Þ

with positive and strictly decreasing weights w1 [
w2 [ . . . [ wm [ 0: One may notice in Table 4 that

application of decreasing weights w = (0.5, 0.25, 0.15,

0.05, 0.03, 0.02) within the OWA RPM (13) enables the

selection of solution S6 from Table 3.

Problem (13) always generates an efficient solution to

the original MCO problem complying simultaneously with

the ARBDS preference model assumptions.

Theorem 3 For any reference levels ra
i [ rr

i ; any positive

weights w, if ð�ar; �aa; �aoÞ is an optimal solution of the

problem (13) then any decision vector �x 2 Q generating

Table 2 Ordered achievements values

Sol. h1 h2 h3 h4 h5 h6 Aw

S1 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S2 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S3 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S4 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S5 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S6 0.8 0.8 0.8 0.8 0.8 0.1 0.630

S7 0.8 0.8 0.4 0.1 0.1 0.1 0.285

w 0.02 0.03 0.05 0.15 0.25 0.5
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this solution is an efficient solution of the corresponding

MCO problem (1).

Proof Let �x be a feasible vector generating ð�ar; �aa; �aoÞ
optimal to the problem (13) with some positive weight

vector w. Suppose that �x is not efficient to the MCO

problem (1). This means that there exists a decision vector

x 2 Q such that fiðxÞ� fið�xÞ for all i 2 I and fioðxÞ[ fioð�xÞ
for some outcome index io 2 I: Let us define ar

i ; aa
i and ao

i

according to formula (12). The triple ðar; aa; aoÞ is then a

feasible solution of the problem (13). Moreover, ar
i � �ar

i ;

aa
i � �aa

i and ao
i � �ao

i for all i 2 I; where at least one of strict

inequalities ar
i0
\�ar

i0
or aa

i0
\�aa

i0
or ao

i0
[ �ao

i0
holds. Hence,

due to strict monotonicity of the OWA aggregation with

positive weighting vectors, one gets AwðarÞ�Awð�arÞ;
AwðaaÞ�Awð�aaÞ and Awð�aoÞ�Awð��aoÞ with at least one

inequality strict. The latest assertion contradicts the lexi-

cographic optimality of ð�ar; �aa; �aoÞ for problem (13),

which completes the proof.

Theorem 4 For any reference levels ra
i [ rr

i ; any positive

weights w; if ð�ar; �aa; �aoÞ is an optimal solution of the

problem (13), then all the reservation level underachieve-

ments �ar
i are equal to 0 whenever there exists a feasible

solution x 2 Q such that fiðxÞ� rr
i for all i 2 I:

Proof Let ð�ar; �aa; �aoÞ be an optimal solution of the

problem (13) with some positive weight vector w. Suppose

that �ar
i0
\0 for some i0 2 I and there exists a feasible

solution x 2 Q such that fiðxÞ� rr
i for all i 2 I: Let us

define ar
i ; aa

i and ao
i according to formula (12) and note that

ar
i ¼ 0 for all i 2 I: The triple ðar; aa; aoÞ is then a feasible

solution of problem (26) and, due to positive weights,

AwðarÞ ¼ 0\Awð�arÞ; thus contradicting the lexicographic

optimality of ð�ar; �aa; �aoÞ:

Theorem 5 For any reference levels ra
i [ rr

i ; any positive

weights w, if ð�ar; �aa; �aoÞ is an optimal solution of the

problem (13), then all the aspiration level underachieve-

ments �aa
i are equal to 0 whenever there exists a feasible

solution x 2 Q such that fiðxÞ� ra
i for all i 2 I:

Proof Let ð�ar; �aa; �aoÞ be an optimal solution of the

problem (13) with some positive weight vector w. Sup-

pose that �aa
i0
\0 for some i0 2 I and there exists a feasible

solution x 2 Q such that fiðxÞ� ra
i for all i 2 I: Let us

define ar
i ; aa

i and ao
i according to formula (12) and note

that aa
i ¼ ar

i ¼ 0 for all i 2 I: The triple ðar; aa; aoÞ is

then a feasible solution of problem (26) and, due to

positive weights, AwðaaÞ ¼ 0\Awð�aaÞ; thus contradicting

the lexicographic optimality of ð�ar; �aa; �aoÞ:

Note that following Theorem 3, every solution optimal

to the OWA RPM problem (13) is an efficient solution to

the MCO problem (property P1). Further, following

Theorem 4, a solution reaching all the reservation levels

is preferred to any solution failing achievement of at least

one reservation level. Similarly, according to Theorem 5, a

solution reaching all the aspiration levels is preferred to

any solution failing achievement of at least one aspiration

level. Thus, the property P2 is satisfied in terms of the

ARBDS methodology. The following theorem shows that

for each efficient solution �x there exist aspiration and res-

ervation vectors such that �x with the corresponding values

of the multilevel achievements is an optimal solution of the

problem (13), thus justifying the complete controllability of

the interactive process by the aspiration levels.

Theorem 6 If �x is an efficient solution of the MCO

problem (1), then there exist aspirations levels ra
i such that

the corresponding triple ð�ar; �aa; �aoÞ is an optimal solution

of problem (13), for any reservation levels rr
i \ri

a and any

positive weight vector w.

