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Abstract—Allocating bandwidth to maximize service flows
with fair treatment of all the services is a key issue in network
dimensioning. In such applications, the so-called Max-Min
Fairness (MMF) solution concept is widely used. It is based
on the worst service performance maximization with additional
regularization by the lexicographic maximization of the second
worst performance, the third one etc. The basic sequential
procedure is applicable only for convex models, thus it allows
to deal with basic design problems but fails if practical discrete
restrictions commonly arriving in telecommunications network
design are to be taken into account. We analyze alternative
sequential approaches allowing to solve non-convex MMF
network dimensioning problems. The directly defined sequential
criteria can be introduced into the original model with some
auxiliary variables and linear inequalities. The approaches
guarantee the exact MMF solution for a complete set of criteria.
However, they can be simplified by reducing the number of
criteria thus generating effectively approximated MMF solutions.

Keywords—Network design; network dimensioning; LP/ILP
models; resource allocation; fairness; lexicographic optimization;
lexicographic max-min

I. INTRODUCTION

A fair way of the bandwidth distribution among competing
demands becomes a key issue in computer networks [4]
and telecommunications network design, in general [3], [19],
[21], [8]. Due to increasing demand for Internet services, a
problem of network dimensioning with elastic traffic arises
which requires to allocate bandwidth to maximize service
flows with fair treatment of all the services [19]. The problem
of network dimensioning with elastic traffic can be formulated
as follows [18]. Given a network topology G =< V,E >,
consider a set of pairs of nodes as the set J = {1,2, . . . ,m}
of services representing the elastic flow from source vs

j to
destination vd

j . For each service, we have given the set Pj
of possible routing paths in the network from the source to
the destination represented in the form of binary matrices
∆e = (δe jp) j∈J;p∈Pj assigned to each link e∈E, where δe jp = 1
if link e belongs to the routing path p ∈ Pj (connecting vs

j
with vd

j ) and δe jp = 0 otherwise. For each service j ∈ J, the
elastic flow from source vs

j to destination vd
j is a variable

representing the model outcome and it will be denoted by
x j. The flow may be realized along various paths p ∈ Pj and
modeled as x j =∑p∈Pj x jp where x jp are nonnegative variables

representing the elastic flow from source vs
j to destination vd

j
along the routing path p ∈ Pj. The single-path model requires
additional multiple choice constraints to enforce nonbifurcated
flows.

The network dimensioning problem depends on allocating
the bandwidth to several links in order to maximize flows of
all the services (demands). Typically, the network is already
operated with some bandwidth preinstalled and decisions are
rather related to the network expansion. Therefore, we assume
that each link e ∈ E has already capacity ae while decision
variable ξe represents the bandwidth newly allocated to link
e∈ E thus expanding the link capacity to ae+ξe. Certainly, all
the decision variables must be nonnegative: ξe≥ 0 for all e∈E
and there are usually some bounds (upper limits) on possible
expansion of the links capacities: ξe ≤ āe for all e∈ E. Finally,
the following constraints must be fulfilled:

0≤ x jp ≤Mu jp, u jp ∈ {0,1} j ∈ J; p ∈ Pj (1a)

∑
p∈Pj

x jp = x j, ∑
p∈Pj

u jp = 1 j ∈ J (1b)

∑
j∈J

∑
p∈Pj

δe jpx jp ≤ ae +ξe ∀e ∈ E (1c)

0≤ ξe ≤ āe ∀e ∈ E (1d)

∑
e∈E

ceξe ≤ B (1e)

where (1a)–(1b) define the total service flows representing
single-path flow requirements using additional binary (flow
assignment) variables u jp and a sufficiently large constant M
(upper bounding the largest possible flow x j). Next, (1c) estab-
lishes the relation between service flows and links bandwidth.
The quantity xe = ∑ j∈J ∑p∈Pj δe jpx jp is the load of link e and
it cannot exceed the available link capacity ae + ξe. Further,
while allocating the bandwidth to several links the decisions
must keep the cost within available budget B (1e) where for
each link e ∈ E the unit cost of allocated bandwidth is ce.

