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Abstract

In systems which serve many users there is a need to respect some fairness rules while looking for the overall efficiency.
This applies among others to network design where a central issue is how to allocate bandwidth to flows efficiently and fairly.
The so-called max–min fairness is widely used to meet these goals. However, allocating the bandwidth to optimize the worst
performance may cause a large worsening of the overall throughput of the network. In this paper we show how the concepts
of mult-criteria equitable optimization can effectively be used to generate various fair and efficient allocation schemes. We
introduce a multi-criteria model equivalent to equitable optimization and we develop a corresponding reference point procedure
to generate fair and efficient bandwidth allocations. Our analysis is focused on the nominal network design for elastic traffic
that is currently the most significant traffic of IP networks. The procedure is tested on a sample network dimensioning problem
for elastic traffic and its abilities to model various preferences are demonstrated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Resource allocation decisions are usually concerned
with the allocation of limited resources so as to achieve
the best system performance. However, in networking
there is a need to respect some fairness rules while
looking for the overall efficiency. A fair way of distri-
bution of the bandwidth (or other network resources)
among competing demands becomes a key issue in com-
puter networks [1] and telecommunication network de-
sign in general [2,3]. This paper deals with problems of
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bandwidth allocation within telecommunication net-
works. Therefore, we focus on the approaches that
attempt to provide a fair (equal) treatment of all the
activities (demands) [4,5] while allocating resources.

Expanding demand on the Internet services has led to
an increased role of the traffic carried by the IP proto-
col in telecommunication networks. The TCP protocol
is the most frequently used transport protocol in best-
effort IP networks. The data traffic carried by the TCP
protocol adapts its throughput to the amount of available
bandwidth. Such traffic, called elastic traffic, is capable
to use the entire available bandwidth, but it is also able
to reduce its throughput in the presence of contending
traffic. It should be noted here that elastic traffic com-
municated by the TCP protocol is currently the most
significant portion of traffic in IP networks. Applica-
tions such as World Wide Web, e-mail, or Peer-to-Peer

http://www.elsevier.com/locate/omega
mailto:ogryczak@ia.pw.edu.pl


452 W. Ogryczak et al. / Omega 36 (2008) 451–463

file-sharing all use the TCP protocol and therefore com-
municate elastic traffic, which forms the majority of the
traffic volume in IP networks. Nowadays, network man-
agement often faces the problem of designing networks
that carry elastic traffic. These network design prob-
lems are essentially network dimensioning problems as
they can be reduced to a decision about link capacities.
Flow sizes are outcomes of the design problem, since
the flows adapt to given network resources on a chosen
path.

Network management must stay within a budget con-
straint on link bandwidth to expand network capacities.
An obvious goal is to achieve a high throughput of the
IP network to increase the multiplexing gains (due to
the use of packet switching by the IP protocol). This
traffic is offered only a best-effort service, and therefore
network management is not concerned with offering
guaranteed levels of bandwidth to the traffic. A straight-
forward network dimensioning with elastic traffic could
be thought of as a search for such network flows that
will maximize the aggregate network throughput while
staying within a budget constraint for the costs of link
bandwidth. However, maximizing aggregate throughput
can result in extremely unfair solutions allowing even
for starvation of flows for certain services. On the other
extreme, while looking at the problem from the perspec-
tive of a network user, the network flows between dif-
ferent nodes should be treated as fairly as possible [6].
The so-called max–min fairness (MMF) [7,8] is widely
considered as such ideal fairness criteria. Indeed, the
lexicographic max–min optimization used in the MMF
approach generalizes equal sharing at a single link band-
width to any network while maintaining the Pareto opti-
mality. Certainly, allocating the bandwidth to optimize
the worst performance may cause a large worsening of
the overall throughput of the network. Therefore, net-
work management must consider two conflicting goals:
increasing throughput and providing fairness.

The search for compromise solutions that do not
starve network flows, and give satisfying levels of
throughput has led to the development of methods de-
pending on maximization of the sum of the flows evalu-
ated with some (concave) utility function. In particular,
the so-called proportional fairness (PF) approach [9]
maximizes the sum of logarithms of the flows. The
approach has been further extended to a paramet-
ric class of concave utility functions [10]. However,
every such approach requires to build (or to guess) a
utility function prior to the analysis and later it gives
only one possible compromise solution. More general
parametric approach may depend on the use of the so-
called ordered weighted averaging (OWA) with weights

assigned to the ordered outcomes (flows) thus allowing
to model various fair preferences [11].

It is very difficult to identify and formalize the pref-
erences at the beginning of the decision process. There-
fore, a decision support process is usually needed that
attempts to gain additional preference information in-
teractively, simultaneously allowing the decision-maker
(DM) to learn the problem during the process with
possibly evolving preferences. This can be effectively
achieved with the so-called quasi-satisficing approach to
multi-criteria decision problems [12]. The best formal-
ization of the quasi-satisficing approach to multi-criteria
optimization has been proposed and developed mainly
by Wierzbicki [13] as the reference point method. The
reference point method (RPM) is an interactive tech-
nique where the DM specifies preferences in terms of
aspiration levels (reference point), i.e. by introducing
desired (acceptable) levels for several criteria.

The purpose of this work is to show a multi-criteria
model that allows to represent consistently the over-
all efficiency and fairness goals and thereby to apply
the reference point methodology to the bandwidth allo-
cation problems effectively. The paper is organized as
follows. In the next section, we formalize the consid-
ered network dimensioning problem. In Section 3, basic
fair solution concepts for resource allocation are related
to the multi-criteria equitable optimization theory. In
Section 4, the reference point methodology is applied
to the multi-criteria which allows us to model various
fair and efficient allocation schemes with simple control
parameters. Finally, in Section 5 we present some re-
sults of our initial computational experience with this
new approach.

