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Abstract. Resource allocation problems are concerned with the alloca-
tion of limited resources among competing agents so as to achieve the
best system performances. In systems which serve many users, like in net-
working, there is a need to respect some fairness rules while looking for
the overall efficiency. The so-called Max-Min Fairness is widely used to
meet these goals. However, allocating the resource to optimize the worst
performance may cause a dramatic worsening of the overall system effi-
ciency. Therefore, several other fair allocation schemes are searched and
analyzed. In this paper we show how the scalar inequality measures can
be consistently used in bicriteria models to search for fair and efficient
allocations while taking into account importance weighting of the agents.

1 Introduction

Resource allocation problems are concerned with the allocation of limited re-
sources among competing activities [12]. In this paper, we focus on approaches
that, while allocating resources to maximize the system efficiency, they also at-
tempt to provide a fair treatment of all the competing agents (activities) [19,29].
The problems of efficient and fair resource allocation arise in various systems
which serve many users, like in telecommunication systems among others. In
networking a central issue is how to allocate bandwidth to flows efficiently and
fairly [3,6,9,15,32,31,34]. In location analysis of public services, the decisions
often concern the placement of a service center or another facility in a posi-
tion so that the users are treated fairly in an equitable way, relative to certain
criteria [25].

The generic resource allocation problem may be stated as follows. Each ac-
tivity is measured by an individual performance function that depends on the
corresponding resource level assigned to that activity. A larger function value
is considered better, like the performance measured in terms of quality level,
capacity, service amount available, etc. Hence, it may be viewed as a multiagent
optimization problem. It covers various complex resource allocation problem like
network dimensioning as well as general many to many multiagent assignment
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problems with the special case of the Santa Claus problem [2] representing fair
allocation of indivisible goods. Such problems occur in many contexts like pa-
per assignment problem [11,18], social meeting on the web or transportation
problems [24], among others.

Models with an (aggregated) objective function that maximizes the mean (or
simply the sum) of individual performances are widely used to formulate re-
source allocation problems, thus defining the so-called mean solution concept.
This solution concept is primarily concerned with the overall system efficiency.
As based on averaging, it often provides solution where some smaller services are
discriminated in terms of allocated resources. An alternative approach depends
on the so-called Max-Min solution concept, where the worst performance is max-
imized. The Max-Min approach is consistent with Rawlsian [36] theory of justice,
especially when additionally regularized with the lexicographic order. The latter
is called the Max-Min Fairness (MMF) and commonly used in networking [34].
Allocating the resources to optimize the worst performances may cause, how-
ever, a large worsening of the overall (mean) performances. Moreover, the MMF
approach does not allow us to reflect any importance weighting of agents. There-
fore, there is a need to seek a compromise between the two extreme approaches
discussed above.

Fairness is, essentially, an abstract socio-political concept that implies impar-
tiality, justice and equity [35,41], Nevertheless, fairness was frequently quantified
with the so-called inequality measures to be minimized [1,37,39]. Unfortunately,
direct minimization of typical inequality measures contradicts the maximization
of individual outcomes and it may lead to inferior decisions. The concept of
fairness has been studied in various areas beginning from political economics
problems of fair allocation of consumption bundles [8,33,35] to abstract math-
ematical formulation [40]. In order to ensure fairness in a system, all system
entities have to be equally well provided with the system’s services. This leads
to concepts of fairness expressed by the equitable efficiency [16,31]. The concept
of equitably efficient solution is a specific refinement of the Pareto-optimality
taking into account the inequality minimization according to the Pigou-Dalton
approach. In this paper the use of scalar inequality measures in bicriteria models
to search for fair and efficient allocations is analyzed. There is shown that prop-
erties of convexity and positive homogeneity together with some boundedness
condition are sufficient for a typical inequality measure to guarantee that it can
be used consistently with the equitable optimization rules.

The paper is organized as follows. In the next section we introduce the fair-
ness notion based on the equitable optimization with the preference structure
that complies with both the efficiency (Pareto-optimality) principle and with the
Pigou-Dalton principle of transfers. It is additionally extended in Section 3 to
the problems with importance weighted agents. In Section 4 the basic inequality
measures are discussed and the fair consistency concepts based on the under-
achievement criteria are introduced. Further, in Section 5, the equitable consis-
tency of the underachievement criteria is analyzed and sufficient conditions for
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the inequality measures to keep this consistency property are introduced. We
verify the properties for the basic inequality measures.

