
Mathematical Programming Study 31 (1987) 167-174 167
North-Holland

O N P R A C T I C A L S T O P P I N G R U L E S F O R T H E S I M P L E X
M E T H O D

Wtodzimierz OGRYCZAK
Department of Mathematics, Informatics and Mechanics, University of Warsaw, 00-901 Warsaw,
Poland

Received 19 November 1984
Revised manuscript received 22 December 1985

Well defined feasibility tolerances are necessary to guarantee reliable results for the simplex
algorithm. This note presents some formulae for dynamic definition of suitable values of the
tolerances at each simplex step. They are based on error analysis techniques and seem to be
applicable in the s tandard simplex codes. The tolerances proved to be useful in practice when
lexicographic LP problems were solved.

Key words: Linear programming, simplex method, round-off errors, tolerances.

1. Introduction

Well defined tolerances for primal and dual feasibility are necessary in order to
guarantee reliable results from the simplex algorithm. They define practical stopping
rules for the simplex algorithm. If the tolerances are too small then no solution may
be found to be optimal. On the other hand, if the tolerances are too large then many
basic solutions may be declared as optimal. Thus, the tolerances must be large
enough that the stopping rules (i.e., primal and dual feasibility conditions) are
satisfied for the computed values of the original optimal solution and small enough
that any current basic solution which satisfies the stopping rules can be taken as a
good approximation to the original optimal solution.

Most linear programming codes require the definition of such feasibility tolerances
as well as several others. In commercial systems default values are supplied for the
tolerances but they are proposed regardless of the special structure of problem and
therefore poor results can be obtained for some harder problems. LP problems with
dense matrices are usually considered among the most difficult. However, the most
spectacular example of failure of the feasibility tolerances mechanism we noticed
occurred while solving a typical sparse LP problem (815 rows, 1050 columns,
density = 0.3%). The model was connected with optimal districting, Its constraints
took fom of a transportation problem with some additional linear inequalities (for
details of the model see [5]). While solving the problem with the standard MPSX/370
strategy (see [3]) we got a permanent cycle on two bases (see Table 1). This cycle

168 W. Ogryczak / Practical stopping rules

Table 1

MPSX/370RI.6 PTF9 MPSCL EXECUTION
ITER VECTOR VECTOR REDUCED NUMBER
NUMBER OUT IN COST NONOPT

FUNCTION
VALUE

NUMBER SUM
INFEAS INFEAS

M 57 1579 945 0.50000- 1
M 58 945 1 5 7 9 0.69500- 1
M 59 1579 945 0.50000- 1
M 60 945 1579 0.69500- 1
M 61 1579 945 0.50000- 1
M 62 945 1 5 7 9 0.69500- 1
M 63 1579 945 0.50000- 1
M 64 945 1579 0.69500- 1
M 65 1579 945 0.50000- 1
M 66 945 1579 0.69500- 1
M 67 1579 945 0.50000- 1
M 68 945 1579 0.69500- 1
M 69 1579 945 0.50000- 1
M 70 945 1579 0.69500- 1
M 71 1579 945 0.50000- 1
M 72 945 1579 0.69500- 1
M 73 1579 945 0.50000- 1
M 74 945 1579 0.69500- I
M 75 1579 945 0.50000- 1
M 76 945 1579 0.69500- 1
M 77 1579 945 0.50000- 1
M 78 945 1579 0.69500- !
M 79 1579 945 0.50000- 1
M 80 945 1579 0.69500- 1
M 81 1579 945 0.50000- 1
M 82 945 1579 0.69500- 1
M 83 1579 945 0.50000- 1
M 84 945 1579 0.69500- 1
M 85 1579 945 0.50000- 1
M 86 945 1579 0.69500- 1
M 87 1579 945 0.50000- 1
M 88 945 1 5 7 9 0.69500- 1
M 89 1579 945 0.50000- 1
M 90 945 1 5 7 9 0.69500- 1
M .91 1579 945 0.50000- 1
M 92 945 1 5 7 9 0.69500- 1
M 93 1579 945 0.50000- 1
M 94 945 1579 0.69500- 1
M 95 1579 945 0.50000- 1
M 96 945 1 5 7 9 0.69500- 1
M 97 1579 945 0.50000- 1
M 98 945 1 5 7 9 0.69500- 1
M 99 1579 945 0.50000- 1
M 100 945 1 5 7 9 0.69500- 1
M 101 1579 945 0.50000- 1
M 102 945 1 5 7 9 0.69500- 1

135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 I 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135 646.2481 1 49.3750
135 596.2080 2 66.7500
135 646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 ! 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135 646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135 646.2481 1 49.3750
135 596.2080 2 66.7500
135646.2481 1 49.3750
135 596.2080 2 66.7500
135 646.2481 1 49.3750
135 596.2080 2 66.7500

w. Ogryczak / Practical stopping rules 169

was evidently caused by failure of the feasibility tolerances mechanism) Moreover,
it turned out that both the bases were well-conditioned.