Proof Let us set the aspiration levels as ra
i ¼ fið�xÞ for

i 2 I: For any reservation levels rr
i \ri

a; all the corre-

sponding multilevel achievements defined according to the

formula (12) take the zero values: �ar ¼ 0; �aa ¼ 0 and �ao ¼
0: Suppose that for some weights the triple (0, 0, 0) is not

an optimal solution of the corresponding problem (13).

This means that there exists a vector x 2 Q such that ar ¼
0; aa ¼ 0; ao� 0 and Awð�aoÞ\Awð��aoÞ: Hence,

fiðxÞ� fið�xÞ 8i 2 I and fioðxÞ[ fioð�xÞ for some index io 2

Table 3 Sample aspiration underachievements

Sol. aa
1 aa

2 aa
3 aa

4 aa
5 aa

6

S1 0.9 0.0 0.0 0.0 0.0 0.9

S2 0.0 0.9 0.0 0.0 0.0 0.9

S3 0.0 0.0 0.9 0.0 0.0 0.9

S4 0.0 0.0 0.0 0.9 0.0 0.9

S5 0.0 0.0 0.0 0.0 0.9 0.9

S6 0.2 0.2 0.2 0.2 0.2 0.9

S7 0.9 0.9 0.9 0.2 0.6 0.2

Table 4 Ordered aspiration underachievements with passive min–

max criterion

Sol. h1 h2 h3 h4 h5 h6 Aw(a)a

S1 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S2 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S3 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S4 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S5 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S6 0.9 0.2 0.2 0.2 0.2 0.2 0.550

S7 0.9 0.9 0.9 0.6 0.2 0.2 0.895

w 0.5 0.25 0.15 0.05 0.03 0.02
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I: The latest assertion contradicts the efficiency of �x to the

MCO problem (1), which completes the proof.

Note that instead of (12), the interval achievements may

be defined with the goal programming modeling techniques

(Ogryczak and Lahoda 1992):

ai ¼ ðfiðxÞ � rr
i Þ=ðra

i � rr
i Þ; 8 i 2 I

ai � ao
i þ aa

i þ ar
i ¼ �1; 8 i 2 I

ao
i � 0; 0� aa

i � 1; ar
i � 0 8 i 2 I

: ð14Þ

Indeed, due to strict monotonicity of the OWA aggregation

with positive weights (Kostreva and Ogryczak 1999;

Llamazares 2004), the following assertion may be

applied to justify the OWA RPM model given as

lex min
a2A
fðAwðarÞ;AwðaaÞ;Awð�aoÞÞ : Eq: ð14Þg: ð15Þ

Lemma 1 For any strictly increasing scalarizing

function g, if ð�x; �ar; �aa; �aoÞ is an optimal solution of the

problem.

lex min
a2A
fðgðarÞ; gðaaÞ; gð�aoÞÞ : Eq: ð14Þg; ð16Þ

then it is an optimal solution of the problem

lex min
a2A
fðgðarÞ; gðaaÞ; gð�aoÞÞ : Eq: ð11Þ � ð12Þg: ð17Þ

Proof Let ð�x; �ar; �aa; �aoÞ be an optimal solution of the

problem (16). If �ar
i ; �aa

i and �ao
i fulfill the formula (12) for �x;

then the quadruple ð�x; �ar; �aa; �aoÞ is an optimal solution of

the corresponding problem (17). In order to prove that the

formula (12) is satisfied, it is sufficient to show that �ao
i �aa

i ¼
0 and ð1� �aa

i Þ�ar
i ¼ 0 for all i 2 I while obviously �ao

i �aa
i � 0

and ð1� �aa
i Þ�ar

i � 0 for all i 2 I:

Suppose that �ao
i0

�aa
i0

[ 0 for some index i0 2 I: One may

then decrease the values of both variables �ao
i0

and �aa
i0

by the

same small positive number. This means, for sufficiently small

positive number d, the quadruple ð�x; �ao � dei0 ; �a
a � dei0 ; �a

rÞ
where ei0 denotes the unit vector corresponding to index i0 is

feasible for problem (16). Due to the strictly increasing

function g, one gets ðgð�arÞ; gð�aa � dei0Þ; gð��ao þ dei0ÞÞ
\lexðgð�arÞ; gð�aaÞ; gð��aoÞÞ; which contradicts optimality of

ð�x; �ar; �aa; �aoÞ to the problem (16).

Further, suppose that ð1� �aa
i0
Þ�ar

i0
[ 0 for some index

i0 2 I: One may decrease then the value of variable �ar
i0

and

simultaneously increase �aa
i0

by the same small positive

number. This means that for sufficiently small positive

number d the quadruple ð�x; �a�; �aa þ dei0 ; �a
r � dei0Þ is

feasible for problem (16). Hence, ðgð�ar � dei0Þ; gð�aa þ
dei0Þ; gð��aoÞÞ\lexðgð�arÞ; gð�aaÞ; gð��aoÞÞ; which contra-

dicts the optimality of ð�x; �ar; �aa; �aoÞ to the problem (16).

Thus ð�x; �ao; �aa; �arÞ fulfills formula (12) and therefore it

is an optimal solution of the corresponding problem (17).