2 Equity and Fairness

The generic resource allocation problem may be stated as follows. There is a
system dealing with a set I of m services. There is given a measure of services
realization within a system. In applications we consider, the measure usually
expresses the service quality. In general, outcomes can be measured (modeled)
as service time, service costs, service delays as well as in a more subjective way.
There is also given a set Q of allocation patterns (allocation decisions). For each
service i ∈ I a function fi(x) of the allocation pattern x ∈ Q has been defined.
This function, called the individual objective function, measures the outcome
(effect) yi = fi(x) of allocation x pattern for service i. In typical formulations a
larger value of the outcome means a better effect (higher service quality or client
satisfaction). Otherwise, the outcomes can be replaced with their complements
to some large number. Therefore, without loss of generality, we can assume that
each individual outcome yi is to be maximized which allows us to view the
generic resource allocation problem as a vector maximization model:

max {f(x) : x ∈ Q} (1)

where f(x) is a vector-function that maps the decision space X = Rn into
the criterion space Y = Rm, and Q ⊂ X denotes the feasible set. We do not
assume any special form of the feasible set Q while analyzing properties of the
solution concepts. We rather allow the feasible set to be a general, possibly
discrete (nonconvex), set. Hence, the problem cover various complex resource
allocation problem like network dimensioning as well as general many to many
multiagent assignment problems with the special case of the Santa Claus problem
[2] representing fair allocation of indivisible goods. Although we allow the feasible
set to contain more complex relations than the basic assignment constraints, like
in problems of network resource allocation [34].

Model (1) only specifies that we are interested in maximization of all objec-
tive functions fi for i ∈ I = {1, 2, . . . , m}. In order to make it operational, one
needs to assume some solution concept specifying what it means to maximize
multiple objective functions. The solution concepts may be defined by proper-
ties of the corresponding preference model. The preference model is completely
characterized by the relation of weak preference, denoted hereafter with �. The
corresponding relations of strict preference � and indifference ∼= are defined then
by the following formulas:

y′ � y′′ ⇔ (y′ � y′′ and y′′ �� y′),
y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal (efficient) solu-
tion concept assumes that the preference relation � is reflexive:

y � y, (2)
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transitive:
(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:

y + εei � y for ε > 0; i = 1, . . . , m, (4)

where ei denotes the i–th unit vector in the criterion space. The last assumption
expresses that for each individual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)–(4) are called hereafter ra-
tional preference relations. The rational preference relations allow us to formalize
the Pareto-optimality (efficiency) concept with the following definitions. We say
that outcome vector y′ rationally dominates y′′ (y′ �r y′′), iff y′ � y′′ for all
rational preference relations �. We say that feasible solution x ∈ Q is a Pareto-
optimal (efficient) solution of the multiple criteria problem (1), iff y = f(x) is
rationally nondominated.

Simple solution concepts for multiple criteria problems are defined by aggre-
gation (or utility) functions g : Y → R to be maximized. Thus the multiple
criteria problem (1) is replaced with the maximization problem

max {g(f(x)) : x ∈ Q} (5)

In order to guarantee the consistency of the aggregated problem (5) with the
maximization of all individual objective functions in the original multiple criteria
problem (or Pareto-optimality of the solution), the aggregation function must
be strictly increasing with respect to every coordinate.

The simplest aggregation functions commonly used for the multiple criteria
problem (1) are defined as the mean (average) outcome

μ(y) =
1
m

m∑

i=1

yi (6)

or the worst outcome
M(y) = min

i=1,...,m
yi. (7)

The mean (6) is a strictly increasing function while the minimum (7) is only
nondecreasing. Therefore, the aggregation (5) using the sum of outcomes always
generates a Pareto-optimal solution while the maximization of the worst out-
come may need some additional refinement. The mean outcome maximization is
primarily concerned with the overall system efficiency. As based on averaging, it
often provides a solution where some services are discriminated in terms of per-
formances. On the other hand, the worst outcome maximization, ie, the so-called
Max-Min solution concept is regarded as maintaining equity. Indeed, in the case
of a simplified resource allocation problem with the knapsack constraints, the
Max-Min solution meets the perfect equity requirement. In the general case,
with possibly more complex feasible set structure, this property is not fulfilled.
Nevertheless, if the perfectly equilibrated outcome vector ȳ1 = ȳ2 = . . . = ȳm
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is nondominated, then it is the unique optimal solution of the corresponding
Max-Min optimization problem [26]. In other words, the perfectly equilibrated
outcome vector is a unique optimal solution of the Max-Min problem if one
cannot find any (possibly not equilibrated) vector with improved at least one
individual outcome without worsening any others. Unfortunately, it is not a
common case and, in general, the optimal set to the Max-Min aggregation may
contain numerous alternative solutions including dominated ones. The Max-Min
solution may be then regularized according to the Rawlsian principle of justice
[36] which leads us to the lexicographic Max-Min concepts or the so-called Max-
Min Fairness [13,20,30,4]. Although they are possible alternative refinements of
the Max-Min ordering [10].

