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Abstract. The ordered weighted averaging (OWA) operator uses the
weights assigned to the ordered values rather than to the specific crite-
ria. This allows one to model various aggregation preferences, preserving
simultaneously the impartiality (neutrality) with respect to the individ-
ual attributes. The determination of ordered weighted averaging (OWA)
operator weights is a crucial issue of applying the OWA operator for deci-
sion making. This paper considers determining monotonic weights of the
OWA operator by minimization the mean absolute deviation inequality
measure. This leads to a linear programming model which can also be
solved analytically.

1 Introduction

The problem of aggregating multiple numerical criteria to form overall objective
functions is of considerable importance in many disciplines. The most commonly
used aggregation is based on the weighted sum. The preference weights can be
effectively introduced with the so-called Ordered Weighted Averaging (OWA)
aggregation developed by Yager [17]. In the OWA aggregation the weights are
assigned to the ordered values (i.e. to the smallest value, the second smallest and
so on) rather than to the specific criteria. Since its introduction, the OWA aggre-
gation has been successfully applied to many fields of decision making [8,12,21].
The OWA operator allows us to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one.

Several approaches has been introduced for obtaining the OWA weights with
a predefined degree of orness [2,16]. O‘Hagan [7] proposed a maximum entropy
approach, which involved a constrained nonlinear optimization problem with a
predefined degree of orness as its constraint and the entropy as the objective
function. Actually, the maximum entropy model can be transformed into a poly-
nomial equation and then solved analytically [3]. A minimum variance approach
to obtain the minimal variability OWA operator weights was also considered
[4]. The minimax disparity approach proposed by Wang and Parkan [14] was
the first method of finding OWA operator using Linear Programming (LP) This
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method determines the OWA operator weights by minimizing the maximum
difference between two adjacent weights under a given level of orness. The mini-
max disparity approach was further extended [1,13] and related to the minimum
variance approaches [6]. The maximum entropy approach was generalized for
various Minkowski metrics [19,20] and in some cases expressed with LP models
[15]. In this paper we analyze a possibility to use another LP solvable models.
In particular, we develop the LP model to determine the OWA operator weights
by minimizing the Mean Absolute Deviation (MAD) inequality measure. In ad-
dition to the LP model an analytical formula is also derived.

2 Orness and Inequality Measures

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and

∑m
i=1 wi = 1. The corresponding OWA aggregation

of outcomes y = (y1, . . . , ym) can be mathematically formalized as follows
[17]. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we
apply the weighted sum aggregation to ordered achievement vectors Θ(y), i.e.
the OWA aggregation has the following form:

Aw(y) =

m∑

i=1

wiθi(y) (1)

The OWA aggregation may model various preferences from the optimistic (max)
to the pessimistic (min). Yager [17] introduced a well appealing concept of the
orness measure to characterize the OWA operators. The degree of orness asso-
ciated with the OWA operator Aw(y) is defined as

orness(w) =
m∑

i=1

m− i

m− 1
wi (2)

For the max aggregation representing the fuzzy ‘or’ operator with weights w =
(1, 0, . . . , 0) one gets orness(w) = 1 while for the min aggregation representing
the fuzzy ‘and’ operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0.
For the average (arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2.
Actually, one may consider a complementary measure of andness defined as
andness(w) = 1−orness(w). OWA aggregations with orness greater or equal 1/2
are considered or-like whereas the aggregations with orness smaller or equal 1/2
are treated as and-like. The former corresponds to rather optimistic preferences
while the latter represents rather pessimistic preferences.

The OWA aggregations with monotonic weights are either or-like or and-
like. Exactly, decreasing weights w1 ≥ w2 ≥ . . . ≥ wm define an or-like OWA
operator, while increasing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like OWA
operator. Actually, the orness and the andness properties of the OWA operators
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with monotonic weights are total in the sense that they remain valid for any
subaggregations defined by subsequences of their weights.