The need for reliable feasibility tolerances setting is accepted by all researchers
and practitioners. Nevertheless, error analysis of the corresponding quantities has
not been performed up to now. What is more, a formula based on error analysis
has been proposed for only one specific tolerance connected with updating of basis
factorization in the Forrest-Tomlin algorithm (see [9]), whereas a typical simplex
code uses at least ten various tolerances.

There exist some experimental investigations of round-off error propagation in
the simplex method (see e.g. [6]) but they do not offer any formula for proper values
of the feasibility tolerances. They are rather concerned with the so-called general
zero tolerance for elimination all non-significant elements. This tolerance is proposed
regardless of the specific quantities calculated in feasibility criteria and is usually
too small for a feasibility tolerance. It is not used as a feasibility tolerance in any
commercial simplex code. On the other hand, some authors propose several numbers
as proper feasibility tolerances. For instance in [8] 10 -8 is suggested as a proper
value for feasibility tolerances whereas 10 -5 is proposed in [7]. Both the values are
proposed for the same computation model with the relative computer precision 10-15.

Rigorous feasibility tests with tolerances based on error analysis are especially
needed in lexicographic optimization. Lexicographic linear programming leads to
solving a sequence of ordinary LP problems constructed in such a way that optimal
set to the previous problem is treated as feasible-set to the next one (see [4]). Due
to this construction the whole optimization process strongly depends on proper
definition of primal as well as dual feasibility tolerances. What is more, the lexico-
graphic optimization is, in general, unstable.

The purpose of this note is to present some formulae for feasibility tolerances
based on global error bounds. We carefully analyze relations between the feasibility
tolerances and the accuracy of the computed basic solutions. We get formulae for
dynamic definition of suitable values of the tolerances at each simplex step. The
formulae seem to be applicable in the standard simplex codes.

2. The formulae

Consider a linear programming problem in the standard form

P: min{ cx: A x = b, x >>- 0}

and its dual

D: max{yb: y A <~ c}

where:

t Data file is available on request.

170 W. Ogryczak / Practical stopping rules

X is an n x 1 vector of (primal) variables,
y is a 1 x m vector of (dual) variables,

b is an m x 1 vector,
c is a 1 x n vector,

A i s a n m x n matrix of r a n k m (m ~ < n) .

While solving the problem P with the simplex method a sequence of basic solutions

is constructed and their optimality properties are examined. The current basic
solutions x and y are defined as follows:

- the basic part of x (denoted by xB) is the solution of the linear system BxB = b,
- the nonbasic part of x (denoted by xN) is the zero vector,

- y is the solution of the linear system yB = cB,
where B is the current basis and c~ denotes the vector of cost coefficients c~

corresponding to basic columns.
Optimality criteria for the basic solutions can be written as

x ~ > 0 , (1)

cN -yN>-O, (2)

where N is the nonbasic part of the matrix A, and c~ denotes the vector of cost

coefficients corresponding to nonbasic columns. The inequalities (1)-(2) may be

considered as stopping rules for the simplex method.
While computing in finite arithmetic, round-off errors may eause that the

inequalities (1) and (2) are not satisfied for any computed basic solution. In other
words, it is possible that no basic solution will be found as optimal. Therefore in
practice it is necessary to introduce some tolerances into the simplex stopping rules.

Finally, we obtain practical stopping rules for the simplex method as the inequalities

xj >! -pft~ fo r j ~ JB, (3)

cj-yAj>~ -d f t i fo r j ~ Js , (4)

where Ja denotes the set of basic indices, Aj denotes the j - th column of the matrix
A, pfij and dftj are the j - th tolerances for primal and dual feasibility, respectively.
The tolerances, obviously, take some positive values. They may be defined once for

the whole algorithm or redefined at each simplex step.
The feasibility tolerances should be so large that the computed vectors of the

original optimal solutions satisfy the stopping rules (3) and (4). This requirement
may be formulated as follows:

- at each simplex step the primal feasibility tolerances should be no less than the
errors of the computed primal basic solution, and similarly,

- at each simplex step the dual feasibility tolerances should be no less than the
errors of the computed reduced costs (dj = c j - y A j) .