An important advantage of the RPM depends on its easy

implementation as an expansion of the original multiple

criteria model. Actually, even complicated component

achievement functions of the form (7) strictly increase and

are concave, thus allowing for implementation of the entire

RPM model (2) by an LP expansion (Ogryczak et al.

1992).

The OWA aggregation is obviously a piecewise linear

function, since it remains linear within every area of the

fixed order of arguments. The ordered achievements used

in the OWA aggregation are, in general, difficult to

implement due to the pointwise ordering. Its optimization

can be implemented using the cumulated ordered

achievements �hkðaÞ ¼
Pk

i¼1 hiðaÞ expressing, respectively:

the worst achievement, the total of the two worst

achievements, the total of the three worst achievements,

etc. Indeed,

Xm

i¼1

wihiðaÞ ¼
Xm

i¼1

w0i
�hiðaÞ ð18Þ

where w0k ¼ wk � wkþ1 for k ¼ 1; . . .;m� 1 and w0m ¼ wm:

This simplifies dramatically the optimization problem since

quantities �hkðaÞ can be optimized without use of any

integer variables (Ogryczak and Śliwiński 2003). First, let

us notice that for any given vector a, the cumulated ordered

value �hkðaÞ can be found as the optimal value of the

following LP problem:

�hkðaÞ ¼ max
uik

Xm

i¼1

aiuik :
Xm

i¼1

uik ¼ k; 0� uik� 1 8i
( )

ð19Þ

The above problem is an LP for a given outcome vector a

while it becomes nonlinear for a being a vector of

variables. This difficulty can be overcome by taking

advantage of the LP dual to (19). Introducing a dual

variable tk corresponding to the equation
Pm

i¼1 uik ¼ k; and

variables dik corresponding to the upper bounds on uik, one

gets the following LP dual of problem (19):

�hkðaÞ ¼ min
tk ;dik

ktk þ
Xm

i¼1

dik : ai� tk þ dik; dik� 0 8 i

( )

ð20Þ

Due to the duality theory, for any given vector a, the

cumulated ordered coefficient �hkðaÞ can be found as the

optimal value of the above LP problem. It follows from

(20) that �hkðaÞ ¼ maxfktk þ
Pm

i¼1ðai � tkÞþg; where ð:Þþ
denotes the nonnegative part of a number and tk is an

auxiliary (unbounded) variable. The latter, with the nec-

essary adaptation to the location problems, is equivalent to

the computational formulation of the k-centrum model
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introduced by (Ogryczak and Tamir 2003). Hence, formula

(20) provides an alternative proof of that formulation.

Taking advantages of the LP expression (20) for �hk; the

entire OWA aggregation of the component achievement

functions (10) can be expressed in terms of LP. This leads

us to the following formulation of the OWA RPM problem

(15):

lex min
Xm

k¼1

w0kzr
k;
Xm

k¼1

w0kza
k ;
Xm

k¼1

w0kzo
k

" #

s.t. x 2 Q

ai ¼ ðfiðxÞ � rr
i Þ=ðra

i � rr
i Þ; 8 i 2 I

ai � ao
i þ aa

i þ ar
i ¼ �1; 8 i 2 I

ao
i � 0; 0� aa

i � 1; ar
i � 0 8 i 2 I

zr
k ¼ ktr

k þ
Xm

i¼1

dr
ik; 8 k 2 I

ar
i � tr

k þ dr
ik; dr

ik � 0 8 i; k 2 I

za
k ¼ kta

k þ
Xm

i¼1

da
ik; 8 k 2 I

aa
i � ta

k þ da
ik; da

ik � 0 8 i; k 2 I

zo
k ¼ kto

k þ
Xm

i¼1

do
ik; 8 k 2 I

� ao
i � to

k þ do
ik; do

ik� 0 8 i; k 2 I

ð21Þ

Note that the resulting formulation extends the original

constraints and criteria with linear inequalities.

Theorem 7 For any reference levels ra
i [ rr

i ; any positive

strictly decreasing weights wi, if ð�x; �ar; �aa; �aoÞ is an optimal

solution of the problem (21), then it is an optimal solution

of the corresponding problem (13).

Proof Let ð�x; �ar; �aa; �aoÞ be an optimal solution of the

problem (21) with weight vector w. Following the OWA

formulas (18) and (20), one may notice that, due to positive

and strictly decreasing weights wi, the problem (21) is

equivalent to the following lexicographic optimization:

lex min
a2A
ðAwðarÞ;AwðaaÞ;Awð�aoÞÞ

Further, following Lemma 1, due to strict monotonicity of

the OWA aggregations with positive weights, the quadru-

ple ð�x; �ar; �aa; �aoÞ is also an optimal solution of the cor-

responding problem (13).

Corollary 1 For any reference levels ra
i [ rr

i ; any posi-

tive strictly decreasing weights wi, if ð�ar; �aa; �aoÞ is an

optimal solution of the problem (21), then any decision

vector �x 2 Q generating this solution is an efficient solu-

tion of the corresponding MCO problem (1).

Corollary 2 If �x is an efficient solution of the MCO

problem (1), then there exist aspiration levels ra
i ¼ fiðxÞ

such that the corresponding triple ð�ar; �aa; �aoÞ is an opti-

mal solution of the corresponding problem (21), for any

reservation levels rr
i \ri

a and any positive strictly

decreasing weights wi.