The network dimensioning model can be considered with
various objectives depending on the chosen goal. Typically,
the fairness requirement is formalized with the lexicographic
maximinimization (lexicographic Max-Min approach). Within
the telecommunications or network applications the lexico-
graphic Max-Min approach has appeared already in [5] and
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now under the name Max-Min Fair (MMF) is treated as one
of the standard fairness concepts [2], [7], [11], [19].

The lexicographic maximinimization can be seen as search-
ing for a vector lexicographically maximal in the space of
the feasible vectors with components rearranged in the non-
decreasing order. This can be mathematically formalized as
follows. Let 〈x〉 = (x〈1〉,x〈2〉, . . . ,x〈m〉) denote the vector ob-
tained from x by rearranging its components in the non-
decreasing order. That means x〈1〉 ≤ x〈2〉 ≤ . . . ≤ x〈m〉 and
there exists a permutation π of set J such that x〈 j〉 = xπ( j)
for j = 1,2, . . . ,m. Comparing lexicographically such ordered
vectors 〈x〉 one gets the so-called lex-min order. The MMF
problem can be then represented in the following way:

lexmax {(x〈1〉,x〈2〉, . . . ,x〈m〉) : x ∈ A} (2)

where A depicts the set of attainable outcomes defined with
constraints (1). Actually, we focus our analysis on the MMF
bandwidth allocation problem but the approaches developed
can be applied to various lexicographic Max-Min optimization
problems, i.e., to problem (2) with various attainable sets A.

The (point-wise) ordering of outcomes causes that the
lexicographic Max-Min problem (2) is, in general, hard to
implement. Note that the quantity x〈1〉 representing the worst
outcome can be easily computed directly by the maximiza-
tion x〈1〉 = max {r1 : r1 ≤ x j, j ∈ J}. Similar simple for-
mula does not exist for the further ordered outcomes x〈i〉.
Nevertheless, for convex problems it is possible to build
sequential algorithms for finding the consecutive values of
the (unknown) MMF optimal outcome vector. While solving
Max-Min problems for convex models there exists at least
one blocked outcome which is constant on the entire set of
optimal solutions to the Max-Min problem. Hence, the MMF
solution can be found by solving a sequence of properly
defined Max-Min problems with fixed outcomes (flows) that
have been blocked by some critical constraints (link capacities)
[10], [14]. Indeed, in the case of LP models it leads to
efficient algorithms taking advantages of the duality theory
for simple identification of blocked outcomes [1], [6], [20].
Unfortunately, in our network dimensioning model it applies
only to the basic LP constraints (1b)–(1e). In the case of
nonconvex feasible set, such a blocked quantity may not exist
[12] which makes the approach not applicable to our case of
nonbifurcated flows enforced by discrete constraints (1a)–(1b).
This can be illustrated with the simplified network depicted in
Fig. 1 with no capacity preinstalled ae = 0 for all e ∈ E. The
upper limits on possible expansion of the links capacities are
given in the figure for each link. The cost coefficients are:
4 for link (v1,v3), 3 for (v3,v5) and all other equal 1, and
the budget B=11. We consider two demands: one connecting
v1 with v2 along two possible paths (v1,v2) or (v1,v3,v4,v2);
second connecting v5 with v6 along two possible paths (v5,v6)
or (v5,v3,v4,v6). The MMF solution is unique and it allocates
flow 1 to path (v1,v2) (first demand) while flow 2 to path
(v3,v5,v6,v4) (second demand). The Max-Min (single-path)
problem leads us to the conclusion that one of two flows
cannot exceed 1 but not allowing us to identify which one

must be blocked. Note that the same difficulty arrives also for
the single path problem without any budget constraint, though
the optimal solution is then not unique.
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Fig. 1. Sample network without any critical link and blocked flow for Max-
Min solution.

In this paper we analyze sequential approaches allowing to
solve single-path (non-convex) MMF network dimensioning
problems based on the lexicographic optimization of directly
defined artificial criteria [16]. The criteria can be introduced
into the original model with some auxiliary variables and
linear inequalities independently from the problem structure.
The approaches guarantee the exact MMF solution for a
complete set of criteria and outperform the direct approach but
still their applicability is limited to rather small networks [16].
Therefore, we focus our analysis on simplified approaches
with reduced number of criteria thus generating effectively
approximations to the MMF solutions.