So, the problem of the minimal values of feasibility tolerances is equivalent to

the problem how large errors can occur during the computations of basic solutions.
Narrow bounds on these errors will give some formulae for proper values of the

feasibility tolerances.

W. Ogryczak / Practical stopping rules 171

Consider the computed basic solution ~. The following formula for the error is valid

ex j=-~ i - (B- l) :b=(B-Z)~(B~8-b) f o r j e Js

where (B-1)j denotes the row of the inverse that corresponds to the variable x:.

Thus, the errors of the computed primal basic solutions can be bounded by

[exrl<<.ll(B-~)~llllB~-bll f o r j e J~ (5)

where I]"]] denotes any matrix p-norm.

Now concentrate on computing the reduced costs d r. For examining optimality
the reduced costs are usually computed by the so-called backward transformation

(see [8]). This is two stage technique. The reduced costs are calculated there as
d~ = cj - y A r after the dual vector y has been found using some basis factorization.

The computational error of the reduced cost is then a sum of two errors. The first
one, Or, is due to replacing the exact dual solution y = caB -I by the computed
approximation ft. The second one 8j is due to computing in finite arithmetic the
value of the term c~ -)TA i. So, the following formula for the error o f reduced costs

is valid

edi=- g - (c ~ - c B B - ' A,)=~j + ,5~

= (c j - ~ A j) - (c j - c ~ B - ' A i) + 8 i

/-B-'&\

Finally,

where ej denotes the m - n dimensional unit vector (in the space of nonbasic
variables) corresponding to the variable x/.

Let E r denote an upper bound on the error 8j. Then, similarly to (5), we obtain

ledrl<llB-'Arllll3;n-cBIl+er f o r j ~ J B . (6)

The basic residual vectors B~B - b and ~B - cB may be computed at each simplex
step for control of the so-called reinvert mechanism. Large values of their norms
mean the loss of accuracy of basic solutions and indicate the need of refactorization

of the current basis.
However, if we use computed residual vector instead of the exact one we must

take into consideration the errors of computat ions since while computing residual
vector in finite arithmetic a large relative error can occur. The theoretical inequalities

(5) and (6) then take the following form:

lexjl<~ll(B-'bll(l l f l(gZB-b)ll+r p) fo r j e JB, (7)

ledjl<~l(-B-'AJ)ll(Ilfl(~B-cB)ll+ra, f o r j , Js , (8)
er

172 14/. Ogryczak / Practical stopping rules

where fl(-) denotes quantities computed in floating-point arithmetic; r p and r d
denote bounds on computational error for the primal and dual residual vectors,
respectively (the latter bound cover also the error 8j).

The factors I((B-')jll and II(-~La,)ll can be regarded as available in practical
simplex algorithms since they are used in some pivot selection mechanisms. The
vectors

= (- B - I A J 1 (forj ~ Ja)
a: \ ej /

point down the n - m edges of feasible region that emanate from the current vertex
x. Similarly, the vectors/3j = (B-I): (for j e J~) point down the m edges that emanate
from the current vertex y. Their spectral norms are used as normalizing scales in
the so-called steepest edge strategy which is known to be very effective to reduce
the number of simplex steps (see [10]). Direct computations of all the norms of the
a and/3 vectors at each simplex step is too expensive. They can be cheaply computed,
however, by special updating formulae, especially when a triangular basis factoriz-
ation is used (see [1]). Most linear programming codes compute the normalizing
scales only approximately using the so-called DEVEX technique (see [2]).

Returning to our tolerances we obtain, finally, the following requirements:

pftflll~jll>~llfl(B~B-b)ll+: for j e Jo, (9)

dftj/II~j II >~ II f l (~B- c~)II + r ~ for j $ Js. (10)

These inequalities state necessary relations between the accuracy of the basic
solutions and the feasibility tolerances.