4 WOWA enhancement

Typical RPM model allows weighting of several achieve-

ments only by straightforward rescaling of the achievement

values (Ruiz et al. 2009). The OWA RPM model enables

one to introduce importance weights to affect achievement

importance by rescaling accordingly its measure within the

distribution of achievements as defined in the so-called

weighted OWA (WOWA) aggregation (Torra 1997; Liu

2006). Let w ¼ ðw1; . . .;wmÞ and p ¼ ðp1; . . .; pmÞ be

weighting vectors of dimension m such that wi C 0 and

pi C 0 for i ¼ 1; 2; . . .;m as well as
Pm

i¼1 pi ¼ 1 (typically

it is also assumed
Pm

i¼1 wi ¼ 1; but it is not necessary in

our applications). The corresponding weighted OWA

aggregation of outcomes a ¼ ða1; . . .; amÞ is defined as

follows (Torra 1997):

Aw;pðaÞ ¼
Xm

i¼1

xihiðaÞ ð22Þ

where the weights xi are defined as

xi ¼ w�
X

k� i

psðkÞ

 !
� w�

X

k\i

psðkÞ

 !
ð23Þ

with w� a monotone increasing function that interpolates

points ð i
m;
P

k� i wkÞ together with the point ð0:0Þ and s
representing the ordering permutation for a (i.e.

asðiÞ ¼ hiðaÞ). Moreover, function w� is required to be a

straight line when the point can be interpolated in this way,

thus allowing the WOWA to cover the standard weighted

mean with weights pi as a special case of equal preference

weights (wi ¼ 1=m for i ¼ 1; 2; . . .;m). Actually, for our

purpose we use linear interpolation, which obviously sat-

isfies that requirement.

Example 1 Consider achievements vectors a0 ¼ ð1; 2Þ
and a00 ¼ ð2; 1Þ: While introducing preferential weights

w = (0.9, 0.1), one may calculate the OWA averages:

Awðy0Þ ¼ Awðy00Þ ¼ 0:9 � 2þ 0:1 � 1 ¼ 1:9: Further, let us

introduce importance weights p = (0.75, 0.25), which

means that results under the first achievement are three

times more important then those related to the second

criterion. To take into account the importance weights in

the WOWA aggregation (22), we introduce piecewise

linear function

w�ðnÞ ¼ 0:9n=0:5 for 0� n� 0:5
0:9þ 0:1ðn� 0:5Þ=0:5 for 0:5\n� 1:0

�
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and calculate weights xi according to the formula (23) as

w� increments corresponding to importance weights of the

ordered outcomes, as illustrated in Fig. 4. In particular, one

get x1 ¼ w�ðp2Þ ¼ 0:45 and x2 ¼ 1� w�ðp2Þ ¼ 0:55 for

vector a0; while x1 ¼ w�ðp1Þ ¼ 0:95 and x2 ¼ 1�
w�ðp1Þ ¼ 0:05 for vector a00: Finally, Aw;pða0Þ ¼ 0:45�2þ
0:55�1 ¼ 1:45 and Aw;pða00Þ ¼ 0:95�2þ 0:05�1 ¼ 1:95:

Note that one may alternatively compute the WOWA

values by using the importance weights to replicate

corresponding achievements and calculate then OWA

aggregations. In the case of our importance weights

p = (0.75, 0.25) we need to consider three copies of

achievement a1 and one copy of achievement a2, thus

generating vectors ~a0 ¼ ð1; 1; 1; 2Þ and ~a00 ¼ ð2; 2; 2; 1Þ
of four equally important achievements. Original prefer-

ential weights must be then applied, respectively, to the

average of the two smallest outcomes and to the average of

two largest outcomes. Indeed, we get Aw;pða0Þ ¼ 0:9�1:5þ
0:1�1 ¼ 1:45 and Aw;pða00Þ ¼ 0:9�2þ 0:1�1:5 ¼ 1:95: We

will further formalize this approach and take its advantages

to build LP computational models.

The WOWA aggregation may be expressed with an

alternative formula using directly preferential weights wi as

applied to the averages of corresponding portions of the

ordered achievements (quantile intervals) according to the

distribution defined by importance weights pi (Ogryczak

and Śliwiński 2007; Ogryczak and Śliwiński 2007;

Ogryczak and Śliwiński 2009):

Aw;pðaÞ ¼
Xm

i¼1

wim

Z i
m

i�1
m

F
ð�1Þ
a ðnÞdn ð24Þ

where F
ð�1Þ
y is the stepwise function F

ð�1Þ
y ðnÞ ¼ hiðyÞ for

bi�1\n� bi: It can also be mathematically formalized as

follows. First, we introduce the left-continuous right tail

cumulative distribution function (cdf) defined as:

FyðdÞ ¼
X

i2I

pidiðdÞ where diðdÞ ¼
1 if yi� d
0 otherwise

�
ð25Þ

which for any real (outcome) value d provides the measure

of outcomes greater than or equal to d. Next, we introduce

the quantile function F
ð�1Þ
y as the right-continuous inverse

of the cumulative distribution function Fy :

F
ð�1Þ
y ðnÞ ¼ supfg : FyðgÞ� ng for 0\n� 1:

Figure 5 illustrates the application of formula (24) to

computations of the WOWA aggregations in Example 1.