In order to ensure fairness in a system, all system entities have to be equally
well provided with the system’s services. This leads to concepts of fairness ex-
pressed by the equitable rational preferences [16]. First of all, the fairness requires
impartiality of evaluation, thus focusing on the distribution of outcome values
while ignoring their ordering. That means, in the multiple criteria problem (1)
we are interested in a set of outcome values without taking into account which
outcome is taking a specific value. Hence, we assume that the preference model
is impartial (anonymous, symmetric). In terms of the preference relation it may
be written as the following axiom

(yπ(1), yπ(2), . . . , yπ(m)) ∼= (y1, y2, . . . , ym) for any permutation π of I (8)

which means that any permuted outcome vector is indifferent in terms of the pref-
erence relation. Further, fairness requires equitability of outcomes which causes
that the preference model should satisfy the (Pigou–Dalton) principle of trans-
fers. The principle of transfers states that a transfer of any small amount from
an outcome to any other relatively worse–off outcome results in a more pre-
ferred outcome vector. As a property of the preference relation, the principle of
transfers takes the form of the following axiom

yi′ > yi′′ ⇒ y − εei′ + εei′′ � y for 0 < ε ≤ (yi′ − yi′′)/2 (9)

The rational preference relations satisfying additionally axioms (8) and (9) are
called hereafter fair (equitable) rational preference relations . We say that out-
come vector y′ fairly (equitably) dominates y′′ (y′ �e y′′), iff y′ � y′′ for all
fair rational preference relations �. In other words, y′ fairly dominates y′′, if
there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that y1 = y′′,
ys = y′ and yj is constructed from yj−1 by application of either permutation
of coordinates, equitable transfer, or increase of a coordinate. An allocation pat-
tern x ∈ Q is called fairly (equitably) efficient or simply fair if y = f(x) is fairly
nondominated. Note that each fairly efficient solution is also Pareto-optimal, but
not vice verse.

In order to guarantee fairness of the solution concept (5), additional require-
ments on the class of aggregation (utility) functions must be introduced. In
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particular, the aggregation function must be additionally symmetric (impartial),
i.e. for any permutation π of I,

g(yπ(1), yπ(2), . . . , yπ(m)) = g(y1, y2, . . . , ym) (10)

as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (11)

for any 0 < ε ≤ (yi′−yi′′)/2. In the case of a strictly increasing function satisfying
both the requirements (10) and (11), we call the corresponding problem (5) a
fair (equitable) aggregation of problem (1). Every optimal solution to the fair
aggregation (5) of a multiple criteria problem (1) defines some fair (equitable)
solution.

Note that both the simplest aggregation functions, the sum (6) and the mini-
mum (7), are symmetric although they do not satisfy the equitability requirement
(11). To guarantee the fairness of solutions, some enforcement of concave prop-
erties is required. For any strictly concave, increasing utility function u : R → R,
the function g(y) =

∑m
i=1 u(yi) is a strictly monotonic and equitable thus defin-

ing a family of the fair aggregations. Various concave utility functions u can be
used to define such fair solution concepts. In the case of the outcomes restricted
to positive values, one may use logarithmic function thus resulting in the Pro-
portional Fairness (PF) solution concept [14]. Actually, it corresponds to the
so-called Nash criterion [23] which maximizes the product of additional utilities
compared to the status quo. For a common case of upper bounded outcomes
yi ≤ y∗ one may maximize power functions −∑m

i=1 (y∗ − yi)p for 1 < p < ∞
which corresponds to the minimization of the corresponding p-norm distances
from the common upper bound y∗ [17].

Fig. 1 presents the structure of fair dominance for two-dimensional outcome
vectors. For any outcome vector ȳ, the fair dominance relation distinguishes set
D(ȳ) of dominated outcomes (obviously worse for all fair rational preferences)
and set S(ȳ) of dominating outcomes (obviously better for all fair rational pref-
erences). However, some outcome vectors are left (in white areas) and they can
be differently classified by various specific fair rational preferences. The MMF
fairness assigns the entire interior of the inner white triangle to the set of pre-
ferred outcomes while classifying the interior of the external open triangles as
worse outcomes. Isolines of various utility functions u(y) = u(ȳ) may split the
white areas in different ways. For instance, there is no fair dominance between
vectors (0.01, 1) and (0.02, 0.02) and the MMF considers the latter as better
while the proportional fairness points out the former. On the other hand, vector
(0.02, 0.99) fairly dominates (0.01, 1) and all fairness models (including MMF
and PF) prefers the former. One may notice that the set D(ȳ) of directions
leading to outcome vectors being dominated by a given ȳ is, in general, not a
cone and it is not convex. Although, when we consider the set S(ȳ) of directions
leading to outcome vectors dominating given ȳ we get a convex set.
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Fig. 1. Structure of the fair dominance: D(ȳ) – the set fairly dominated by ȳ, S(ȳ) –
the set of outcomes fairly dominating ȳ