2. The bandwidth allocation problem

The basic problem of network dimensioning with
elastic traffic can be formulated as a linear program-
ming (LP) based resource allocation model as follows
[2]. Given a network topology G = 〈V, E〉, consider a
set of pairs of nodes as set I ={1, 2, . . . , m} of services
representing the elastic flow from source vs

i to desti-
nation vd

i . For each service, we have a given set Pi of
possible routing paths in the network from the source
to the destination. This information can be summarized
with binary coefficients �eip, where �eip = 1, if link e
belongs to routing path p ∈ Pi (connecting vs

i with vd
i ),

and �eip = 0 otherwise.
For each service i ∈ I , the elastic flow from source

vs
i to destination vd

i is a variable representing the model
outcome and it will be denoted by xi . This flow may be
realized along various paths p ∈ Pi . The flow may be
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either split among several paths or a single path must
be finally selected to serve the entire flow. Actually, the
latter case of nonbifurcated flows is more commonly
required. Both bifurcated or nonbifurcated flows may be
modeled as xi = ∑

p∈Pi
xip where xip (for p ∈ Pi) are

nonnegative variables representing the elastic flow from
source vs

i to destination vd
i along routing path p. The

single-path model requires additional multiple choice
constraints to enforce nonbifurcated flows. This can be
implemented with additional binary (flow assignment)
variables uip equal 1 if path p ∈ Pi is assigned to
serve flow xi , and 0 otherwise. Assuming existence of
some constant M upper bounding the largest possible
total flow xi , the assignment variables uip can easily be
used to limit the number of positive flows xip with the
following constraints:

0�xip �Muip, uip ∈ {0, 1} ∀ i ∈ I ; p ∈ Pi (1)

∑
p∈Pi

uip = 1 ∀ i ∈ I . (2)

The network dimensioning problem depends on allo-
cating the bandwidth to several links in order to max-
imize flows of all the services (demands). Typically,
the network is already operated and some bandwidth is
already allocated (installed) while decisions are rather
related to the network expansion. Therefore, we assume
that each link e ∈ E has already capacity ae while
decision variables �e represent the bandwidth newly al-
located to link e ∈ E, thus expanding the link capacity
to ae + �e. Certainly, all the decision variables must be
nonnegative: �e �0 for all e ∈ E and there are usually
some bounds (upper limits) on possible expansion of
the links capacities: �e � āe for all e ∈ E. Finally, the
following constraints must be fulfilled:∑
i∈I

∑
p∈Pi

�eipxip �ae + �e ∀e ∈ E, (3)

0��e � āe ∀e ∈ E, (4)∑
p∈Pi

xip = xi ∀i ∈ I , (5)

where Eqs. (5) define the total service flows, while in-
equalities (3) establish the relation between the ser-
vice flows and the link bandwidths. The quantity ye =∑

i∈I

∑
p∈Pi

�eipxip is the load of link e and it cannot
exceed the available link capacity.

Further, for each link e ∈ E, the cost of allocated
bandwidth is defined. In the basic model of network
dimensioning it is assumed that any real amount of

bandwidth may be installed and marginal costs ce of
link bandwidth is given. Hence, the corresponding link
dimensioning function expressing amount of capacity
(bandwidth) necessary to meet a required link load [2]
is a linear function. While allocating the bandwidth to
several links in the network dimensioning process the
decisions must keep the cost within available budget B
for all link bandwidths. Hence the following constraint
must be satisfied:∑
e∈E

ce�e �B. (6)

The model constraints (3)–(6) together with respective
nonnegativity requirements define a linear programming
(LP) feasible set. It turns into mixed integer LP (MILP),
however, if nonbifurcated flows are enforced with dis-
crete constraints (1)–(2).

Link modularity (bandwidth granulation) is a com-
mon feature in communications networks [2]. There-
fore, in more realistic models for each link e ∈ E the
minimum unit of bandwidth be is assumed to be avail-
able for allocation (installation) and ce represents the
corresponding unit cost. The corresponding link dimen-
sioning function is then a stepwise function. In the case
of modular links (discrete bandwidth units be), the in-
stalled capacity �e must satisfy additional equation:

�e = beze ∀e ∈ E, (7)

where ze is an integer decision variable representing
the number of bandwidth units installed at link e. The
model constraints (3)–(6) extended with (7) turns then
into MILP feasible set even if bifurcated flows are
allowed. The network dimensioning model can be con-
sidered with various objective functions, depending on
the chosen goal. One may consider two extreme ap-
proaches. The first extreme is maximization of the total
throughput (the sum of flows)

∑
i∈I xi . On the other

extreme, the network flows between different nodes
should be treated as fairly as possible which leads to
maximization of the smallest flow or rather to the lexi-
cographically expanded max–min optimization (the so-
called max–min ordering) allowing also to maximize
the second smallest flows provided that the smallest re-
main optimal, the third smallest, etc. This approach is
widely recognized in networking as the so-called MMF
[7,8] and it is consistent with the Rawlsian theory of
justice [14]. Note that for convex models there exists
at least one blocked outcome which is constant on the
entire set of optimal solutions to the max–min problem.
Hence, the MMF solution can be found by solving a
sequence of properly defined max–min problems with
fixed outcomes (flows) that have been blocked by some
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critical constraints (link capacities) [15,16]. Unfortu-
nately, in our network dimensioning model it applies
only to the basic LP constraints (3)–(6). In the case of
nonconvex feasible set such a blocked quantity may not
exist [17], which makes the approach not applicable to
the case of nonbifurcated flows enforced by discrete
constraints (1)–(2).

In the simplified problem with linear link dimension-
ing function (no modularities) and dimensioning of a
completely new network (ae=0 for all links), the cost of
the entire path p for service i can be directly expressed
by the formula �ip =∑

e∈E ce�eip. Hence, the cheapest
path for each service can easily be identified and pres-
elected. Constraints (6) and (3) may be then treated as
equations and they allow one to eliminate variables �e,
thus formulating the problem as a simplified resource al-
location model with only one constraint

∑m
i=1 �ixi =B

and variables xi representing directly the decisions. In
the problem under consideration the cost of available
link capacity is actually nonlinear (piecewise linear) and
this results in the lack of direct formula for the path cost
since it depends on possible sharing with other paths
of the preinstalled bandwidth (free capacity ae). Such a
simplification is certainly also impossible for the mod-
ular case, due to additional discrete constraints (7).