Note that m ¼ 2; therefore the area below F
ð�1Þ
a ðnÞ within

interval [0, 0.5] is multiplied by 2w1 and added to the

area below F
ð�1Þ
a ðnÞ within interval [0.5, 1] multiplied

by 2w2:

(a) (b)Fig. 4 Definition of weights xi

for Example 1: (a) vector

a0 = (1, 2), (b) vector

a00 ¼ ð2; 1Þ

(a) (b)Fig. 5 Formula (24) applied to

calculations in Example 1: (a)

vector a0 ¼ ð1; 2Þ; (b) vector

a00 ¼ ð2; 1Þ
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The formula (24) enables an easy proof of the strict

monotonicity for the WOWA aggregation defined by

positive weights. Indeed, the following assertion is valid.

Lemma 2 For any positive weights w and p, the WOWA

aggregation Aw;pðaÞ is strictly increasing with respect to

any component ai

Proof Let a0 ¼ aþ eei0 for some i0 2 I and e [ 0: Then

(Ogryczak and Ruszczyński 2002) F
ð�1Þ
a0 ðnÞ�F

ð�1Þ
a ðnÞ

for any 0� n� 1 and simultaneously
R 1

0
F
ð�1Þ
a0 ðnÞdn ¼Pm

i¼1 pia
0
i [

Pm
i¼1 piai ¼

R 1

0
F
ð�1Þ
a ðnÞdn: Hence, following

the formula (3), Aw;pða0Þ[ Aw;pðaÞ; which completes the

proof.

The WOWA-enhanced RPM can be based on the fol-

lowing lexicographic optimization problem (Ogryczak

2008):

lex min
a2A
ðAw;pðarÞ;Aw;pðaaÞ;Aw;pð�aoÞÞ ð26Þ

used to generate current solutions according to the spec-

ified preferences. For instance, applying importance

weighting p ¼ ð 4
12
; 3

12
; 2

12
; 1

12
; 1

12
; 1

12
Þ to component achieve-

ments together with the OWA weights w from Table 4,

one gets the WOWA aggregations from Table 5. The

corresponding RPM method selects then solution S6,

similarly to the case of equal importance weights. On the

other hand, when increasing the importance of the last

achievement with p ¼ ð 1
12
; 1

12
; 1

12
; 1

12
; 1

12
; 7

12
Þ; one gets the

WOWA values from Table 6 suggesting the selection of

solution S7.

The following assertions show that the WOWA RPM

problem (26) always generates an efficient solution to the

original MCO problem (Theorem 8), thus satisfying the

property P1. Further, following Theorem 9, a solution

reaching all the reservation levels is preferred to any

solution failing to achieve at least one reservation level

and, according to Theorem 10, a solution reaching all the

aspiration levels is preferred to any solution failing to

achieve at least one aspiration level. Thus, the property P2

is satisfied in terms of the ARBDS methodology.

Theorem 8 For any reference levels ra
i [ rr

i ; any positive

weights w and p, if ð�ar; �aa; �aoÞ is an optimal solution of

the problem (26), then any decision vector �x 2 Q gener-

ating this solution is an efficient solution of the corre-

sponding MCO problem (1).

Proof Let �x be a feasible vector generating ð�ar; �aa; �aoÞ
optimal to the problem (26) with some positive weighting

vectors w and p. Suppose that �x is not efficient to the MCO

problem (1). This means, there exists a decision vector

x 2 Q such that fiðxÞ� fið�xÞ for all i 2 I and fioðxÞ[ fioð�xÞ
for some outcome index io 2 I: Let us define ar

i ; aa
i and ao

i

according to the formula (12). The triple ðar; aa; aoÞ is

then a feasible solution of the problem (26). Moreover,

ar
i � �ar

i ; aa
i � �aa

i and ao
i � �ao

i for all i 2 I where at least

one of strict inequalities ar
i0
\�ar

i0
or aa

i0
\�aa

i0
or ao

i0
[ �ao

i0

holds. Hence, due to strict monotonicity of the WOWA

aggregation with positive weighting vectors, one gets

Aw;pðarÞ�Aw;pð�arÞ; Aw;pðaaÞ�Aw;pð�aaÞ and Aw;pð�aoÞ�
Aw;pð��aoÞ with at least one inequality strict. The latest

assertion contradicts the lexicographic optimality of

ð�ar; �aa; �aoÞ for the problem (26), which completes the

proof.

Theorem 9 For any reference levels ra
i [ rr

i ; any positive

weights w and p, if ð�ar; �aa; �aoÞ is an optimal solution of

Table 5 WOWA RPM selection with importance weights

p ¼ 4
12
; 3

12
; 2

12
; 1

12
; 1

12
; 1

12

� �

w S1 S2 S3 S4 S5 S6 S7

0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.2 0.9

0.25 0.9 0.9 0.9 0.0 0.0 0.2 0.9

0.9 0.9 0.9 0.0 0.0 0.2 0.9

0.15 0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.05 0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.03 0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.0 0.0 0.0 0.0 0.0 0.2 0.6

0.02 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

Aw,p(aa) 0.74 0.68 0.56 0.45 0.45 0.38 0.88

Table 6 WOWA RPM selection with importance weights

p ¼ 1
12
; 1

12
; 1

12
; 1

12
; 1

12
; 7

12

� �

w S1 S2 S3 S4 S5 S6 S7

0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.25 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.6