3 Fairness with Importance Weighted Agents

Frequently, one may be interested in putting into allocation models some addi-
tional agent weights vi > 0. Typically the model of distribution weights is intro-
duced to represent the agent importance thus defining distribution of outcomes
yi = fi(x) according to measures defined by the weights vi for i = 1, . . . , m. Note
that such distribution weights allow us for a clear interpretation of weights as
the agent repetitions [7]. Splitting an agent into two agents does not cause any
change of the final distribution of outcomes. For theoretical considerations one
may assume that the problem is transformed (disaggregated) to the unweighted
one (that means all the agent weights are equal to 1). Note that such a disag-
gregation is possible for integer as well as rational agent weights, but it usually
dramatically increases the problem size. Therefore, we are interested in solution
concepts which can be applied directly to the weighted problem.

As mentioned, for some theoretical considerations it might be convenient to
disaggregate the weighted problems into the unweighted one. Therefore, to sim-
plify the analysis we will assume integer weights vi, although while discussing
solution concepts we will use the normalized agent weights v̄i = vi/

∑m
i=1 vi for

i = 1, . . . , m, rather than the original quantities vi. Note that, in the case of un-
weighted problem (all vi = 1), all the normalized weights are given as v̄i = 1/m.
Furthermore, to avoid possible misunderstandings between the weighted out-
comes and the corresponding unweighted form of outcomes we will use the
following notation. Index set I will always denote unweighted agents (with pos-
sible repetitions if originally weighted) and vector y = (yi)i∈I = (y1, y2, . . . , ym)
will denote the unweighted outcomes. While directly dealing with the weighted
problem (without its disaggregation to the unweighted one) we will use Iv to
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denote the set of agents and the corresponding outcomes will be represented by
vector y = (yvi)i∈Iv . We illustrate this with the following small example.

Let us consider a weighted resource allocation problem with two agents A1
and A2 having assigned demand weights v1 = 1 and v2 = 9, respectively. Their
outcomes relate to two potential allocation patterns P1 and P2 are given as
follows:

A1 A2
P1 10 0
P2 0 0

Hence, Iv = {1, 2} and the potential resource allocations generate two outcome
vectors y′ = (101, 09) and y′′ = (01, 09), respectively. The demand weights are
understood as agents repetitions. Thus, the problem is understood as equivalent
to the unweighted problem with 10 agents (I = {1, 2, . . . , 10}) where the first
one corresponds to A1 and the further nine unweighted agents correspond to
single agent A2. In this disaggregated form, the outcome vectors generated by
allocation patterns P1 and P2 are given as y′ = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0) and
y′′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), respectively. Note that outcome vector y′′ with all
the coordinates 0 is obviously worse than unequal vector y′ with one distance
reduced to 0. Actually, y′ Pareto dominates y′′.

The classical solution concepts of mean and Max-Min are well defined for ag-
gregated models using importance weights vi > 0. Exactly, the Max-Min solution
concept is defined by maximization of the minimum outcome

M(y) = max
i∈I

yi = max
i∈Iv

yvi , (12)

thus not affected by the importance weights at all. The same applies to its
lexicographic regularization expressed as the MMF concept.

The solution concept of the mean outcome (6) can easily accommodate the
importance weights as

μ(y) =
1
m

∑

i∈I

yi =
∑

i∈Iv

v̄iyvi . (13)

Similarly, for any utility function u : R → R we get

μ(u(y)) =
1
m

∑

i∈I

u(yi) =
∑

i∈Iv

v̄iu(yvi). (14)

The fair dominance for general weighted problems can be derived by their
disaggregation to the unweighted ones. It can be mathematically formalized as
follows. First, we introduce the right-continuous cumulative distribution function
(cdf):

Fy(d) =
∑

i∈Iv

v̄iδi(d), δi(d) =
{

1 if yvi ≤ d
0 otherwise (15)
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which for any real (outcome) value d provides the measure of outcomes smaller or
equal to d. Next, we introduce the quantile function F

(−1)
y as the left-continuous

inverse of the cumulative distribution function Fy:

F (−1)
y (β) = inf {η : Fy(η) ≥ β} for 0 < β ≤ 1.