In the simplified dimensioning model (with prese-
lected paths and continuous bandwidth) the through-
put maximization approach apparently would choose
one variable xio which has the smallest marginal cost
�io = mini∈I �i and make that flow maximal within the
budget limit (xio = B/�io ), while eliminating all other
flows (lowering them to zero). On the other hand, the
MMF concept applied to the simplified dimensioning
model would lead us to a solution with equal values for
all the flows: xi =B/

∑
i∈I �i for i ∈ I . Such allocating

the resources to optimize the worst performance may
cause a large worsening of the overall (mean) perfor-
mance as the MMF throughput (mB/

∑
i∈I �i) might

be considerably smaller than the maximal throughput
(B/mini∈I �i). In more realistic dimensioning models
assuming bandwidth modularity or other nonlinearities
in link dimensioning function (like the existence of a
free capacity ae of preinstalled bandwidth) and nonbi-
furcation requirements, a direct formula for the path
cost is not available and the corresponding solutions
are not so clear. Nevertheless, the main weaknesses of
the above solutions remain valid. The throughput max-
imization can always result in extremely unfair solu-
tions allowing even for starvation of certain flows while
the MMF solution may cause a large worsening of the
network throughput. In an example built on the back-
bone network of a Polish ISP, it turned out that the

throughput in a perfectly fair solution could be less than
50% of the maximal throughput [11].

Network management may be interested in seeking a
compromise between the two extreme approaches dis-
cussed above. One of the possible solutions depends on
maximization of the sum of flows evaluated with some
(concave) utility function U(x) = ∑

i∈I u(xi). A para-
metric class of utility functions [10]:

u(xi, �) =
{

x1−�
i /(1 − �) if � �= 1,

log(xi) if � = 1
(8)

may be used for this purpose generating various solu-
tion concepts for ��0. In particular, for � = 0 one gets
the throughput maximization which is the only linear
criterion within the entire class. For � = 1, it represents
the PF [9] that maximizes the sum of logarithms of the
flows while it converges to the MMF with � tending to
the infinity. However, every such approach requires to
build (or to guess) a utility function prior to the anal-
ysis and later it gives only one possible compromise
solution. It is very difficult to identify and formalize
the preferences at the beginning of the decision pro-
cess. Moreover, apart from the trivial case of through-
put maximization all the utility functions that really
take into account any fairness preferences are nonlin-
ear. Nonlinear objective functions applied to the MILP
models we consider result in computationally hard op-
timization problems. In the following, we shall describe
an approach that allows to search for such compromise
solutions with multiple linear criteria rather than non-
linear objective functions.

3. Fair allocations and equitable efficiency

The bandwidth allocation problem we consider may
be viewed as a special case of general resource alloca-
tion problem where set I of m services is considered and
for each service i ∈ I its measure of realization xi is
a function xi = fi(�) of allocation pattern � ∈ A. This
function, called the individual objective function, rep-
resents the outcome (effect) of the allocation pattern for
service i. In applications we consider fi expresses the
service flow and a larger value of the outcome means
a better effect (higher service quality or client satisfac-
tion). This leads us to a vector maximization problem:

max{(x1, x2, . . . , xm) : x ∈ Q}, (9)

where Q={(x1, . . . , xm) : xi =fi(�) for i ∈ I, � ∈ A}
denotes the attainable set for outcome vectors x. For
the network dimensioning problems we consider the set
Q is an MILP feasible set defined by basic constraints
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(1)–(6) with additional discrete constraints (7) in the
case of modular bandwidth.

Model (9) only specifies that we are interested in
maximization of all outcomes xi for i ∈ I . In order
to make it operational, one needs to assume some so-
lution concept specifying what it means to maximize
multiple outcomes. The solution concepts are defined
by properties of the corresponding preference model
within the outcome space. The commonly used concept
of the Pareto-optimal solutions, as feasible solutions for
which one cannot improve any criterion without wors-
ening another, depends on the rational dominance �r

which may be expressed in terms of the vector inequal-
ity: x′�rx′′ iff x′

i �x′′
i for all i ∈ I .

In order to ensure fairness, all system entities have
to be equally well provided with the system’s services.
This leads to concepts of fairness expressed by the eq-
uitable rational preferences [18,19]. First of all, the fair-
ness requires impartiality of evaluation, thus focusing
on the distribution of outcome values while ignoring
their ordering. That means, in the multi-criteria problem
(9) we are interested in a set of outcome values without
taking into account which outcome is taking a specific
value. Hence, we assume that the preference model is
impartial (anonymous, symmetric). In terms of the pref-
erence relation it may be written as the following axiom:

(x�(1), x�(2), . . . , x�(m))�(x1, x2, . . . , xm)

for any permutation � of I (10)

which means that any permuted outcome vector is indif-
ferent in terms of the preference relation. Further, fair-
ness requires equitability of outcomes which causes that
the preference model should satisfy the (Pigou–Dalton)
principle of transfers. The principle of transfers states
that a transfer of any small amount from an outcome to
any other relatively worse-off outcome results in a more
preferred outcome vector. As a property of the prefer-
ence relation it represents the following axiom:

xi′ > xi′′ ⇒ x − �ei′ + �ei′′ 
 x for 0 < � < xi′ − xi′′ .