0.15 0.9 0.9 0.9 0.9 0.9 0.9 0.2

0.9 0.9 0.9 0.9 0.9 0.9 0.2

0.05 0.9 0.9 0.9 0.9 0.9 0.9 0.2

0.9 0.9 0.9 0.9 0.9 0.2 0.2

0.03 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.02 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

Aw,p(aa) 0.86 0.86 0.86 0.86 0.86 0.85 0.69
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the problem (26), then all the reservation level under-

achievements �ar
i are equal 0 whenever there exists a fea-

sible solution x 2 Q such that fiðxÞ� rr
i for all i 2 I:

Proof Let ð�ar; �aa; �aoÞ be an optimal solution of the

problem (26) with some positive weighting vectors w

and p. Suppose that �ar
i0
\0 for some i0 2 I and there

exists a feasible solution x 2 Q such that fiðxÞ� rr
i for all

i 2 I: Let us define ar
i ; aa

i and ao
i according to the for-

mula (12) and note that ar
i ¼ 0 for all i 2 I: The triple

ðar; aa; aoÞ is then a feasible solution of the problem (26)

and, due to positive weights, Aw;pðarÞ ¼ 0\Aw;pð�arÞ
thus contradicting the lexicographic optimality of

ð�ar; �aa; �aoÞ:

Theorem 10 For any reference levels ra
i [ rr

i ; any

positive weights w and p, if ð�ar; �aa; �aoÞ is an optimal

solution of the problem (26), then all the aspiration level

underachievements �aa
i are equal to 0 whenever there

exists a feasible solution x 2 Q such that fiðxÞ� ra
i for all

i 2 I:

Proof Let ð�ar; �aa; �aoÞ be an optimal solution of the

problem (26) with some positive weighting vectors w and

p. Suppose that �aa
i0
\0 for some i0 2 I and there exists a

feasible solution x 2 Q such that fiðxÞ� ra
i for all i 2 I:

Let us define ar
i ; aa

i and ao
i according to the formula (12)

and note that aa
i ¼ ar

i ¼ 0 for all i 2 I: The triple

ðar; aa; aoÞ is then a feasible solution to the problem (26)

and, due to positive weights, Aw;pðaaÞ ¼ 0\Aw;pð�aaÞ;
thus contradicting the lexicographic optimality of

ð�ar; �aa; �aoÞ:

In order to show that the WOWA RPM model (26)

provides us with a complete parameterization of the effi-

cient set, we will prove in the following theorem that for

each efficient solution �x there exist aspiration and reser-

vation vectors for which �x with the corresponding values of

the multilevel achievements is an optimal solution of the

problem (26).

Theorem 11 If �x is an efficient solution of the MCO

problem (1), then there exist aspirations levels ra
i such that

the corresponding triple ð�ar; �aa; �aoÞ is an optimal solution

to the problem (26), for any reservation levels rr
i \ri

a and

positive weighting vectors w and p.

Proof Let us set the aspiration levels as ra
i ¼ fið�xÞ for

i 2 I: For any reservation levels rr
i \ri

a; all the corre-

sponding multilevel achievements defined according to the

formula (12) take zero values: �ar ¼ 0; �aa ¼ 0 and �ao ¼ 0:

Suppose that for some weights the triple (0, 0, 0) is not an

optimal solution of the corresponding problem (26). This

means that there exists a vector x 2 Q such that ar ¼ 0;

aa ¼ 0; ao� 0 and Aw;pð�aoÞ\Aw;pð��aoÞ: Hence,

fiðxÞ� fið�xÞ 8 i 2 I and fioðxÞ[ fioð�xÞ for some index

io 2 I: The latest assertion contradicts the efficiency of �x to

(1), which completes the proof.

In the proof of Theorem 11, we have used one set of

preferential parameters leading to the given efficient

solution. Obviously, there are many alternative settings of

the parameters allowing to reach this goal. For instance,

one may set the reservation levels as rr
i ¼ fið�xÞ for i 2 I

while taking any aspiration levels ra
i [ rr

i :

According to the original definition, the WOWA oper-

ator is a quite complicated function of the aggregated

outcomes. Nevertheless, similar to the OWA RPM model

(21), the WOWA RPM optimization can be simply

implemented as an LP expansion of the original MCO

problem. Recall that the formula (24) defines the WOWA

operator applying the preferential weights wi to importance

weighted averages within quantile intervals. It may be

reformulated using the tail averages (Ogryczak and

Śliwiński 2007a, b, 2009):

Aw;pðaÞ ¼
Xm

k¼1

w0kmL a; p;
k

m

� �
ð27Þ

where weights w0k ¼ wk � wkþ1 for k ¼ 1; . . .;m� 1 and

w0m ¼ wm; and Lðy; p; nÞ is defined by left-tail integrating

of F
ð�1Þ
y ; i.e.,

Lðy; p; nÞ ¼
Zn

0

F
ð�1Þ
y ðaÞda ð28Þ

Values Lða; p; nÞ for any 0� n� 1 can be given by

optimization:

Lða; p; nÞ

¼ max
pi

Xm

i¼1

aipi :
Xm

i¼1

pi ¼ n; 0� pi� pi 8 i 2 I

( )