Note that the right-hand sides of the inequalities (9) and (10) are independent
of the index j. So, the minimal values of the feasibility tolerances are proportional
to the corresponding vectors of normalizing scales, i.e., they can be expressed as

pft~=t[ll3jll for j ~ JB, (11)

dftj=t*[lajll for j ~ JB, (12)

where

t = II fl(B~B- b)II + r', (13)

t* = II fl()TB - cs)II + rd. (14)

In standard simplex codes we are usually interested in the highest accuracy. Thus,

the feasibility tolerances should be defined then as dynamic quantities according

to the equalities (11) and (12) where scalars t and t* are calculated at each simplex
step from the formulae (13) and (14).

In simplex codes the maximal norms of the basic residual vectors are usually
bounded by some algorithmic parameters referred to as check tolerances (see [8]),
i.e.,

II f l (n ~ B - b)II ~< pcht, (15)

II f l (~ 8 - c~)II <~ dcht. (16)

W. Ogryczak / Practical stopping rules 173

Thus, due to (15) and (16) the check tolerances can be used in formulae (13) and
(14) instead of the norms of computed residual vectors. Moreover, proper values
for check tolerances fulfil usually inequalities

r p<<-pcht and r a<~dcht.

The scalars t and t* can be defined then as the doubled check tolerances.
Stopping rules defined according to the above scheme seem to be quite easy for

handling in simplex codes which use the steepest-edge strategy or some approxima-
tion to it. Namely, if normalizing scales are used during pricing then the quantities

4tll jll or xj/ll jll are explicitly computed. For such normalized quantities our
tolerances take the values t* and t, respectively. These values are independent of
index j and can be defined as a sum of the check tolerance and the corresponding
error bound (r p or r d, respectively). The check tolerances are, certainly, explicitly
available as algorithmic parameters. The second term of the sum can be easily
computed or simply treated as a parameter depending on the class of LP problem
(in particular equaled to the check tolerance). The latter way seems to be more
applicable in the standard simplex codes.

The above formulae for feasibility tolerances was used while solving practical
large-scale lexicographic LP problems (about 1000 rows and 2000 variables).
Namely, we were solving these problems with the MPSX/370 package (see [3])
using the feasibility tolerances defined according to the formulae (11)--(14). We
observed good performances of these tolerances whereas using default tolerances
we came across numerical troubles in a few runs. More precisely, while using default
tolerances the loss of feasibility was frequently observed. Moreover, during some
runs the problem was classified as infeasible after loss of feasibility whereas a
feasible solution was found several simplex iterations backward.

3. Conclusion

Careful analysis of bounds on round-off errors in the simplex stopping rules
showed that the feasibility tolerances should be proportional to product of the
corresponding normalizing scales and the check tolerances. We used this fact for
construction some formulae for dynamic definition of the feasibility tolerances at
each simplex step. These formulae proved to be useful while solving practical
lexicographic LP problems. The formulae were based on worst case error analysis
and they can generate overestimated tolerances for some problems. For this reason
they need further experiments on various practical LP problems.

References

[1] D. Ooldfarb and J.K. Reid, "A practicable steepest-edge simplex algorithm," Mathematical Program-
ming 12 (1977) 361-371.

174 W. Ogryczak / Practical stopping rules

[2] P.M.J. Harris, "Pivot selection methods of the DEVEX LP code," Mathematical Programming 5
(1973) 1-28.

[3] IBM Mathematical Programming System--Extended/370 (MPSX/370), Program reference manual,
SH19-1095 (IBM, 1979).

[4] J,P. Ignizio and J.H. Perlis, "Sequential linear goal programming: Implementation via MPSX,"
Computers and Operations Research 3 (1980) 217-225.

[5] J. Malczewski and W. Og~czak, "A multi-objective approach to optimization of health care districts"
(To appear).

[6] H. Mueller-Merbach, On Round-offErrors in Linear Programming (Springer-Verlag, Berlin, 1970).
[7] B.A. Murtagh, Advanced linear programming: Computation and Practice (McGraw-Hill, New York,

1981).
[8] W. Orchard-Hays, Advanced Linear Programming Computing Techniques (McGraw-Hill, New York,

1968).
[9] J.A. Tomlin, "An accuracy test for updating triangular factors," Mathematical Programming Study

4 (1975) 142-145.
[10] P. Wolfe and L. Cutler, "Experiments in linear programming," in: R. Graves and P. Wolfe, eds.,

Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) 177-200.