(11)

The rational preference relations satisfying additionally
axioms (10) and (11) are called hereafter fair (equitable)
rational preference relations. We say that outcome vec-
tor x′ fairly dominates x′′ (x′
ex′′), iff x′ 
 x′′ for all
fair rational preference relations �. In other words, x′
fairly dominates x′′, if there exists a finite sequence of
vectors xj (j = 1, 2, . . . , s) such that x1 = x′′, xs = x′
and xj is constructed from xj−1 by application of ei-
ther permutation of coordinates, equitable transfer, or
increase of a coordinate. Fig. 1 presents the structure

x1

x2

 x

x2=x1

S(x)

D(x)

U(x) = U(x)-

-

-

-

Fig. 1. Structure of the fair dominance.

of fair dominance for two-dimensional outcome vec-
tors. For any outcome vector x̄, the fair dominance
relation distinguishes set D(x̄) of dominated outcomes
(obviously worse for all fair rational preferences) and
set S(x̄) of dominating outcomes (obviously better for
all fair rational preferences). However, some outcome
vectors are left (in white areas) and they can be differ-
ently classified by various specific fair rational prefer-
ences. The MMF assigns the entire interior of the inner
white triangle to the set of preferred outcomes while
classifying the interior of the external open triangles
as worse outcomes. Isolines of various utility functions
(8) split the white areas in different ways. For instance,
there is no fair dominance between vectors (0.01, 1) and
(0.02, 0.02) and the MMF considers the latter as better
while the proportional fairness points out the former.
On theother hand, vector (0.02, 0.99) fairly dominates
(0.01, 1) and all fairness models (including MMF and
PF) prefers the former.

The theory of majorization [20] includes the re-
sults which allow us to express the relation of fair
(equitable) dominance as a vector inequality on the
cumulative ordered outcomes [19]. This can be math-
ematically formalized as follows. First, introduce the
ordering map � : Rm → Rm such that �(x) =
(	1(x), 	2(x), . . . , 	m(x)), where 	1(x)�	2(x)� · · · �
	m(x) and there exists a permutation � of set I such
that 	i (x) = x�(i) for i = 1, . . . , m. Next, apply
to ordered outcomes �(x), a linear cumulative
map thus resulting in the cumulative ordering map
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�̄(x) = (	̄1(x), 	̄2(x), . . . , 	̄m(x)) defined as

	̄i (x) =
i∑

j=1

	j (x) for i ∈ I . (12)

The coefficients of vector �̄(x) express, respectively:
the smallest outcome, the total of the two smallest out-
comes, the total of the three smallest outcomes, etc. The
theory of majorization allow us to derive the following
theorem [19].

Theorem 1. Outcome vector x′ fairly dominates x′′, if
and only if 	̄i (x′)� 	̄i (x′′) for all i ∈ I where at least
one strict inequality holds.

An allocation pattern � ∈ A is called fairly (equi-
tably) efficient or a fair solution (for short), if x = f(�)

is fairly nondominated. Note that each fairly efficient
solution is also Pareto-optimal, but not vice verse. How-
ever, Theorem 1 permits one to express fair solutions
of problem (9) as Pareto-optimal solutions to the multi-
criteria problem with objectives �̄(x):

max{(
1, 
2, . . . , 
m) : 
k = 	̄k(x) for k ∈ I, x ∈ Q}.
(13)

For better understanding of the multi-criteria problem
(13), one may consider normalized objective functions
�k(x) = 	̄k(x)/k thus representing for each k the mean
of the k smallest outcomes, called the worst conditional
mean [5]. Note that the last (mth) objective in problem
(13) represents the sum of outcomes thus corresponding
to throughput maximization. Simple maximin optimiza-
tion corresponds to maximization of the first objective
in (13). The complete MMF solution concept represents
the lexicographic approach to problem (13):

lexmax{(
1, 
2, . . . , 
m) : 
k=	̄k(x) for k ∈ I, x∈Q}.
While the MMF is only a specific (extreme) solution
concept, the entire multi-criteria problem (13) may
serve as a source of various fairly efficient allocation
schemes [21]. Moreover, although the definitions of
quantities 	̄k(x) are very complicated, they can be
modeled with simple auxiliary constraints. Let us no-
tice that for any given vector x, the quantity 	̄k(x) is
defined by the following LP problem:

	̄k(x) = min
m∑

i=1

xi�i

s.t.
m∑

i=1

�i=k, 0��i �1 for i ∈ I . (14)

Exactly, the above problem is an LP for a given outcome
vector x while it becomes nonlinear for a variable x.
This difficulty can be overcome by taking advantages
of the LP dual to (14):

	̄k(x) = max kt −
m∑

i=1

di

s.t. t − xi �di, di �0 for i ∈ I , (15)

where t is an unrestricted variable while nonnegative
variables di represent downside deviations of outcome
values xi from the value of t [22].

Formula (15) allows us to formulate problem (13) as
follows:

max (
1, 
2, . . . , 
m) (16)

s.t. x ∈ Q


k = ktk −
m∑

i=1

dik for k ∈ I , (17)

tk − dik �xi, dik �0 for i, k ∈ I . (18)

Note that problem (16)–(18) adds only linear constraints
to the original attainable set Q. Hence, for the basic net-
work dimensioning problems with the set Q defined by
constraints (1)–(6), the resulting formulation (16)–(18)
remains in the class of (multi-criteria) MILP. The same
applies to the modular dimensioning model with addi-
tional constraints (7).

Although defined with simple linear constraints, the
expanded model (16)–(18) introduces m2 additional
variables and inequalities. This may cause a serious
computational burden for real-life network dimension-
ing problems. Note that the number of services (traffic
demands) corresponds to the number of ordered pairs
of network nodes which is already on the order of the
square of the number of nodes |V |. Thus, finally the
expanded multi-criteria model introduces |V |4 vari-
ables and constraints which means polynomial but fast
growth and may not be acceptable for larger networks.
In order to reduce the problem size one may attempt
the restrict the number of criteria in problem (13).