ð29Þ

Introducing a dual variable t corresponding to the equationPm
i¼1 pi ¼ n; and variables di corresponding to the upper

bounds on pi; one gets the following LP dual expression for

Lða; p; nÞ

Lða; p; nÞ

¼ min
t;di

nt þ
Xm

i¼1

pidi : t þ di� ai; di� 0 8 i 2 I

( )

ð30Þ

According to (27) and (30), one gets finally the

following model for the WOWA RPM:
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lex min
Xm

k¼1

w0kzr
k;
Xm

k¼1

w0kza
k ;
Xm

k¼1

w0kzo
k

" #

s.t. x 2 Q

ai ¼ ðfiðxÞ � rr
i Þ=ðra

i � rr
i Þ; 8 i 2 I

ai � ao
i þ aa

i þ ar
i ¼ �1; 8 i 2 I

ao
i � 0; 0� aa

i � 1; ar
i � 0 8 i 2 I

zr
k ¼ ktr

k þ m
Xm

i¼1

pid
r
ik; 8 k 2 I

ar
i � tr

k þ dr
ik; dr

ik � 0 8 i; k 2 I

za
k ¼ kta

k þ m
Xm

i¼1

pid
a
ik; 8 k 2 I

aa
i � ta

k þ da
ik; da

ik � 0 8 i; k 2 I

zo
k ¼ kto

k þ m
Xm

i¼1

pid
o
ik; 8 k 2 I

� ao
i � to

k þ do
ik; do

ik� 0 8 i; k 2 I

; ð31Þ

thus allowing for implementation as an LP expansion of the

original problem. The following theorem justifies the

model (31) as an implementation of the WOWA RPM

approach (26), thus preserving its preference model

properties.

Theorem 12 For any reference levels ra
i [ rr

i ; any

positive importance weights pi and positive strictly

decreasing weights wi, if ð�x; �ar; �aa; �aoÞ is an optimal

solution of the problem (31), then it is an optimal solution

of the corresponding problem (26).

Proof Let ð�x; �ar; �aa; �aoÞ be an optimal solution of the

problem (31) with some positive weighting vectors w and

p. Following the WOWA formulas (27) and (30), one may

notice that the problem (31) is equivalent to the following

lexicographic optimization:

lex min
a2A
ðAw;pðarÞ;Aw;pðaaÞ;Aw;pð�aoÞÞ

Further, following Lemmas 1 and 2, the quadruple

ð�x; �ar; �aa; �aoÞ is also an optimal solution of the corre-

sponding problem (26).

Corollary 3 For any reference levels ra
i [ rr

i ; any posi-

tive importance weights pi and positive strictly decreasing

preferential weights wi, if ð�ar; �aa; �aoÞ is an optimal solu-

tion of the problem (31), then any decision vector �x 2 Q

generating this solution is an efficient solution of the cor-

responding MCO problem (1).

Corollary 4 If �x is an efficient solution of the MCO

problem (1), then there exist aspirations levels ra
i ¼ fiðxÞ

such that the corresponding triple ð�ar; �aa; �aoÞ is an opti-

mal solution of the corresponding problem (31), for any

reservation levels rr
i \ri

a; any positive importance weights

pi and positive strictly decreasing preferential weights wi.

5 Illustrative example

In order to illustrate the WOWA RPM performances let us

analyze a simplified multicriteria problem of information

system selection. We consider a billing system selection for

a telecommunication company. The decision is based on

six criteria related to the system reliability, processing

efficiency, investment costs, installation time, operational

costs and warranty period. All these attributes may be

viewed as criteria, either maximized or minimized. Table 7

presents all the criteria with their measurement units and

optimization directions. The aspiration and reservation

levels for each criterion as well as the importance factors

(not normalized to weights pi) are also specified for several

achievements. The importance factors emphasize achieve-

ments related to the quality of the system. Five candidate

billing systems have been accepted for the final selection

procedure. They all met the minimal requirements defined

by the reservation levels. Table 8 presents for all the sys-

tems (columns) their criteria values yi and the corre-

sponding linear achievement values ai computed according

to the formula (11). Exactly, the formula (11) is directly

applied to the maximized outcomes, while its symmetric

adaptation is applied to the minimized ones.

Table 9 presents for all the systems (columns) their

aspiration underachievements values aa ordered from the

Table 7 Criteria and their attributes for the sample billing system selection

f1 f2 f3 f4 f5 f6
Reliability Efficiency Investment cost Installation time Opernational cost Warranty period

Units 1–10 CAPS mln. EUR months mln. EUR years

Optimization Max Max Min Min Min Max

Reservation 8 50 2 12 1.25 0.5

Aspiration 10 200 0 6 0.5 2

Importance weights 3 3 1 1 1 3
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worst to the best, taking into account replications according

to the importance weights allowing for easy WOWA

aggregation computations following the formula (24). One

may notice that except for system D, all the other systems

have the same worst achievement value maxi aa
i ¼ 0:67:

Selection among systems A, B, C and E depends only on

the regularization of achievements aggregation used in the

RPM approach. The WOWA RPM method taking into

account the importance weights together with the prefer-

ential weights w = (0.6, 0.2, 0.1, 0.05, 0.03, 0.02) points

out that system A is the best one.