By integrating F
(−1)
y one gets F

(−2)
y (0) = 0 and

F (−2)
y (β) =

∫ β

0

F (−1)
y (α)dα ∀ 0 < β ≤ 1, (16)

where F
(−2)
y (1) = μ(y). The graph of function F

(−2)
y (β) (with respect to β) take

the form of concave curves. It is called Absolute Lorenz Curve (ALC) [28], due
to its relation to the classical Lorenz curve used in income economics as a cumu-
lative population versus income curve to compare equity of income distributions.
Indeed, the Lorenz curve may be viewed as function LC(ξ) = 1

μ(y)

∫ ξ

0 F
(−1)
y (α)dα

thus equivalent to function F
(−2)
y (β) normalized by the distribution average.

Therefore, the classical Lorenz model is focused on equity while ignoring the av-
erage result and any perfectly equal distribution of income has the diagonal line
as the Lorenz curve (the same independently from the income value). Within the
ALC model both equity and values of outcomes are represented. The ALC de-
fines the relation (partial order) equivalent to the equitable dominance. Exactly,
outcome vector y′ equitably dominates y′′, if and only if F

(−2)
y′ (β) ≥ F

(−2)
y′′ (β)

for all β ∈ (0, 1] where at least one strict inequality holds. Note that for the
expanded form to the unweighted outcomes, the ALC is completely defined by
the values of the (cumulated) ordered outcomes. Hence, θ̄i(y) = mF

(−2)
y (i/m)

for i = 1, . . . , m, and pointwise comparison of cumulated ordered outcomes is
enough to justify equitable dominance.

Finally, the impartiality of the allocation process (8) is considered in terms
that two allocation schemes leading to the same distribution (cdf) of outcomes
are indifferent

Fy′ = Fy′′ ⇒ y′ ∼= y′′. (17)

The principle of transfers (9) is considered for single units of demand. Although
it can can be applied directly to the outcomes of importance weighted agents in
the following form [27]:

yvi′ > yvi′′ ⇒ y − εv̄i′′evi′ + εv̄i′evi′′ � y for 0 < ε ≤ yi′ − yi′′

v̄i′ + v̄i′′
. (18)

Alternatively, the fair dominance can be expressed on the cumulative distribu-
tion functions. Having introduced the right-continuous cumulative distribution
function one may further integrate the cdf (15) to get the second order cumula-
tive distribution function F

(2)
y (η) =

∫ η

−∞ Fy(ξ)dξ for η ∈ R, representing average
shortage to any real target η. By the theory of convex conjugate functions, the
pointwise comparison of the second order cumulative distribution functions pro-
vides an alternative characterization of the equitable dominance relation [28].
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Exactly, y′ fairly dominates y′′, if and only if F
(2)
y′ (η) ≤ F

(2)
y′′ (η) for all η where

at least one strict inequality holds.
Furthermore, the classical results of majorization theory [21] allow us to refer

the equitable dominance to the mean utility. For any convex, increasing utility
function u : R → R, if outcome vector y′ fairly dominates y′′, then

m∑

i=1

u(y′
i)

m
=

∑

i∈Iv

v̄iu(y′
vi

) ≥
m∑

i=1

u(y′′
i )

m
=

∑

i∈Iv

v̄iu(y′′
vi

).

Finally, there are three alternative analytical characterizations of the relation
of fair dominance as specified in the following theorem. Note that according
to condition (iii), the fair dominance is actually the so-called increasing convex
order which is more commonly known as the second degree stochastic dominance
(SSD) [28].

Theorem 1. For any outcome vectors y′,y′′ ∈ A each of the three following
conditions is equivalent to the (weak) equitable dominance y′ �e y′′:

(i) F
(−2)
y′ (β) ≥ F

(−2)
y′′ (β) for all β ∈ (0, 1];

(ii) F
(2)
y′ (η) ≤ F

(2)
y′′ (η) for all real η;

(iii)
∑

i∈Iv
v̄iu(y′

i) ≥
∑

i∈Iv
v̄iu(y′′

i ) for any concave, increasing function u.

Following Theorem 1, the importance weighted fair preference models are math-
ematically equivalent to the risk averse preference models for the decisions under
risk, where the scenarios correspond to the agents and the importance weights
define their probabilities while the agent outcomes represent realizations of a
return under various scenarios.

4 Inequality Measures and Fair Consistency

Inequality measures were primarily studied in economics [39] while recently they
become very popular tools in Operations Research. Typical inequality measures
are some deviation type dispersion characteristics. They are translation invariant
in the sense that 
(y + ae) = 
(y) for any outcome vector y and real number a
(where e vector of units (1, . . . , 1)), thus being not affected by any shift of the
outcome scale.

