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Well defined feasibility tolerances are necessary to guarantee reliable results for the simplex 
algorithm. This note presents some formulae for dynamic definition of  suitable values of  the 
tolerances at each simplex step. They are based on error analysis techniques and seem to be 
applicable in the s tandard simplex codes. The tolerances proved to be useful in practice when 
lexicographic LP problems were solved. 
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1. Introduction 

Well defined tolerances for primal and dual feasibility are necessary in order to 
guarantee reliable results from the simplex algorithm. They define practical stopping 
rules for the simplex algorithm. If  the tolerances are too small then no solution may 
be found to be optimal. On the other hand, if the tolerances are too large then many 
basic solutions may be declared as optimal. Thus, the tolerances must be large 
enough that the stopping rules (i.e., primal and dual feasibility conditions) are 
satisfied for the computed values of the original optimal solution and small enough 
that any current basic solution which satisfies the stopping rules can be taken as a 
good approximation to the original optimal solution. 

Most linear programming codes require the definition of such feasibility tolerances 
as well as several others. In commercial systems default values are supplied for the 
tolerances but they are proposed regardless of the special structure of  problem and 
therefore poor results can be obtained for some harder problems. LP problems with 
dense matrices are usually considered among the most difficult. However, the most 
spectacular example of failure of the feasibility tolerances mechanism we noticed 
occurred while solving a typical sparse LP problem (815 rows, 1050 columns, 
density = 0.3%). The model was connected with optimal districting, Its constraints 
took fom of a transportation problem with some additional linear inequalities (for 
details of  the model see [5]). While solving the problem with the standard MPSX/370 
strategy (see [3]) we got a permanent cycle on two bases (see Table 1). This cycle 
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Table 1 

MPSX/370RI.6 PTF9 MPSCL EXECUTION 
ITER VECTOR VECTOR REDUCED NUMBER 
NUMBER OUT IN COST NONOPT 

FUNCTION 
VALUE 

NUMBER SUM 
INFEAS INFEAS 

M 57 1579 945 0.50000- 1 
M 58 945 1 5 7 9  0.69500- 1 
M 59 1579 945 0.50000- 1 
M 60 945 1579 0.69500- 1 
M 61 1579 945 0.50000- 1 
M 62 945 1 5 7 9  0.69500- 1 
M 63 1579 945 0.50000- 1 
M 64 945 1579 0.69500- 1 
M 65 1579 945 0.50000- 1 
M 66 945 1579 0.69500- 1 
M 67 1579 945 0.50000- 1 
M 68 945 1579 0.69500- 1 
M 69 1579 945 0.50000- 1 
M 70 945 1579 0.69500- 1 
M 71 1579 945 0.50000- 1 
M 72 945 1579 0.69500- 1 
M 73 1579 945 0.50000- 1 
M 74 945 1579 0.69500- I 
M 75 1579 945 0.50000- 1 
M 76 945 1579 0.69500- 1 
M 77 1579 945 0.50000- 1 
M 78 945 1579 0.69500- ! 
M 79 1579 945 0.50000- 1 
M 80 945 1579 0.69500- 1 
M 81 1579 945 0.50000- 1 
M 82 945 1579 0.69500- 1 
M 83 1579 945 0.50000- 1 
M 84 945 1579 0.69500- 1 
M 85 1579 945 0.50000- 1 
M 86 945 1579 0.69500- 1 
M 87 1579 945 0.50000- 1 
M 88 945 1 5 7 9  0.69500- 1 
M 89 1579 945 0.50000- 1 
M 90 945 1 5 7 9  0.69500- 1 
M .91 1579 945 0.50000- 1 
M 92 945 1 5 7 9  0.69500- 1 
M 93 1579 945 0.50000- 1 
M 94 945 1579 0.69500- 1 
M 95 1579 945 0.50000- 1 
M 96 945 1 5 7 9  0.69500- 1 
M 97 1579 945 0.50000- 1 
M 98 945 1 5 7 9  0.69500- 1 
M 99 1579 945 0.50000- 1 
M 100 945 1 5 7 9  0.69500- 1 
M 101 1579 945 0.50000- 1 
M 102 945 1 5 7 9  0.69500- 1 

135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 I 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135 646.2481 1 49.3750 
135 596.2080 2 66.7500 
135 646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 ! 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135 646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135 646.2481 1 49.3750 
135 596.2080 2 66.7500 
135646.2481 1 49.3750 
135 596.2080 2 66.7500 
135 646.2481 1 49.3750 
135 596.2080 2 66.7500 
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was evidently caused by failure of the feasibility tolerances mechanism) Moreover, 
it turned out that both the bases were well-conditioned. 