II. CUMULATED ORDERED OUTCOMES

The point-wise ordering of outcomes for lexicographic opti-
mization within the MMF problem (2) makes it hard for direct
formulation. Nevertheless, with the use of auxiliary integer
variables, any MMF problem (either convex or non-convex)
can be formulated as the standard lexicographic maximization
with Direct Ordered Outcomes (DOO) [22]

lexmax (r1,r2, . . . ,rm)
s.t. x ∈ A
ri− x j ≤Czi j, zi j ∈ {0,1} i, j ∈ J
∑ j∈J zi j ≤ i−1 i ∈ J.

(3)

where C is a sufficiently large constant (larger than any
possible difference between various individual outcomes x j)
which allows us to enforce inequality ri ≤ x j for zi j = 0 while
ignoring it for zi j = 1. Note that for i = 1 all binary variables
z1 j are forced to 0 thus reducing the optimization in this case
to the standard LP model. However, for any other i > 1 all m
binary variables zi j are an important part of the model thus
contributing to exponential complexity of the implementation.

There is, however, a way to reformulate the MMF problem
(2) so that only linear variables are used [14], [16]. It is based
on the use of cumulated criteria θ̄i(x) = ∑

i
k=1 x〈k〉 expressing,

respectively: the worst (smallest) outcome, the total of the two
worst outcomes, the total of the three worst outcomes, etc.
Within the lexicographic optimization a cumulation of criteria
does not affect the optimal solution and the MMF problem (2)
can be formulated as the standard lexicographic maximization
with cumulated ordered outcomes:

lexmax {(θ̄1(x), θ̄2(x), . . . , θ̄m(x)) : x ∈ A} (4)



Note that for any given vector x ∈ IRm, the cumulated ordered
value θ̄i(x) can be found as the optimal value of the following:

θ̄i(x) = min{∑
j∈J

x jui j : ∑
j∈J

ui j = k, 0≤ ui j ≤ 1 ∀ j ∈ J}. (5)

The above problem is an LP for a given outcome vector
x while it becomes nonlinear for x being a variable. This
difficulty is overcome by taking advantage of the LP duality
[14], [16]. Indeed, the LP dual of problem (5) with variable
ri corresponding to the equation ∑ j∈J ui j = k and variables di j
corresponding to upper bounds on ui j leads us to the following
formula:

θ̄i(x) = max{iri−∑
j∈J

di j : ri− x j ≤ di j, di j ≥ 0 j ∈ J}. (6)

Thus θ̄i(x) = max {iri−∑ j∈J(x j− ri)+ : x ∈ A } where (.)+
denotes the nonnegative part of a number and ri is an auxiliary
(unbounded) variable.

Following (6), we may express the MMF problem (2) as a
standard lexicographic optimization problem with predefined
linear criteria:

lexmax(r1−∑
j∈J

d1 j,2r2−∑
j∈J

d2 j, . . . ,mrm−∑
j∈J

dm j)

s.t. x ∈ A, di j ≥ ri− x j, di j ≥ 0 ∀i, j ∈ J.
(7)

The above model is referred to as the Cumulated Ordered
Outcomes (COO) approach [16]. An attainable outcome vector
x ∈ A is an optimal solution of the MMF problem (2), if
and only if it is an optimal solution of the COO model (7).
Note that the direct lexicographic formulation of model COO
remains valid for nonconvex (e.g. discrete) models, where the
standard sequential approaches [9] are not applicable.

Although defined with simple linear constraints, model
COO introduces m2+m auxiliary variables and m2 constraints.
Thus, for many problems with not too large number of services
(demands) m, problem (7) can easily be solved directly.
However, it may cause a serious computational burden for real-
life network dimensioning problems. The number of services
(traffic demands), essentially, corresponds to the number of
ordered pairs of network nodes which is already on the order
of the square of the number of nodes |V |. Thus, finally the
expanded multi-criteria model introduces |V |4 variables and
constraints which means polynomial but fast growth and may
not be acceptable for larger networks. For instance, a rather
small backbone network of a Polish ISP [17] consists of 12
nodes which leads to 132 possible services (m= 132) resulting
in 132 criteria (lexicographic levels) and up to 17 424 devia-
tional variables dik with corresponding constraints in last level
problem. Actually, our earlier computational experiments with
a simpler bandwidth allocation problem [16] has confirmed
higher efficiency of the COO approach in comparison to the
DOO model (3). Nevertheless, its applicability turned out to
be limited to rather small networks with up to 20 services
(elastic flows).