Let us consider a sequence of indices K =
{k1, k2, . . . , kq}, where 1=k1 < k2 < · · · < kq−1 < kq =
m, and the corresponding restricted form of multi-
criteria model (13):

max{(
k1
, 
k2

, . . . , 
kq
) : 
k=	̄k(x) for k∈K, x ∈ Q}

(19)

with only q < m criteria. Following Theorem 1, multi-
criteria model (13) allows us to generate any fairly
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efficient solution of problem (9). Reducing the number
of criteria we restrict these capabilities. Neverthe-
less, one may still generate reasonable compromise
solutions.

Theorem 2. If xo is an efficient solution of the re-
stricted problem (19), then it is an efficient (Pareto-
optimal) solution of the multi-criteria problem (9) and
it can be fairly dominated only by another efficient so-
lution x′ of (19) with exactly the same values of criteria:
	̄k(x′) = 	̄k(xo) for all k ∈ K .

Proof. Suppose, there exists x′ ∈ Q which dominates
xo. This means, x′

i �xo
i for all i ∈ I with at least one

inequality strict. Hence, 	̄k(x′)� 	̄k(xo) for all k ∈ K

and 	̄kq (x
′) > 	̄kq (x

o) which contradicts efficiency of xo

within the restricted problem (19).
Suppose now that x′ ∈ Q fairly dominates xo. Due to

Theorem 1, this means that 	̄i (x′)� 	̄i (xo) for all i ∈ I

with at least one inequality strict. Hence, 	̄k(x′)� 	̄k(xo)

for all k ∈ K and any strict inequality would contradict
efficiency of xo within the restricted problem (19). Thus,
	̄k(x′) = 	̄k(xo) for all k ∈ K which completes the
proof. �

It follows from Theorem 2 that while restricting the
number of criteria in the multi-criteria model (13) we
can essentially still expect reasonably fair efficient so-
lution and only unfairness may be related to the dis-
tribution of flows within classes of skipped criteria. In
other words we have guaranteed some rough fairness
while it can be possibly improved by redistribution of
flows within the intervals (	kj

(x), 	kj+1(x)] for j =
1, 2, . . . , q − 1. Since the fairness preferences are usu-
ally very sensitive for the smallest flows, one may intro-
duce a grid of criteria 1=k1 < k2 < · · · < kq−1 < kq =m

which is dense for smaller indices while sparser for
larger indices and expect solution offering some reason-
able compromise between fairness and throughput max-
imization. In our computational analysis on the network
with 132 elastic flows (Section 5) we have preselected
24 criteria including 12 the smallest flows. Note that any
restricted model contains criteria 	̄1(x)= mini∈I xi and
	̄m(x) = ∑

i∈I xi among others. Therefore, it is more
detailed than any bicriteria combination of max–min
and throughput maximization.

4. Multi-criteria analysis

Following the equitable optimization results from
the previous section, we may generate various fairly
efficient bandwidth allocation patterns as efficient

solutions of the multi-criteria problem:

max (
k)k∈K (20)

s.t. x ∈ Q,


k = ktk −
∑
i∈I

dik for k ∈ K , (21)

tk−dik �xi, dik �0 for i ∈ I, k ∈ K , (22)

where K ⊆ I and attainable set Q is defined by con-
straints (1)–(6) and possibly (7) in the case of bandwidth
modularity. In the case of the complete multi-criteria
model (K = I ), according to Theorem 1, all fairly effi-
cient allocations can be found as efficient solutions to
(20)–(22) while in the case of restricted set of criteria
K ⊂ I some minor unfairness related to the distribution
of flows within classes of skipped criteria may occur
(Theorem 2).

The simplest way to model a large gamut of fairly
efficient allocations may depend on the use of some
combinations of criteria (
k)k∈K . In particular, for the
weighted sum with weights wk > 0

∑
k∈K

wk
k =
∑
k∈K

wk 	̄k(x) =
∑
i∈I

vi	i (x)

one apparently gets the so-called ordered weighted aver-
aging (OWA) with weights vi=∑

k∈K:k � i wk (i ∈ I ). If
weights vi are strictly decreasing (v1 > v2 > · · · > vm),
i.e. in the case of full model (K=I ) and positive weights
wi = vi−1 − vi > 0, each optimal solution correspond-
ing to the OWA maximization is a Pareto-optimal solu-
tion of (13). Hence, each optimal solution of the OWA
maximization with strictly decreasing weights is a fair
(fairly efficient) solution of (9). Actually, any equitable
transfer (11) results in larger value of the OWA aggrega-
tion with strictly decreasing weights. On the other hand,
an equitable transfer within a class of equal weights
vi (corresponding to skipped criteria in K ⊂ I ) does
not change the value of the corresponding OWA aggre-
gation which causes that the fairness among the OWA
optimal flows within those classes may sometimes be
improved. Moreover, in the case of LP models, as the
simplified network dimensioning (3)–(6), every fairly
efficient allocation scheme can be identified as an OWA
optimal solution with appropriate strictly monotonic
weights [19]. Several decreasing sequences of weights
provide us with various aggregations. Indeed, our ear-
lier experience with application of the OWA criterion to
the simplified problem of network dimensioning with
elastic traffic [11] showed that we were easily able to
generate allocations representing the classical fairness
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models. On the other hand, in order to find a larger
variety of new compromise solutions we needed to
incorporate some scaling techniques originating from
the reference point methodology. Better controllability
and the complete parameterization of nondominated
solutions even for non-convex, discrete problems can
be achieved with the direct use of the reference point
methodology.

The reference point method was introduced by
Wierzbicki [13] and later extended leading to efficient
implementations of the so-called aspiration/reservation
based decision support (ARBDS) approach with many
successful applications [12]. The ARBDS approach is
an interactive technique allowing the DM to specify
the requirements in terms of aspiration and reserva-
tion levels, i.e., by introducing acceptable and required
values for several criteria. Depending on the specified
aspiration and reservation levels, a special scalarizing
achievement function is built which may be directly
interpreted as expressing utility to be maximized. Max-
imization of the scalarizing achievement function gen-
erates an efficient solution to the multi-criteria problem.
The solution is accepted by the DM or some modifica-
tions of the aspiration and reservation levels are intro-
duced to continue the search for a better solution. The
ARBDS approach provides a complete parameteriza-
tion of the efficient set of the multi-criteria optimization
problem. Hence, when applying the ARBDS methodol-
ogy to the ordered cumulated criteria in (13), one may
generate all (fairly) equitably efficient solutions of the
original resource allocation problem (9).