The need for reliable feasibility tolerances setting is accepted by all researchers 
and practitioners. Nevertheless, error analysis of  the corresponding quantities has 
not been performed up to now. What is more, a formula based on error analysis 
has been proposed for only one specific tolerance connected with updating of basis 
factorization in the Forrest-Tomlin algorithm (see [9]), whereas a typical simplex 
code uses at least ten various tolerances. 

There exist some experimental investigations of  round-off error propagation in 
the simplex method (see e.g. [6]) but they do not offer any formula for proper values 
of  the feasibility tolerances. They are rather concerned with the so-called general 
zero tolerance for elimination all non-significant elements. This tolerance is proposed 
regardless of the specific quantities calculated in feasibility criteria and is usually 
too small for a feasibility tolerance. It is not used as a feasibility tolerance in any 
commercial simplex code. On the other hand, some authors propose several numbers 
as proper feasibility tolerances. For instance in [8] 10 -8 is suggested as a proper 
value for feasibility tolerances whereas 10 -5 is proposed in [7]. Both the values are 
proposed for the same computation model with the relative computer precision 10-15. 

Rigorous feasibility tests with tolerances based on error analysis are especially 
needed in lexicographic optimization. Lexicographic linear programming leads to 
solving a sequence of  ordinary LP problems constructed in such a way that optimal 
set to the previous problem is treated as feasible-set to the next one (see [4]). Due 
to this construction the whole optimization process strongly depends on proper 
definition of primal as well as dual feasibility tolerances. What is more, the lexico- 
graphic optimization is, in general, unstable. 

The purpose of  this note is to present some formulae for feasibility tolerances 
based on global error bounds. We carefully analyze relations between the feasibility 
tolerances and the accuracy of  the computed basic solutions. We get formulae for 
dynamic definition of suitable values of  the tolerances at each simplex step. The 
formulae seem to be applicable in the standard simplex codes. 

2. The formulae 

Consider a linear programming problem in the standard form 

P: min{ cx: A x  = b, x >>- 0} 

and its dual 

D: max{yb: y A  <~ c} 

where: 

t Data file is available on request. 
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X is an n x 1 vector of  (primal) variables, 
y is a 1 x m vector of (dual) variables, 

b is an m x 1 vector, 
c is a 1 x n vector, 

A i s  a n  m x n matrix of  r a n k  m ( m ~ <  n ) .  

While solving the problem P with the simplex method a sequence of  basic solutions 

is constructed and their optimality properties are examined. The current basic 
solutions x and y are defined as follows: 

- the basic part  of  x (denoted by xB) is the solution of the linear system BxB = b, 
- the nonbasic part  of  x (denoted by xN) is the zero vector, 

- y is the solution of  the linear system yB = cB, 
where B is the current basis and c~ denotes the vector of  cost coefficients c~ 

corresponding to basic columns. 
Optimality criteria for the basic solutions can be written as 

x ~ > 0 ,  (1) 

cN -yN>-O,  (2) 

where N is the nonbasic part of  the matrix A, and c~ denotes the vector of cost 

coefficients corresponding to nonbasic columns. The inequalities (1)-(2) may be 

considered as stopping rules for the simplex method. 
While computing in finite arithmetic, round-off errors may eause that the 

inequalities (1) and (2) are not satisfied for any computed basic solution. In other 
words, it is possible that no basic solution will be found as optimal. Therefore in 
practice it is necessary to introduce some tolerances into the simplex stopping rules. 

Finally, we obtain practical stopping rules for the simplex method as the inequalities 

xj >! -pft~ fo r j  ~ JB, (3) 

cj-yAj>~ -d f t  i fo r j  ~ Js ,  (4) 

where Ja denotes the set of  basic indices, Aj denotes the j - th  column of the matrix 
A, pfij and dftj are the j - th tolerances for primal and dual feasibility, respectively. 
The tolerances, obviously, take some positive values. They may be defined once for 

the whole algorithm or redefined at each simplex step. 
The feasibility tolerances should be so large that the computed vectors of  the 

original optimal solutions satisfy the stopping rules (3) and (4). This requirement 
may be formulated as follows: 

- at each simplex step the primal feasibility tolerances should be no less than the 
errors of  the computed primal basic solution, and similarly, 

- at each simplex step the dual feasibility tolerances should be no less than the 
errors of  the computed reduced costs (dj = c j - y A j ) .  