In order to reduce the problem size one may attempt to
restrict the number of lexicographic levels in problem (7).
Let us consider a sequence of indices I = {i1, i2, . . . , iq} ⊂ J,

where 1 = i1 < i2 < .. . < iq−1 < iq = m, and the corresponding
restricted form of the lexicographic problem (4):

lexmax {(θ̄i1(x), θ̄i2(x), . . . , θ̄iq(x)) : x ∈ A} (8)

with only q < m criteria. Following [16], full lexicographic
model (4) allows us to generate the MMF solution. Reducing
the number of criteria we restrict these capabilities. Never-
theless, one may still expect reasonably fair efficient solution
and only unfairness may be related to the distribution of
flows within classes of skipped criteria. In other words we
have guaranteed some rough fairness approximating the MMF
solution.

III. MULTIPLE LEVEL THROUGHPUTS

For some specific classes of discrete, or rather combi-
natorial, optimization problems, one may take advantage of
the finiteness of the set of all possible outcome values. The
ordered outcome vectors may be treated as describing a
distribution of outcomes x. In the case when there exists a
finite set of all possible outcomes, we can directly describe
the distribution of outcomes with frequencies of outcomes.
Let V = {v1,v2, . . . ,vr} (where v1 < v2 < · · ·< vr) denote the
set of all attainable outcomes. We introduce integer functions
hk(x) (k = 1, . . . ,r) expressing the number of values vk in
the outcome vector x. Having defined functions hk we can
introduce cumulative distribution functions:

h̄k(x) =
k

∑
l=1

hl(x) k = 1, . . . ,r. (9)

Function h̄k expresses the number of outcomes smaller or
equal to vk. Since we want to maximize all the outcomes,
we are interested in minimization of all functions h̄k. Indeed,
the following assertion is valid [12]. For outcome vectors
x′,x′′ ∈ V m, 〈x′〉 ≥ 〈x′′〉 if and only if h̄k(x′) ≤ h̄k(x′′) for all
k = 1, . . . ,r. This equivalence allows to express the MMF prob-
lem (2) in terms of the standard lexicographic minimization
problem with objectives h̄(x) [14]:

lexmin {(h̄1(x), . . . , h̄r(x)) : x ∈ A}. (10)

An attainable outcome vector x ∈ A is an optimal solution of
the MMF problem (2), if and only if it is an optimal solution
of the lexicographic problem (10).

Note that h̄r(x) = m for any x which means that the r-th
criterion is always constant and therefore redundant in (10).
Hence, the lexicographic problem (10) can be formulated as
the following mixed integer problem:

lexmin

(
∑
j∈J

z1 j, ∑
j∈J

z2 j, . . . , ∑
j∈J

zr−1, j

)
s.t.
x ∈ A, vk+1− x j ≤Czk j, zk j ∈ {0,1} j ∈ J, k < r

(11)

where C is a sufficiently large constant.
Taking advantage of possible weighting and cumulating

achievements in lexicographic optimization, one may eliminate
auxiliary integer variables from the objective functions. For



this purpose we weight and cumulate vector h̄(x) to get
ĥ1(x) = 0 and:

ĥk(x) =
k−1

∑
l=1

(vl+1− vl)h̄l(x) k = 2, . . . ,r. (12)

Due to positive differences vl+1 − vl > 0, the lexicographic
minimization problem (10) is equivalent to the lexicographic
problem with objectives ĥ(x):

lexmin {(ĥ1(x), . . . , ĥr(x)) : x ∈ A} (13)

Actually, vector function ĥ(x) provides a unique descrip-
tion of the distribution of coefficients of vector x, i.e., for
any x′,x′′ ∈ V m one gets: ĥ(x′) = ĥ(x′′) ⇔ 〈x′〉 = 〈x′′〉.
Moreover, ĥ(x′) ≤ ĥ(x′′) if and only if Θ̄(x′) ≥ Θ̄(x′′) [12].
Formula (12) allows one to express ĥk(x) as a piecewise
linear function ĥk(x) = ∑ j∈J max{vk−x j,0}. This enables the
formulation of the lexicographic minimization problem (13) as
the so-called Shortfalls to Ordered Targets (SOT) model with
auxiliary linear constraints [16].