While building the scalarizing achievement function
the following properties of the preference model are
assumed. First of all, for any individual outcome 
k

more is preferred to less (maximization). To meet this
requirement the function must be strictly increasing
with respect to each outcome. Second, a solution with
all individual outcomes 
k satisfying the corresponding
reservation levels is preferred to any solution with at
least one individual outcome worse (smaller) than its
reservation level. Next, provided that all the reservation
levels are satisfied, a solution with all individual out-
comes 
k equal to the corresponding aspiration levels
is preferred to any solution with at least one individ-
ual outcome worse (smaller) than its aspiration level.
That means, the scalarizing achievement function max-
imization must enforce reaching the reservation levels
prior to further improving of criteria. In other words,
the reservation levels represent some soft lower bounds
on the maximized criteria. When all these lower bounds
are satisfied, then the optimization process attempts to
reach the aspiration levels.

The generic scalarizing achievement function takes
the following form [13]:

(
) = min
k∈K

{k(
k)} + �
∑
k∈K

k(
k), (23)

where � is an arbitrary small positive number and k ,
for k ∈ K , are the partial achievement functions mea-
suring actual achievement of the individual outcome 
k

with respect to the corresponding aspiration and reser-
vation levels (
a

k and 
r
k , respectively). Thus, the scalar-

izing achievement function is, essentially, defined by the
worst partial (individual) achievement but additionally
regularized with the sum of all partial achievements.
The regularization term is introduced only to guarantee
the solution efficiency in the case when the maximiza-
tion of the main term (the worst partial achievement)
results in a non-unique optimal solution.

The partial achievement function k can be inter-
preted as a measure of the DM’s satisfaction with the
current value (outcome) of the kth criterion. It is a
strictly increasing function of outcome 
k with value
k = 1 if 
k = 
a

k , and k = 0 for 
k = 
r
k . Thus, the

partial achievement functions map the outcomes values
onto a normalized scale of the DM’s satisfaction. Vari-
ous functions can be built meeting those requirements
[12]. We use the piecewise linear partial achievement
function introduced in [18]. It is given by

k(
k)=
{�(
k − 
r

k)/(

a
k−
r

k) for 
k �
r
k,

(
k−
r
k)/(


a
k−
r

k) for 
r
k < 
k < 
a

k ,

�(
k−
a
k )/(


a
k − 
r

k)+1 for 
k �
a
k ,

(24)

where � and � are arbitrarily defined parameters satis-
fying 0 < � < 1 < �. This partial achievement function
is strictly increasing and concave which guarantees its
LP computability with respect to outcomes 
k .

Recall that in our model outcomes 
k represent cu-
mulative ordered flows xi , i.e. 
k =∑k

i=1 	i (x). Hence,
the reference vectors (aspiration and reservation) repre-
sent, in fact, some reference distributions of outcomes
(flows). Moreover, due to the cumulation of outcomes,
while considering equal flows � as a reference (aspi-
ration or reservation) distribution, one needs to set the
corresponding levels as 
k = k�. Certainly, one may
specify any desired reference distribution in terms of the
ordered values of the flows (quantiles in the probability
language) �1 ��2 � · · · ��m and cumulating them au-
tomatically get the reference values for outcomes 
k rep-
resenting the cumulated ordered flows. However, such
rich modeling technique may be too complicated to con-
trol effectively the search for a compromise solution.
Therefore, we rather consider to begin the search with
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a simplified approach based on the reference flow dis-
tribution given as a linear sequence �k = �1(1 + (k −
1)r) with the (relative) slope coefficient r thus leading
to the cumulated reference levels increasing quadrati-
cally 	̄k(�) = �1k(2 + (k − 1)r)/2. Although, special
meaning of the last (throughput) criterion should be
rather operated independently from the others. Such an
approach to control the search for a compromise fair
and efficient bandwidth allocation has been confirmed
by the computational experiments as described in the
following section.

5. Computational examples

The reference distribution approach described in pre-
ceding sections have been tested on a sample network
dimensioning problem with elastic traffic. Recall that
in the case of elastic traffic, the network dimensioning
procedure results in the capacities of links in a given
network, and that the flows will adapt to the bandwidth
available on links in the designed network. The input
to a network dimensioning problem with elastic traffic
consists of a network topology, of pairs of nodes that
specify sources and destinations of flows, of sets of net-
work paths that could be used for each flow, and of
optional constraints on the capacities of links or on flow
sizes. The user must also specify a budget for purchas-
ing link capacity (B in (6)), prices of a unit of link ca-
pacity (possibly different for each link, ce in (6)), and
may specify module sizes and prices for a link. The
given network topology may contain information about
preinstalled link capacities (ae in (3)): the budget is
then spent on additional link capacities that extend the
present capacity of links.

The network topology of the presented problem
(Fig. 2) is patterned after the backbone network of a
Polish ISP [11]. The network consists of 12 nodes and
18 links. All links have unit costs equal to one, and the
budget for link bandwidth is B = 1000. Flows between
any pair of different nodes have been considered (i.e.,
144 − 12 = 132 flows). Since all links have equal costs
of one, the path cost is equal to the path length (1, 2,
3 or 4 for the shortest paths in the example topology).
For each flow, two alternative paths (the shortest and
the second shortest) have been specified that could be
used for transport. The entire flow had to travel along
one of the paths with no splitting allowed (nonbifur-
cation formulation (1)–(2)). All flows are unbounded.
However, it is clear that due to the budget constraint
no flow can exceed B.