Moreover, the inequality measures are also inequality relevant which means
that they are equal to 0 in the case of perfectly equal outcomes while taking
positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the maximum (absolute) difference

d(y) = max
i,j∈I

|yi − yj | = max
i,j∈Iv

|yvi − yvj | (19)

or the mean absolute difference also called the Gini’s mean difference

Γ (y) =
1

2m2

∑

i∈I

∑

j∈I

|yi − yj| =
1
2

∑

i∈Iv

∑

j∈Iv

|yvi − yvj |v̄iv̄j . (20)
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In most application frameworks better intuitive appeal may have inequality mea-
sures related to deviations from the mean outcome like the maximum (absolute)
deviation

R(y) = max
i∈I

|yi − μ(y)| = max
i∈Iv

|yvi − μ(y)| (21)

or the mean (absolute) deviation

δ(y) =
1
m

∑

i∈I

|yi − μ(y)| =
∑

i∈Iv

|yvi − μ(y)|v̄i. (22)

Note that the standard deviation σ (or the variance σ2) represents both the
deviations and the spread measurement as

σ(y) =

√
1
m

∑

i∈I

(yi − μ(y))2 =
√

1
2m2

∑

i∈I

∑

j∈I

(yi − yj)2

=
√∑

i∈Iv

(yvi − μ(y))2v̄i =
√

1
2

∑

i∈Iv

∑

j∈Iv

(yvi − yvj )2v̄iv̄j .

(23)

Deviational measures may be focused on the downside semideviations as re-
lated to worsening of outcome while ignoring downside semideviations related
to improvement of outcome. One may define the maximum (downside) semide-
viation

Δ(y) = max
i∈I

(μ(y) − yi) = max
i∈Iv

(μ(y) − yvi), (24)

and the mean (downside) semideviation

δ̄(y) =
1
m

∑

i∈I

(μ(y) − yi)+ =
∑

i∈Iv

(μ(y) − yvi)+v̄i, (25)

where (.)+ denotes the nonnegative part of a number. Similarly, the standard
(downside) semideviation is given as

σ̄(y) =

√
1
m

∑

i∈I

(μ(y) − yi)2+ =
√∑

i∈Iv

(μ(y) − yvi)2+v̄i. (26)

Due to the mean definition, the mean absolute semideviation is always equal to
half of the mean absolute deviation (δ̄(y) = 1

2δ(y)) but similar symmetry prop-
erty in general does not apply to the maximum semideviation or the standard
semideviation.

One can easily notice that direct minimization of typical inequality measures
may contradict the optimization of individual outcomes resulting in equal but
very low outcomes. As some resolution one may consider a bicriteria mean-equity
model:

max {(μ(f(x)),−
(f(x))) : x ∈ Q} (27)

which takes into account both the efficiency with optimization of the mean out-
come μ(y) and the equity with minimization of an inequality measure 
(y).
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For typical inequality measures bicriteria model (27) is computationally very
attractive since both the criteria are concave and LP implementable for many
measures. Unfortunately, for any dispersion type inequality measures the bicri-
teria mean-equity model is not consistent with the outcomes maximization, and
therefore is not consistent with the fair dominance. When considering a simple
discrete problem with two allocation patterns P1 and P2 generating outcome
vectors y′ = (0, 0) and y′′ = (2, 8), respectively, for any dispersion type inequal-
ity measure one gets 
(y′′) > 0 = 
(y′) while μ(y′′) = 5 > 0 = μ(y′). Hence, y′′

is not bicriteria dominated by y′ and vice versa. Thus for any dispersion type
inequality measure 
, allocation P1 with obviously worse outcome vector than
that for allocation P2 is a Pareto-optimal solution in the corresponding bicriteria
mean-equity model (27).

Note that the lack of consistency of the mean-equity model (27) with the
outcomes maximization applies also to the case of the maximum semideviation
Δ(y) (24) used as an inequality measure whereas subtracting this measure from
the mean μ(y) − Δ(y) = M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, although a direct use of the
maximum semideviation in the mean-equity model may contradict the outcome
maximization, the measure can be used complementary to the mean leading us
to the worst outcome criterion which does not contradict the outcome maximiza-
tion. This construction can be generalized for various (dispersion type) inequality
measures. For any inequality measure 
 we introduce the corresponding under-
achievement function defined as the difference between the mean outcome and
the inequality measure itself, i.e.

M�(y) = μ(y) − 
(y). (28)

In the case of maximum semideviation the corresponding underachievement
MΔ(y) function represents the worst outcome M(y). Similarly, in the case of
mean semideviation one gets the underachievement function

Mδ̄(y) = μ(y) − δ̄(y) =
1
m

∑

i∈I

min{yi, μ(y)} =
∑

i∈Iv

v̄i min{yvi, μ(y)}

representing the mean underachievement. Further, due to |yi − yj| = yi + yj −
2 min{yi, yj}, one gets an alternative formula for the mean absolute difference