Yager [18] proposed to define the OWA weighting vectors via the regular
increasing monotone (RIM) quantifiers, which provide a dimension independent
description of the aggregation. A fuzzy subset Q of the real line is called a RIM
quantifier if Q is (weakly) increasing with Q(0) = 0 and Q(1) = 1. The OWA
weights can be defined with a RIM quantifier Q as wi = Q(i/m)−Q((i−1)/m).
and the orness measure can be extended to a RIM quantifier (according to
m → ∞) as follows [18]

orness(Q) =

∫ 1

0

Q(α) dα (3)

Thus, the orness of a RIM quantifier is equal to the area under it.
Monotonic weights can be uniquely defined by their distribution. First, we

introduce the right-continuous cumulative distribution function (cdf):

Fw(d) =

m∑

i=1

1

m
δi(d) where δi(d) =

{
1 if wi ≤ d
0 otherwise

(4)

which for any real value d provides the measure of weights smaller or equal to d.
Alternatively one may use the left-continuous right tail cumulative distribution
function Fw(d) = 1 − Fw(d) which for any real value d provides the measure of
weights greater or equal to d.

Next, we introduce the quantile function F
(−1)
w = inf {η : Fy(η) ≥ ξ} for

0 < ξ ≤ 1 as the left-continuous inverse of the cumulative distribution function

Fw, ie., F
(−1)
w (ξ) = inf {η : Fw(η) ≥ ξ} for 0 < ξ ≤ 1. Similarly, we intro-

duce the right tail quantile function F
(−1)

w as the right-continuous inverse of

the cumulative distribution function Fw, i.e., F
(−1)

w (ξ) = sup {η : Fw(η) ≥ ξ}
for 0 < ξ ≤ 1. Actually, F

(−1)

w (ξ) = F
(−1)
w (1 − ξ). It is the stepwise function

F
(−1)

w (ξ) = θi(w) for i−1
m < ξ ≤ i

m .
Dispersion of the weights distribution can be described with the Lorenz curves

and related inequality measures. Classical Lorenz curve used in income economics
as a cumulative population versus income curve to compare equity of income
distributions. Although, the Lorenz curve for any distribution may be viewed
[5] as a normalized integrated quantile function. In particular, for distribution
of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F (−1)
w (α)dα = m

∫ ξ

0

F (−1)
w (α) (5)

where while dealing with normalized weights wi we have always μ(w) = 1/m.
Graphs of functions Lw(ξ) take the form of piecewise linear convex curves. They
are also nondecreasing, due to nonnegative weights wi. Any perfectly equal dis-
tribution of income has the diagonal line as the Lorenz curve (the same inde-
pendently from the income value).
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Alternatively, the upper Lorenz curve may be used which integrates the right
tail quantile function. For distribution of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F
(−1)

w (α)dα = m

∫ ξ

0

F
(−1)

w (α) (6)

Graphs of functions Lw(ξ) take the form of piecewise linear concave curves.
They are also nondecreasing, due to nonnegative weights wi. Similar to Lw, the
vector of perfectly equal weights has the diagonal line as the upper Lorenz curve.
Actually, both the classical (lower) and the upper Lorenz curves are symmetric
with respect to the diagonal line in the sense that the differences

d̄w(ξ) = Lw(ξ) − ξ and dw(ξ) = ξ − Lw(ξ) (7)

are equal for symmetric arguments d̄w(ξ) = dw(1 − ξ). Hence,

Lw(ξ) + Lw(1 − ξ) = 1 for any 0 ≤ ξ ≤ 1 (8)

Note that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1
the corresponding Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0
and Lw(1) = 1 as well as the OWA weights can be defined with L as wi =
Lw(i/m)−Lw((i−1)/m). Hence, Lw may be considered then as a RIM quantifier
generating weights w [10]. Following (3), the orness measure of RIM quantifier

is given as orness(L) =
∫ 1

0 L(α) dα, thus equal to the area under Lw. Certainly,
for any finite m the RIM orness orness(Lw) differs form the orness, but the
difference depends only on the value of m, exactly,

orness(Lw) =

m∑

i=1

m− i

m
wi +

m∑

i=1

1

2m
wi =

m− 1

m
orness(w) +

1

2m
(9)

In the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 the cor-
responding upper Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0
and Lw(1) = 1 as well as the OWA weights can be defined with L as wi =
Lw(i/m)−Lw((i− 1)/m). Hence, Lw may be considered then as a RIM quanti-
fier generating weights w. Similar to (9), the difference between the RIM orness
orness(Lw) and orness(w) depends only on the value of m.