Note that ĥ1(x) = 0 for any x which means that the first
criterion is constant and redundant in problem (13). Moreover,
mvr− ĥr(x) = ∑ j∈J x j, thus representing the total throughput.
Similarly, one may define for all k the complementary quan-
tities ηk(x) = mvk − ĥk(x) = ∑ j∈J min{x j,vk} expressing the
corresponding partial throughputs generated by flows ranged to
levels vk [13]. Hence, the lexicographic minimization problem
(13) is equivalent to the lexicographic problem with objectives
η(x):

lexmax {(η2(x),η3(x), . . . ,ηr(x)) : x ∈ A} (14)

which leads us to the following assertion.
Theorem 1: An attainable outcome vector x ∈ A is an

optimal solution of the MMF problem (2), if and only if it
is an optimal solution of the lexicographic problem (14).

We will refer to model (14) as the Multiple Level Through-
puts (MLT) approach. Note that the quantity ηk(x) can be
computed directly by the following minimization:

ηk(x) = max{∑
j∈J

tk j : tk j ≤ x j, tk j ≤ vk j ∈ J}. (15)

Hence, the entire MLT model (14) can be formulated as
follows:

lexmax

(
∑
j∈J

t2 j, ∑
j∈J

t3 j, . . . , ∑
j∈J

tr j

)
s.t.
x ∈ A, tk j ≤ x j, tk j ≤ vk j ∈ J, k = 2, . . . ,r.

(16)

Note that the above formulation, unlike the problem (11),
does not use integer variables and can be considered as an LP
expansion of the original constraints (1).

The size of problem (16) depends on the number of different
outcome values. Thus, for many problems with not too large
number of outcome values, the problem can easily be solved
directly. In many problems of telecommunications network
design, the objective functions express the quality of service

and one can easily consider a limited finite scale (grid) of the
corresponding outcome values. However, in many cases the
complete grid of flow values related to granulated capacity
could extremely large. On the other hand, model (16) opens
a way for the fuzzy representation of quality measures within
the MMF problems.

Although defined with simple linear constraints, the ex-
panded model (16) introduces r×m additional variables and
inequalities. This may cause a serious computational burden
for real-life network dimensioning problems. Note that the
number of services (traffic demands) m corresponds to the
number of ordered pairs of network nodes. On the other hand,
quantity r represents the number of various possible outcomes
(flow sizes). In order to reduce the problem size one may
attempt to restrict the number of distinguished target values.
Let us consider a sequence of indices K = {k1,k2, . . . ,kq},
where vk1 < vk2 < .. . < vkq−1 < vkq , and the corresponding
restricted form of the lexicographic model (14):

lexmax {(ηk1(x), . . . ,ηkq(x)) : x ∈ A} (17)

with only q < r criteria. Following Theorem 1, model (14)
allows us to generate the MMF solution. Reducing the number
of criteria we restrict these capabilities. Nevertheless, we
can essentially still expect reasonably fair solution and only
unfairness may be related to the distribution of flows within
classes of skipped criteria. In other words, we have guaranteed
some rough fairness while it can be possibly improved by
redistribution of flows within the intervals (vk j ,vk j+1 ] for
j = 1,2, . . . ,q−1.

IV. COMPUTATIONAL EXPERIMENTS

We have analyzed the performance of approximate sequen-
tial approaches based on the Cumulated Ordered Outcomes
(COO) model (8) and the Multiple Level Throughputs (MLT)
model (16) with the condition x ∈ A representing the band-
width allocation problem defined with constraints (1). For
the COO model, besides exact MMF approach (7), we have
also tested approximate MMF procedure in which only odd
numbers of worst outcomes plus the number of all outcomes
are sequentially optimized (i.e. 1,3,5, . . . , |J| worst outcomes).
Such approach can be useful in case of larger problems. It is
denoted further by COO2. We have not assumed any band-
width granulation and thereby the grid of possible bandwidth
values that can be allocated. Therefore, in case of the Multiple
Level Throughputs approach the resulting bandwidth alloca-
tion is always an approximation to the exact MMF solution.
However, to compare its computational effectiveness to that of
COO and COO2, we use for MLT the same number of MMF
steps (and distinct vk values) as in COO or COO2, accordingly.
The MLT approach with the reduced number of vk values
(similar to COO2) is denoted by MLT2. The vk are computed
with the formula vk = z+ (k−1)

(|J|−1) (z̄−z), where k= 1,2,3, . . . , |J|
for MLT, or k= 1,3,5, . . . , |J| for MLT2, z is the worst outcome
(precomputed with maxmin) and z̄ is a simple upper bound
computed as max j∈J ∑p∈Pj mine∈p(ae + āe).