Γ (y) = μ(y)− 1
m2

∑

i∈I

∑

j∈I

min{yi, yj} = μ(y)−
∑

i∈Iv

∑

j∈Iv

v̄iv̄j min{yvi , yvj} (29)

and the corresponding underachievement function

MΓ (y) = μ(y) − Γ (y) =
1

m2

∑

i∈I

∑

j∈I

min{yi, yj} =
∑

i∈Iv

∑

j∈Iv

v̄iv̄j min{yvi , yvj}

representing the mean pairwise worse outcome.
Note that one could consider a scaled 
α(y) = α
(y) as a different inequality

measure. Therefore, in order to avoid creation of such redundant new inequality
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measures we allow the measures to be scaled with any positive factor α > 0.
For any inequality measure 
 we introduce the corresponding underachievement
function defined as the difference of the mean outcome and the (scaled) inequality
measure itself, i.e.

Mα�(y) = μ(y) − α
(y). (30)

This allows us to replace the original mean-equity bicriteria optimization (27)
with the following bicriteria problem:

max{(μ(f(x)), μ(f(x)) − α
(f(x))) : x ∈ Q} (31)

where the second objective represents the corresponding underachievement mea-
sure Mα�(y) (30). Note that for any inequality measure 
(y) ≥ 0 one gets
Mα�(y) ≤ μ(y) thus really expressing underachievements (comparing to mean)
from the perspective of outcomes being maximized.

We will say that an inequality measure 
 is fairly α-consistent if

y′ �e y′′ ⇒ μ(y′) − α
(y′) ≥ μ(y′′) − α
(y′′) (32)

The relation of fair α-consistency will be called strong if, in addition to (32), the
following holds

y′ �e y′′ ⇒ μ(y′) − α
(y′) > μ(y′′) − α
(y′′). (33)

Theorem 2. If the inequality measure 
(y) is fairly α-consistent (32), then ex-
cept for outcomes with identical values of μ(y) and 
(y), every efficient solution
of the bicriteria problem (31) is a fairly efficient allocation pattern. In the case
of strong consistency (33), every allocation pattern x ∈ Q efficient to (31) is,
unconditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (31). Suppose that x0 is not fairly
efficient. This means, there exists x ∈ Q such that y = f(x) �e y0 = f(x0).
Then, it follows μ(y) ≥ μ(y0), and simultaneously μ(y) − α
(y) ≥ μ(y0) −
α
(y0), by virtue of the fair α-consistency (32). Since x0 is efficient to (31) no
inequality can be strict, which implies μ(y) = μ(y0) and and 
(y) = 
(y0).

In the case of the strong fair α-consistency (33), the supposition y = f(x) �e

y0 = f(x0) implies μ(y) ≥ μ(y0) and μ(y) − α
(y) > μ(y0) − α
(y0) which
contradicts the efficiency of x0 with respect to (31). Hence, the allocation pattern
x0 is fairly efficient.

5 Fair Consistency Conditions

Typical dispersion type inequality measures are directly defined for the weighted
distributions of outcomes without any need of disaggregation. Actually, they
depend only distribution of outcomes. Hence, they are impartial in the sense
that

Fy′ = Fy′′ ⇒ 
(y′) ∼= 
(y′′). (34)



Bicriteria Models for Fair and Efficient Resource Allocation 153

as well as clustering invariant in the sense that any split of equal outcomes
does not affect the measure. Moreover, typical inequality measures are convex,
i.e. 
(λy′ + (1 − λ)y′′) ≤ λ
(y′) + (1 − λ)
(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1.
Certainly, the underachievement function Mα�(y) must be also monotonic for the
fair consistency which enforces more restrictions on the inequality measures. We
will show further that convexity together with positive homogeneity and some
boundedness of an inequality measure is sufficient to guarantee monotonicity of
the corresponding underachievement measure and thereby to guarantee the fair
α-consistency of inequality measure itself.

We say that (dispersion type) inequality measure 
(y) ≥ 0 is Δ-bounded if it
is upper bounded by the maximum downside deviation, i.e.,


(y) ≤ Δ(y) ∀y. (35)

Moreover, we say that 
(y) ≥ 0 is strictly Δ-bounded if inequality (35) is a strict
bound, except from the case of perfectly equal outcomes, i.e., 
(y) < Δ(y) for
any y such that Δ(y) > 0.

Theorem 3. Let 
(y) ≥ 0 be a convex, positively homogeneous, clustering in-
variant and translation invariant (dispersion type) inequality measure. If α
(y)
is Δ-bounded, then 
(y) is fairly α-consistent in the sense of (32).