Typical inequality measures are some deviation type dispersion characteris-
tics. They are inequality relevant which means that they are equal to 0 in the
case of perfectly equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the (Gini’s) mean absolute difference

Γ (w) =
1

2m2

m∑

i=1

m∑

j=1

|wi − wj | (10)

In most application frameworks a better intuitive appeal may have inequality
measures related to deviations from the mean value like the Mean Absolute
Deviation (MAD) from the mean
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δ(w) =
1

m

m∑

i=1

|wi − μ(w)| (11)

In economics one usually considers relative inequality measures normalized by
the mean. Among many inequality measures perhaps the most commonly ac-
cepted by economists is the Gini index, which is the relative mean difference.

G(w) = Γ (w)/μ(w) = mΓ (w) (12)

Similar, one may consider the relative mean deviation which is known as the
Schutz index

S(w) = δ(w)/μ(w) = mδ(w) (13)

Note that due to μ(w) = 1/m, the relative inequality measures are proportional
to their absolute counterparts and any comparison of the relative measures is
equivalent to comparison of the corresponding absolute measures.

The above inequality measures are closely related to the Lorenz curve [8] and
its differences from the diagonal (equity) line (7). First of all

G(w) = 2

∫ 1

0

d̄w(α)dα = 2

∫ 1

0

dw(α)dα (14)

thus

G(w) = 2

∫ 1

0

Lw(α)dα − 1 = 1 − 2

∫ 1

0

Lw(α)dα (15)

Recall that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1
the corresponding Lorenz curve Lw(ξ) may be considered as a RIM quantifier
generating weights w. Following (9), one gets

G(w) = 1 − 2orness(Lw) =
m− 1

m
(1 − 2orness(w)) (16)

enabling easy recalculation of the orness measure into the Gini index and vice
versa. Similarly, in the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥
0, one gets

G(w) = 2orness(Lw) − 1 =
m− 1

m
(2orness(w) − 1) (17)

3 Mean Absolute Deviation Minimization

We focus on the case of monotonic weights. Following (16) and (17), the Gini
index is then uniquely defined by a given orness value. Nevertheless, one may
still select various weights by minimization the MAD measure. Although related
to the Lorenz curve it is not uniquely defined by the Gini index and the or-
ness measure. Actually, the MAD minimization approach may be viewed as the
generalized entropy maximization based on the first Minkowski metric [15].
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Let us define differences

d̄i(w) = Lw(
i

m
) − i

m
and di(w) =

i

m
− Lw(

i

m
) for i = 1, . . . ,m (18)

where due to nonnegativity of weights, for all i = 1, . . . ,m− 1

d̄i(w) ≤ 1

m
+ d̄i+1(w) and di(w) ≤ 1

m
+ di−1(w) (19)

with d0(w) = d̄0(w) = 0 and dm(w) = d̄m(w) = 0. Thus

d̄m−i(w) ≤ i

m
and di(w) ≤ i

m
for i = 1, . . . ,m− 1 (20)

The Gini index represents the area defined by d̄i(w) or di(w), respectively,

G(w) =
2

m

m−1∑

i=1

d̄i(w) =
2

m

m−1∑

i=1

di(w) (21)

while the relative MAD (Schutz index) may be represented [8] as

S(w) = mδ(w) = max
i=1,...,m−1

d̄i(w) = max
i=1,...,m−1

di(w) (22)

Assume there is given some orness value 0.5 ≤ α ≤ 1 and we are looking for
monotonic weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 such that orness(w) = α and S(w)
is minimal. Following (17), (21) and (22) it leads us to the problem

min max
i=1,...,m−1

md̄i(w)

s.t.
2

m

m−1∑

i=1

d̄i(w) =
m− 1

m
(2α− 1)

(23)

with additional constraints (19). This allows us to form the following LP model

min md (24)

s.t. d̄i ≤ d for i = 1, . . . ,m− 1 (25)

d̄1 + . . . + d̄m−1 = (m− 1)(α− 0.5) (26)