TABLE I
COO (EXACT MMF): SOLUTION TIMES (SECONDS)

# of # of number of services
network nodes links 10 20 30 40 50

pdh 11 34 0.2 1.1 16.0 276.8 5206.3
newyork 16 49 0.1 0.6 6.3 292.7 4179.8
ta1 24 55 0.1 0.9 19.6 152.3 1109.4
france 25 45 0.1 0.8 7.7 22.8 4156.5
norway 27 51 0.1 1.2 4.8 41.9 3148.8
cost266 37 57 0.0 0.6 3.4 18.8 53.3

TABLE II
COO2 (APPROXIMATE MMF): SOLUTION TIMES (SECONDS)

# of # of number of services
network nodes links 10 20 30 40 50

pdh 11 34 0.1 0.4 2.8 25.3 88.5
newyork 16 49 0.1 0.3 1.5 22.4 190.8
ta1 24 55 0.1 0.3 4.6 9.9 146.0
france 25 45 0.0 0.3 1.8 4.8 177.1
norway 27 51 0.0 0.5 1.6 8.6 172.7
cost266 37 57 0.1 0.2 1.0 3.7 8.4

Each model has been computed using the standard sequen-
tial algorithm for lexicographic optimization with predefined
objective functions. For lexicographic maximization problem
lexmax{( f1(x), . . . , fm(x)) : x ∈ A} the algorithm reads as
follows:

Step 0: Put k := 1.
Step 1: Solve problem Pk:

max
x∈A
{τk : τk ≤ fk(x),τ0

j ≤ f j(x) j < k}
denote the optimal solution by (x0,τ0

k ).
Step 2: If k = m, STOP (x0 is MMF optimal).

Otherwise, put k := k+1 and go to Step 1.
For the experiments we used 6 network topologies from

the SNDLib (Survivable Network Design Library). For each
topology 10 random problems were generated, as follows (all
random numbers were generated with uniform distribution).
First, for each link, its current capacity ae and unit expansion
cost ce were generated as numbers in the range of 2 to 10
and 1 to 1.5, accordingly. Based on current capacity, the
maximum expansion capacity ā was generated as a number
in the range of 0.2ae to 0.6ae. The budget B for the network
expansion (1e) was set to 130% of the current network value,
i.e. B = 1.3∑e∈E(ceae). Then, random node pairs defining
services were generated. For each service 3 different possible
paths were chosen. Two of them were fully random and one
was the shortest path between the end nodes (with smallest
number of links).

All the tests have been performed on the Intel Core 2
Duo 2.4GHz computer employing the CPLEX 12.1 package,
configured for using only one thread. Tables I–IV present
solution times for the analyzed approaches. The times are

TABLE III
MLT (APPROXIMATE MMF): SOLUTION TIMES (SECONDS)

# of # of number of services
network nodes links 10 20 30 40 50

pdh 11 34 0.1 0.8 3.5 16.9 41.5
newyork 16 49 0.1 0.7 3.4 13.7 48.5
ta1 24 55 0.1 0.5 4.6 10.2 15.3
france 25 45 0.1 0.5 2.7 5.4 15.4
norway 27 51 0.1 0.9 2.5 14.9 17.5
cost266 37 57 0.1 0.5 2.1 5.5 11.7

TABLE IV
MLT2 (APPROXIMATE MMF): SOLUTION TIMES (SECONDS)