In [11] a simplified LP model has been studied
without additional constraints on link capacity, with a

Fig. 2. Sample network topology patterned after the backbone net-
work of Polish ISP.

limitation that flows could only use the shortest path,
and with equal link costs, since in such a case it was
simple to understand the best choices with respect to
fairness and overall throughput. However, for such
a problem it is also simple to calculate the solution
obtained by the two other methods used in literature for
allocation problems with fairness objectives: MMF and
PF. Indeed, in [11] we have calculated these solutions
and have shown that appropriate OWA aggregations
allow us to obtain similar results. Additionally, using
the OWA criterion, it was possible to obtain a spectrum
of alternative solutions and to control the results using
intuitive parameters. Here, we focus on two extensions
of the problem studied in [11] that are too complex for
a simple application of PF or MMF. To apply either
of these methods to the discussed problem extensions,
it would be necessary to solve a nonlinear optimiza-
tion problem or a sequence of MILP problems with
changing constraints. The proposed problem modifica-
tions also make the studied models more practical and
realistic.

The first studied extension allowed flows to choose
one of two paths for transport (1)–(2), added constraints
that limited the capacity of certain links from above and
added free link capacity for certain links (3). The inten-
tion behind the modification has been to model a situ-
ation when the network operator wishes to extend the
capacity of an existing network. In this network, certain
links cannot be upgraded beyond certain values due to
prohibitive costs or administrative reasons (for instance,
it may be cheap to use already installed fiber that has
not been in use before, but it may be prohibitively ex-
pensive to install additional fiber). The existence of free
link capacity and of link capacity constraints may be the
reason for choosing alternative paths for certain flows.
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Additionally, a modular version of the original prob-
lem has been considered. In the second problem modifi-
cation, flows were still limited to shortest paths, and no
constraints on link capacities have been added. The size
of a link capacity module was set to 5. For each link,
integer variable ze has been (see (7)). Modular link ca-
pacities are frequently encountered in networks, when
it is simple to upgrade a link by installing an equip-
ment module that is capable of faster communication
over the same link. Modular link capacities occur also in
telecommunication networks that use traffic trunks, or
portions of link capacity that are indivisible and there-
fore allocated in a modular way.

For all model versions, the final input to the model
consisted of the reservation and aspiration levels for the
sums of ordered criteria. For simplicity, all aspiration
levels were set close to the optimum values of the crite-
ria, and only reservation levels were used to control the
outcome flows. One of the most significant parameters
was the reservation level for the sum of all criteria (the
network throughput). This value denoted by 
r

m was
selected (varying) separately from the other reservation
levels. All the other reservation levels were formed fol-
lowing the linearly increasing sequence of the ordered
values with slope (step) r and where the reservation level
for minimal flow was �1=1. Hence, for the final criteria

k=	̄k(x) representing sums of the ordered outcomes in
model (16)–(18), the sequence of reservation levels in-
creased quadratically (except for the last one). Thus, the
three parameters have been used to define the reference
distribution but we have managed to identify various
fair and efficient allocation patterns by varying only two
parameters: reservation level 
r

m for the total through-
put and slope r for the linearly increasing sequence.

While dealing with a simplified model in [11] we
have used all criteria 
k which resulted in the lin-
ear program containing a large number of constraints
(1322). Here, we have limited the number of criteria 
k

to 24, by choosing only the indices 1, 2, 3, . . . , 9, 10,
11, 12, 18, 24, 30, 36, 48, 60, 72, . . . , 120, 132 from
the full set of all indices. As a result, the computation
time has dropped from around one hour for each prob-
lem to the order of seconds. At the same time, the ability
to control the outcomes using the reservation levels has
not deteriorated; we were able to obtain similar results
with the reduced set of criteria as with the full set.

In the first experiment, we have used the first model
extension that introduced alternative paths for flows,
free link capacity and upper limits on capacity for cer-
tain links. For certain links, free link capacity was set to
values from 5 to 20, and the upper limit on the capac-
ity of certain links was set to 20. Due to the presence

of free link capacity and upper limits on link capacity,
the MILP solver found solutions where certain flows
had to use alternative paths rather than shortest paths.
These flows were more expensive than other flows that
were allowed to use their shortest paths. Recall that we
have used a single-path formulation, meaning that the
entire flow had to be switched to the alternative path.
Flows could not be split, which is consistent with several
traffic engineering technologies used today.

In the experiment, the reservation level 
r
m and the

slope r have been used to search for compromise so-
lutions that traded off fairness against efficiency. The
throughput reservation has been varied from 500 to
1100. As 
r

m increases, the cheaper flows receive more
throughput at the expense of more expensive (longer)
flows. For values of 
r

m above 1100, some flows were
starved, and therefore these outcomes were not consid-
ered further.

The linear increase of the other reservation levels was
varied as well. The parameter r could have values of:
0.02, 0.03 and 0.04. The results of the experiment are
shown in Fig. 3 with the corresponding absolute Lorenz
curves [23]. The figures present plots of cumulated
ordered flows 	̄k(x) versus number k (rank of a flow in
ordering according to flow throughput) which means
that the normalizing factor 1/m= 1

132 has been ignored
(for both the axes). The total network throughput is
represented in the figures by the height of the right end
of the curve (	̄132(x)). A perfectly equal distribution of
flows would be graphically depicted by an ascending
line of constant slope. All other (unequal) distributions
of flows are represented by convex lines. First of all, one
may notice that all the lines intersect each other which
guarantees that no solution fairly dominates any other
solution (Theorem 1). This confirms that our approach
enables us to generate various fair (fairly efficient)
solutions. Due to the limited resources, any increase of
the throughput reservation enforces increasing of the
cheaper flows (implemented on shorter paths) while
restricting the most expensive flows (longer paths)
sharing the same link capacities. This appears with re-
versal order of the solution lines at their ends. Actually,
it turns out that all the lines intersect each other around
the same point of k = 110. Hence, the available budget
essentially limits the maximum throughput of about
80% of the smallest flows to the level of about 500
which cannot be exceeded without starvation of some
flows. Nevertheless, there is still possible to increase
the total throughput (of all 132 flows) while decreasing
the fairness (increasing differences among flows).