0 ≤ d̄i ≤ 1

m
+ d̄i+1 for i = 1, . . . ,m− 1 (27)

with variables d̄i for i = 1, . . . ,m− 1, auxiliary variable d and constant d̄m = 0.
Having solved the above LP problem, the corresponding weights can be simply
calculated according to the following formula (with d̄0 = d̄m = 0):

wi = d̄i − d̄i−1 +
1

m
for i = 1, . . . ,m (28)
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Symmetrically, having given an orness value 0 ≤ α ≤ 0.5 and looking for mono-
tonic weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1 such that orness(w) = α and S(w) is
minimal, following (16), (21) and (22), one gets the problem

min max
i=1,...,m−1

mdi(w)

s.t.
2

m

m−1∑

i=1

di(w) =
m− 1

m
(1 − 2α)

(29)

with additional constraints (19). Thus leading to the LP problem

min md
s.t. di ≤ d for i = 1, . . . ,m− 1

d1 + . . . + dm−1 = (m− 1)(0.5 − α)
0 ≤ di ≤ 1

m + di−1 for i = 1, . . . ,m− 1

(30)

with variables di for i = 1, . . . ,m− 1, auxiliary variable d and constant d0 = 0.
The corresponding weights can be found according to the formula

wi = di−1 − di +
1

m
for i = 1, . . . ,m (31)

where d0 = dm = 0.

(a) (b)

Fig. 1. Lorenz curve for MAD minimization: (a) 0.5 ≤ α ≤ 0.5+1/m, (b) α > 0.5+1/m

LP models (24)–(27) and (30) allow for application standard optimization
techniques to solve them. However, their structure is so simple that the problem
of MAD minimization can also be solved analytically. We will show this in details
for the case of 0.5 ≤ orness(w) ≤ 1 and the corresponding model (24)–(27).

One may take advantage of the fact that an optimal solution to the minimax
problem min{maxi∈I yi :

∑
i∈I yi = b} are perfectly equal values yi = b/|I| for

all i ∈ I. Hence, when the required orness level is small enough (still not below
0.5), then the optimal solution is defined by

d̄1 = . . . = d̄m−1 = Δ
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where Δ = α−0.5 is defined by the orness equation (26) while leaving inequalities
(27) inactive. Exactly, this is a case when 0.5 ≤ α ≤ 0.5 + 1/m as illustrated in
Fig. 1(a). Note that such a solution is generated by weights:

w1 =
1

m
+ Δ, w2 = . . . = wm−1 =

1

m
, wm =

1

m
−Δ

When the required orness level is larger then some constraints (27) become
active thus setting some κ tail differences on their upper limits: d̄m−k = k

m for
k = 1, . . . , κ, as illustrated in Fig. 1(b). This leads us to the solution

d̄1 = . . . = d̄m−κ−1 = Δ, d̄m−k =
k

m
for k = 1, . . . , κ (32)

where, following the orness equation (26),

Δ =
m− 1

m− κ− 1
(α− 0.5) − κ(κ + 1)

2m(m− κ− 1)
(33)

Exactly, formulas (32)-(33) are valid when

(2m− 1 − κ)κ

2m(m− 1)
≤ α− 0.5 ≤ (2m− 1 − (κ + 1))(κ + 1)

2m(m− 1)

which means that κ can be simply computed as a function of the orness level α

κ = κ(α) = �m− 1 −
√

2m(m− 1)(1 − α) + 0.25�
Following (32)-(33) and (28), the OWA weights are then given by the formula

w1 =
1

m
+ Δ, w2 = . . . = wm−κ−1 =

1

m
, wm−κ =

κ + 1

m
−Δ

wm−k = 0 for k = 1, . . . , κ− 1

4 Conclusion

The determination of ordered weighted averaging (OWA) operator weights is a
crucial issue of applying the OWA operator for decision making. We have con-
sidered determining monotonic weights of the OWA operator by minimization
of the mean absolute deviation inequality measure. This leads us to a linear pro-
gramming model which can also be solved analytically. The analytic approach
results in simple direct formulas. The LP models allow us to find weights by the
use of efficient LP optimization techniques and they enable easy enhancement
of the preference model with additional requirements on the weights properties.
The latter is the main advantage over the standard method of entropy maximiza-
tion. Both the standard method and the proposed one do have their analytical
solutions. However, if we try to elaborate them further by adding some auxiliary
(linear) constraints on the OWA weights, then the entropy minimization model
forms a difficult nonlinear optimization task while the MAD minimization is still
easily LP-solvable.
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