So, the problem of  the minimal values of  feasibility tolerances is equivalent to 

the problem how large errors can occur during the computations of  basic solutions. 
Narrow bounds on these errors will give some formulae for proper  values of the 

feasibility tolerances. 
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Consider the computed basic solution ~. The following formula for the error is valid 

ex j=-~ i - (B- l ) :b=(B-Z)~(B~8-b)  f o r j  e Js 

where (B-1)j denotes the row of the inverse that corresponds to the variable x:. 

Thus, the errors of  the computed primal basic solutions can be bounded by 

[exrl<<.ll(B-~)~llllB~-bll f o r j  e J~ (5) 

where I]" ]] denotes any matrix p-norm. 

Now concentrate on computing the reduced costs d r. For examining optimality 
the reduced costs are usually computed by the so-called backward transformation 

(see [8]). This is two stage technique. The reduced costs are calculated there as 
d~ = cj - y A  r after the dual vector y has been found using some basis factorization. 

The computational error of  the reduced cost is then a sum of two errors. The first 
one, Or, is due to replacing the exact dual solution y = caB -I by the computed 
approximation ft. The second one 8j is due to computing in finite arithmetic the 
value of the term c~ -)TA i. So, the following formula for the error o f  reduced costs 

is valid 

edi=- g - ( c ~ - c B B - '  A,)=~j + ,5~ 

= ( c j - ~ A j ) - ( c j - c ~ B - ' A i ) +  8 i 

/-B-'&\ 

Finally, 

where ej denotes the m - n  dimensional unit vector (in the space of nonbasic 
variables) corresponding to the variable x/. 

Let E r denote an upper  bound on the error 8j. Then, similarly to (5), we obtain 

ledrl<llB-'Arllll3;n-cBIl+er f o r j ~ J B .  (6) 

The basic residual vectors B~B - b and ~B - cB may be computed at each simplex 
step for control of  the so-called reinvert mechanism. Large values of  their norms 
mean the loss of  accuracy of basic solutions and indicate the need of refactorization 

of  the current basis. 
However, if we use computed residual vector instead of the exact one we must 

take into consideration the errors of  computat ions since while computing residual 
vector in finite arithmetic a large relative error can occur. The theoretical inequalities 

(5) and (6) then take the following form: 

lexjl<~ll(B-'bll(l l f l(gZB-b)ll+r p ) fo r j  e JB, (7) 

ledjl<~l(-B-'AJ)ll(Ilfl(~B-cB)ll+ra, f o r j ,  Js ,  (8) 
er 
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where fl(-) denotes quantities computed in floating-point arithmetic; r p and r d 
denote bounds on computational error for the primal and dual residual vectors, 
respectively (the latter bound cover also the error 8j). 

The factors I((B-')jll and II(-~La,)ll can be regarded as available in practical 
simplex algorithms since they are used in some pivot selection mechanisms. The 
vectors 

= ( - B - I A J  1 (forj  ~ Ja) 
a: \ ej / 

point down the n - m edges of feasible region that emanate from the current vertex 
x. Similarly, the vectors/3j = (B-I): ( for j  e J~) point down the m edges that emanate 
from the current vertex y. Their spectral norms are used as normalizing scales in 
the so-called steepest edge strategy which is known to be very effective to reduce 
the number of simplex steps (see [10]). Direct computations of all the norms of the 
a and/3 vectors at each simplex step is too expensive. They can be cheaply computed, 
however, by special updating formulae, especially when a triangular basis factoriz- 
ation is used (see [1]). Most linear programming codes compute the normalizing 
scales only approximately using the so-called DEVEX technique (see [2]). 

Returning to our tolerances we obtain, finally, the following requirements: 

pftflll~jll>~llfl(B~B-b)ll+: for j  e Jo, (9) 

dftj/II~j II >~ II f l (~B-  c~)II + r ~ for j  $ Js. (10) 

These inequalities state necessary relations between the accuracy of the basic 
solutions and the feasibility tolerances. 