Note that under moderate throughput requirements,
as r increases, the medium flows gain at the expense of
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Fig. 3. Flow distribution for varying throughput reservation with
r = 0.02 (a), r = 0.03 (b), r = 0.04 (c).

the larger ones thus enforcing more equal distribution
of flows (one may observe flattening of the curves). On
the other hand, with higher throughput reservations the
larger flows are protected by this requirement and in-
crease of r causes that the medium flows gain at the
expense of the smallest flows (one may observe con-
vexification of the curves). For values of r higher that

0.04, the increase of the throughput reservation resulted
in flow starvation.

Observe from Fig. 3(c) that for 
r
m = 1100 (and for

some other values of 
r
m), the boundary between the

largest flows (part of the Lorenz curve with the highest
slope) and the second-largest flows is not sharp. The
change of slope is gradual, resembling a round knee.
The reason for this is the presence of three flows that
should receive the same amount of throughput as the
largest flows, since they are all transported on paths of
the length of 1, but cannot due to the presence of upper
constraints on link capacities. These flows receive as
much as they can, but some capacity is left for other
flows that must travel on the same constrained link.
Here the solution violates fairness in the attempt to get
a higher total network throughput.

Also, note on the same figure that the boundary be-
tween the smallest flows for 
r

m = 500 and for 
r
m =

1100 is not in the same position. The reason for this is
once again the upper constraint on link capacities. For

r
m = 500, there are eight flows that should be in the

middle group of flows but cannot, since flows in the
middle group receive so much throughput that the con-
straints on link capacity would be violated. Therefore,
these flows are downgraded to the group of smallest
flows and receive the same amount of throughput as the
smallest flows—here the solution preserves fairness.

Note that the throughput reservation was effectively
used to find outcomes with the desired network through-
put. On the other hand, especially for large throughput
reservations, the optimization procedure automatically
found outcomes that divided flows into four categories
according to their path costs. This shows that the
presented methodology is cost-aware, and that it is pos-
sible to guarantee fairness to all flows with the same
path cost (if link capacity constraints do not interfere).
For the lowest throughput reservation of 
r

m = 500 and
r = 0.04, the outcome was close to a perfectly fair
distribution. Using the methodology described in this
paper, the user can choose from a large number of
different outcomes and control the trade-off between
fairness and efficiency.

For the second experiment we used a slightly differ-
ent dimensioning problem specification. Namely, we
included the modular link capacities (7) into the model
while eliminating the routing decisions by restriction
of all service flows to the corresponding shortest paths.
Thus, the model was still in the class of MILP but with
a different discrete structure. We have repeated a search
for compromise solutions using similar preference
parameter configurations as in the first experiment,
although taking into account the constraints on modular
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Fig. 4. Varying throughput reservation with r = 0.02 for the model
with bandwidth modularity.

bandwidth, the throughput reservation has been varied
from 450 to 800. The resulting flow distributions for
the reservation slope parameter r = 0.02 are presented
in Fig. 4. Predictably, the introduction of modular link
capacities makes it more difficult to find fair solutions.
The outcome for 
r

m = 450 is close to a perfectly even
(fair) distribution, although the right end of the curve
turns slightly upward. This indicates that the excess
capacities of modules were used by the cheapest flows,
leading to a higher network throughput than in the case
of a problem without modular link capacities. On the
other hand, the flows with the cheapest paths were not
equal for some outcomes.

Overall, the experiments on the sample network
topology demonstrated the versatility of the described
methodology. The use of reservation levels, controlled
by a small number of simple parameters, allowed us to
search for solutions best fitted to various possible pref-
erences of a network designer. Using an appropriate
reference point procedure, one should be able to easily
find a satisfactory fair and efficient allocation pattern
in a few interactive steps.

6. Concluding remarks

A central issue in networking is how to allocate
bandwidth to flows efficiently and fairly. The so-called
MMF is widely used to meet these goals. Allocating the
resources to optimize the worst performance may cause
a large worsening of the overall (mean) performance.
Therefore, several other fair allocation schemes have
been sought and analyzed. Our earlier computational
experiments with application of the OWA criterion to
the (simplified) LP problem of network dimensioning

with elastic traffic [11] showed that we were easily able
to generate allocations representing the classical fair-
ness models. On the other hand, in order to find a larger
variety of new compromise solutions we needed to in-
corporate some scaling techniques originating from the
reference point methodology. Actually it is a common
flaw of the weighting approaches that they provide
poor controllability of the preference modeling process
and in the case of multi-criteria problems with discrete
(or more general nonconvex) feasible sets, they may
fail to identify several compromise efficient solutions.

In standard multi-criteria optimization, good con-
trollability and the complete parameterization of non-
dominated solutions can be achieved with the direct
use of the reference point methodology. While looking
for fairly efficient bandwidth allocation the reference
point methodology can be applied to the cumulated or-
dered outcomes. Our initial experiments with such an
approach to the problem of network dimensioning with
elastic traffic have confirmed the theoretical advantages
of the method. We were able to easily generate various
(compromise) fair solutions for both continuous and
modular problems while controlling the search for fairly
efficient compromise solutions by only two parameters.
One of these parameters was a reservation level for the
network throughput. The second parameter allowed the
network designer to control the difference in through-
puts of cheaper and more expensive flows. Still, flows
with the same cost were always treated fairly. More-
over, the obtained solutions divided flows into cate-
gories determined by flow cost. For modular solutions,
the cheapest flows consumed the excess link capacity.
These characteristics demonstrate that the model is cost-
aware and fulfills the axioms of equitable optimization.
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