System A, similar to B and D, is characterized by the

highest operational cost. In order to improve the opera-

tional cost one may try to strengthen the requirements

given by the corresponding reference levels. Let us take

ra
5 ¼ 0:2 and rr

5 ¼ 1:0: Still there are no positive reserva-

tion underachievements and the selection is based on the

aspiration underachievements. Table 10 presents for all the

systems their aspiration underachievements values ordered

from the worst to the best with replications according to the

importance weights of the WOWA formula (24). One may

notice that now system E is pointed out as the best, meeting

the requirements, actually not much better than system A.

Both these systems have the worst value of the operational

cost. Systems C and D characterized by lower (better)

values of the operational cost are evaluated as much worse.

Indeed, to increase the importance of the operational cost

criterion, we should rather increase its importance weight.

For instance, when instead of changing the reference lev-

els, we increase the importance of criterion f5 to 3 and

simultaneously decrease the importance of criterion f6 to 1,

we get the results presented in Table 11. System C with

relatively low (but not the lowest) operational cost is then

pointed out as the best one.

On the other hand, when we increase strongly the

importance of criterion f5 to 5 and simultaneously decrease

the importance of criteria f1 and f2 to 1 while leaving the

importance of f6 on the level 3, we get the results presented

in Table 12. System D with the lowest operational cost is

then selected.

In order to provide a lucid illustration, we have con-

sidered an example of discrete choice problem with a few

explicitly given alternatives where any complicated

aggregation method can be applied. However, the WOWA

RPM model enables one to solve MCO problems with

infinite number of decision alternatives implicitly given by

constraints of the feasible set.

6 Conclusions

The reference point method is a very convenient technique

for interactive analysis of the multiple criteria optimization

problems. It provides the DM with a tool for an open

analysis of the efficient frontier. The interactive analysis is

Table 8 Criteria values yi and individual achievements ai for five

billing systems

i System A System B System C System D System E

yi ai yi ai yi ai yi ai yi ai

1 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00

2 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67

3 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75

4 8 0.67 3 1.50 8 0.67 8 0.67 5 1.20

5 1 0.33 1 0.33 0.6 0.87 0.2 1.40 1 0.33

6 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67

Table 9 WOWA RPM selection with criteria importance factors

(3, 3, 1, 1, 1, 3)

w A B C D E

0.6 0.67 0.67 0.67 0.73 0.67

0.50 0.67 0.67 0.73 0.33

0.2 0.33 0.67 0.67 0.73 0.33

0.00 0.67 0.40 0.50 0.33

0.1 0.00 0.50 0.33 0.50 0.33

0.00 0.50 0.30 0.50 0.33

0.05 0.00 0.50 0.30 0.33 0.33

0.00 0.15 0.30 0.10 0.25

0.03 0.00 0.00 0.13 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.414 0.602 0.556 0.622 0.455

Table 10 WOWA RPM selection with criteria importance factors

(3, 3, 1, 1, 1, 3) and modified reference levels

w A B C D E

0.6 1.00 1.00 0.67 0.73 1.00

0.50 0.67 0.67 0.73 0.33

0.2 0.33 0.67 0.67 0.73 0.33

0.00 0.67 0.50 0.50 0.33

0.1 0.00 0.50 0.40 0.50 0.33

0.00 0.50 0.33 0.50 0.33

0.05 0.00 0.50 0.30 0.33 0.33

0.00 0.15 0.30 0.10 0.25

0.03 0.00 0.00 0.30 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.483 0.612 0.630 0.622 0.465
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navigated with the commonly accepted control parameters

expressing reference levels for the individual objective

functions. The component achievement functions quantify

the DM satisfaction from the individual outcomes with

respect to the given reference levels. The final scalarizing

function is built as the augmented max–min aggregation of

component achievements, which means that the worst

individual achievement is essentially maximized, but the

optimization process is additionally regularized with the

term representing the average achievement. The regulari-

zation by the average achievement is easily implementable,

but it may disturb the basic max–min aggregation. In order

to avoid inconsistencies caused by the regularization, the

max–min solution may be regularized by taking into

account also the second worst achievement, the third worse

and so on, thus resulting in much better modeling of the

reference levels concept (Kostreva et al. 2004).

The OWA aggregation with monotonic weights com-

bines all the component achievements allocating the largest

weight to the worst achievement, the second largest weight

to the second worst achievement, the third largest weight to

the third worst achievement, and so on. Further, following

the concept of Weighted OWA (Torra 1997), the impor-

tance weighting of several achievements may be incorpo-

rated into the RPM. Such a WOWA enhancement of the

RPM uses importance weights to affect achievement

importance by rescaling accordingly its measure within the

distribution of achievements rather than straightforward

rescaling of achievement values (Ruiz et al. 2009). The

ordered regularizations are more complicated in imple-

mentation due to the requirement of pointwise ordering of

component achievements. However, the recent progress

in optimization methods for ordered averages (Ogryczak

and Śliwiński 2003) allows one to implement the OWA

RPM quite effectively by taking advantages of piecewise

linear expression of the cumulated ordered achievements.

A similar computational model can be achieved for

the WOWA RPM. Actually, the resulting formulation

extends the original constraints and criteria with simple

linear inequalities, thus allowing for a quite efficient

implementation.
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