Note that the right-hand sides of the inequalities (9) and (10) are independent 
of the index j. So, the minimal values of the feasibility tolerances are proportional 
to the corresponding vectors of normalizing scales, i.e., they can be expressed as 

pft~=t[ll3jll for j  ~ JB, (11) 

dftj=t*[lajll for j  ~ JB, (12) 

where 

t = II fl(B~B- b)II + r', (13) 

t* = II fl()TB - cs)II + rd. (14) 

In standard simplex codes we are usually interested in the highest accuracy. Thus, 

the feasibility tolerances should be defined then as dynamic quantities according 

to the equalities (11) and (12) where scalars t and t* are calculated at each simplex 
step from the formulae (13) and (14). 

In simplex codes the maximal norms of the basic residual vectors are usually 
bounded by some algorithmic parameters referred to as check tolerances (see [8]), 
i.e., 

II f l ( n ~ B  - b)II ~< pcht, (15) 

II f l ( ~ 8  - c~)II <~ dcht. (16) 
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Thus, due to (15) and (16) the check tolerances can be used in formulae (13) and 
(14) instead of the norms of computed residual vectors. Moreover, proper values 
for check tolerances fulfil usually inequalities 

r p<<-pcht and r a<~dcht.  

The scalars t and t* can be defined then as the doubled check tolerances. 
Stopping rules defined according to the above scheme seem to be quite easy for 

handling in simplex codes which use the steepest-edge strategy or some approxima- 
tion to it. Namely, if normalizing scales are used during pricing then the quantities 

4tll jll or xj/ll jll are explicitly computed. For such normalized quantities our 
tolerances take the values t* and t, respectively. These values are independent of 
index j and can be defined as a sum of the check tolerance and the corresponding 
error bound (r p or r d, respectively). The check tolerances are, certainly, explicitly 
available as algorithmic parameters. The second term of the sum can be easily 
computed or simply treated as a parameter depending on the class of  LP problem 
(in particular equaled to the check tolerance). The latter way seems to be more 
applicable in the standard simplex codes. 

The above formulae for feasibility tolerances was used while solving practical 
large-scale lexicographic LP problems (about 1000 rows and 2000 variables). 
Namely, we were solving these problems with the MPSX/370 package (see [3]) 
using the feasibility tolerances defined according to the formulae (11)--(14). We 
observed good performances of these tolerances whereas using default tolerances 
we came across numerical troubles in a few runs. More precisely, while using default 
tolerances the loss of feasibility was frequently observed. Moreover, during some 
runs the problem was classified as infeasible after loss of  feasibility whereas a 
feasible solution was found several simplex iterations backward. 

3. Conclusion 

Careful analysis of  bounds on round-off errors in the simplex stopping rules 
showed that the feasibility tolerances should be proportional to product of  the 
corresponding normalizing scales and the check tolerances. We used this fact for 
construction some formulae for dynamic definition of the feasibility tolerances at 
each simplex step. These formulae proved to be useful while solving practical 
lexicographic LP problems. The formulae were based on worst case error analysis 
and they can generate overestimated tolerances for some problems. For this reason 
they need further experiments on various practical LP problems. 

References 

[ 1 ] D. Ooldfarb and J.K. Reid, "A practicable steepest-edge simplex algorithm," Mathematical Program- 
ming 12 (1977) 361-371. 



174 W. Ogryczak / Practical stopping rules 

[2] P.M.J. Harris, "Pivot selection methods of the DEVEX LP code," Mathematical Programming 5 
(1973) 1-28. 

[3] IBM Mathematical Programming System--Extended/370 (MPSX/370), Program reference manual, 
SH19-1095 (IBM, 1979). 

[4] J,P. Ignizio and J.H. Perlis, "Sequential linear goal programming: Implementation via MPSX," 
Computers and Operations Research 3 (1980) 217-225. 

[5] J. Malczewski and W. Og~czak, "A multi-objective approach to optimization of health care districts" 
(To appear). 

[6] H. Mueller-Merbach, On Round-offErrors in Linear Programming (Springer-Verlag, Berlin, 1970). 
[7] B.A. Murtagh, Advanced linear programming: Computation and Practice (McGraw-Hill, New York, 

1981). 
[8] W. Orchard-Hays, Advanced Linear Programming Computing Techniques (McGraw-Hill, New York, 

1968). 
[9] J.A. Tomlin, "An accuracy test for updating triangular factors," Mathematical Programming Study 

4 (1975) 142-145. 
[10] P. Wolfe and L. Cutler, "Experiments in linear programming," in: R. Graves and P. Wolfe, eds., 

Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) 177-200. 