# of # of number of services
network nodes links 10 20 30 40 50

pdh 11 34 0.1 0.3 0.8 6.5 6.8
newyork 16 49 0.0 0.3 1.0 4.8 7.5
ta1 24 55 0.0 0.2 1.1 3.1 21.6
france 25 45 0.0 0.1 1.0 2.0 6.0
norway 27 51 0.0 0.2 0.8 3.9 6.5
cost266 37 57 0.1 0.2 0.6 1.9 3.0

averages of 10 randomly generated problems. The upper
index (when pointed) denotes the number of tests for which
the timeout of 300 seconds occurred. One can notice that
the network structure influences performance but not in a
consistent way – the solution times are not linearly dependent
on the number of links. The solution times are much more
affected by the number of services, and for larger problems
only the MLT approaches give acceptable results in the sense
of solving majority of problems within 300 seconds time limit
(actually below one minute). Very promising are the results for
the approximated approach with halved number of MMF steps.

TABLE V
APPROXIMATION ERROR FOR 10 SERVICES [%]

COO2 MLT MLT2
network Q3 Qa Q3 Qa Q3 Qa

pdh 0.0 0.0 −2.1 1.6 −2.2 2.4
newyork 0.0 1.0 −2.8 2.6 −4.5 2.9
ta1 0.0 0.5 −2.0 1.4 −5.6 2.5
france 0.0 0.0 −4.9 0.6 −4.9 1.3
norway 0.0 0.1 −5.6 0.4 −6.2 0.4
cost266 0.0 1.5 −2.4 3.9 −2.8 3.9

To show what approximation errors are to be expected, for
each test problem instance we computed the relative deviation
from the exact solution (COO). Two solution parameters were
considered: the sum (average) of 3 worst outcomes (denoted
by Q3) and the sum of all outcomes (total throughput denoted
by Qa). Only problem instances completely solved within
the timeout limit (by all COO, COO2, MLT and MLT2)



TABLE VI
APPROXIMATION ERROR FOR 30 SERVICES [%]

COO2 MLT MLT2
network Q3 Qa Q3 Qa Q3 Qa

pdh 0.0 0.3 −2.9 0.8 −2.9 2.3
newyork 0.0 0.1 −1.4 1.8 −1.5 2.1
ta1 0.0 0.1 −0.3 1.2 −0.3 1.8
france 0.0 0.1 −0.5 3.1 −0.5 6.2
norway 0.0 0.1 −0.8 2.6 −0.8 5.7
cost266 0.0 0.0 0.0 3.1 0.0 5.6

TABLE VII
APPROXIMATION ERROR FOR 50 SERVICES [%]

COO2 MLT MLT2
network Q3 Qa Q3 Qa Q3 Qa

pdh 0.0 0.0 0.0 1.4 0.0 2.6
newyork 0.0 0.1 0.0 1.8 0.0 2.1
ta1 0.0 0.0 0.0 1.0 0.0 2.2
france 0.0 0.1 0.0 1.8 0.0 3.7
norway 0.0 0.1 0.0 3.6 0.0 6.8
cost266 0.0 0.0 0.0 3.0 0.0 6.2

were included into the average error computation. Thus the
number of test instances can differ for each problem. The
results, shown separately for different number of services,
are presented in Tables V–VII. The most interesting is the
very small approximation error for the COO2 approach, which
suggests its usage in many practical applications. One should
also notice the small error for the sum of 3 worst outcomes,
especially for large problem instances.

V. CONCLUSION
The Max-Min Fair optimization can be implemented as

the lexicographic optimization of directly defined artificial
criteria introduced with some auxiliary variables and linear
inequalities independently from the problem structure [14].
The approaches guarantee the exact MMF solution for a com-
plete set of criteria and their applicability is limited to rather
small networks [16]. We have developed some simplified
sequential approaches with reduced number of criteria thus
generating effectively approximations to the MMF solutions.
Our computational analysis on the MMF single-path network
dimensioning problems has shown that while the exact model
COO can solve effectively problems with small number of
services, the approximated Multiple Level Throughputs model
enables to solve within a minute problems for networks with
30 nodes and 50 links providing very small approximation
errors. It suggests its possible usage in many practical appli-
cations. Such performance is enough for efficient analysis of
a country backbone network of ISP (12 nodes and 18 links
in the case of Poland [17]). Nevertheless, further research is
necessary on the models and corresponding algorithms tailored
to specific MMF network optimization problems.

The models may also be applied to various MMF resource
allocation problems, not necessarily related to networks.
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