Proof. The relation of fair dominance y′ �e y′′ denotes that there exists a finite
sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ + εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π

such that y′
π(i) ≥ yt

i for all i ∈ I. Note that the underachievement function
Mα�(y), similar as 
(y) depends only on the distribution of outcomes. Further,
if y′ ≥ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≥ 0. Hence, due to concavity
and positive homogeneity, Mα�(y′) ≥ Mα�(y′′) + Mα�(y′ − y′′). Moreover, due
to the bound (35), Mα�(y′−y′′) ≥ μ(y′−y′′)−Δ(y′−y′′) ≥ μ(y′−y′′)−μ(y′−
y′′) = 0. Thus, Mα�(y) satisfies also the requirement of monotonicity. Hence,
Mα�(y′) ≥ Mα�(yt). Further, let us notice that yk = λȳk−1 +(1−λ)yk−1 where
ȳk−1 = yk−1 − (yi′ − yi′′)ei′ + (yi′ − yi′′)ei′′ and λ = ε/(yi′ − yi′′). Vector ȳk−1

has the same distribution of coefficients as yk−1 (actually it represents results of
swapping yi′ and yi′′). Hence, due to concavity of Mα�(y), one gets Mα�(yk) ≥
λMα�(ȳk−1) + (1 − λ)Mα�(yk−1) = Mα�(yk−1). Thus, Mα�(y′) ≥ Mα�(y′′)
which justifies the fair α-consistency of 
(y).

For strong fair α-consistency some strict monotonicity and concavity proper-
ties of the underachievement function are needed. Obviously, there does not ex-
ist any inequality measure which is positively homogeneous and simultaneously
strictly convex. However, one may notice from the proof of Theorem 3 that only
convexity properties on equally distributed outcome vectors are important for
monotonous underachievement functions.

We say that inequality measure 
(y) ≥ 0 is strictly convex on equally dis-
tributed outcome vectors, if


(λy′ + (1 − λ)y′′) < λ
(y′) + (1 − λ)
(y′′)
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for 0 < λ < 1 and any two vectors y′ �= y′′ representing the same outcomes distri-
bution as some y, i.e., y′ = (yπ′(1), . . . , yπ′(m)) π′ and y′′ = (yπ′′(1), . . . , yπ′′(m))
for some permutations π′ and π′′, respectively.

Theorem 4. Let 
(y) ≥ 0 be a convex, positively homogeneous, clustering in-
variant and translation invariant (dispersion type) inequality measure. If 
(y)
is also strictly convex on equally distributed outcomes and α
(y) is strictly Δ-
bounded, then the measure 
(y) is fairly strongly α-consistent in the sense of
(33).

Proof. Due to the clustering invariance we may consider only the unweighted
case. The relation of weak fair dominance y′ �e y′′ denotes that there exists a
finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1−εkei′ +εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π such

that y′
π(i) ≥ yt

i for all i ∈ I. The strict fair dominance y′ �e y′′ means that
y′

π(i) > yt
i for some i ∈ I or at least one εk is strictly positive. Note that the

underachievement function Mα�(y) is strictly monotonous and strictly convex on
equally distributed outcome vectors. Hence, Mα�(y′) > Mα�(y′′) which justifies
the fair strong α-consistency of the measure 
(y).

The specific case of fair 1-consistency is also called the mean-complementary fair
consistency. Note that the fair ᾱ-consistency of measure 
(y) actually guarantees
the mean-complementary fair consistency of measure α
(y) for all 0 < α ≤ ᾱ,
and the same remain valid for the strong consistency properties. It follows from
a possible expression of μ(y)−α
(y) as the convex combination of μ(y)− ᾱ
(y)
and μ(y). Hence, for any y′ �e y′′, due to μ(y′) ≥ μ(y′′) one gets μ(y′) −
α
(y′) ≥ μ(y′′) − α
(y′′) in the case of the fair ᾱ-consistency of measure 
(y)
(or respective strict inequality in the case of strong consistency). Therefore, while
analyzing specific inequality measures we seek the largest values α guaranteeing
the corresponding fair consistency.

As mentioned, typical inequality measures are convex and many of them
are positively homogeneous. Moreover, the measures such as the mean abso-
lute (downside) semideviation δ̄(y) (25), the standard downside semideviation
σ̄(y) (26), and the mean absolute difference Γ (y) (20) are Δ-bounded. Indeed,
one may easily notice that μ(y) − yi ≤ Δ(y) and therefore

δ̄(y) ≤
∑

i∈Iv

Δ(y)v̄i = Δ(y)

σ̄(y) ≤
√∑

i∈Iv

Δ(y)2v̄i = Δ(y)

Γ (y) =
∑

i∈Iv

∑

j∈Iv

(μ(y) − min{yi, yj})v̄iv̄j ≤
∑

i∈Iv

∑

j∈Iv

Δ(y)v̄iv̄j = Δ(y)

where the last formula is due to (29). Actually, all those inequality measures are
strictly Δ-bounded since for any unequal outcome vector at least one outcome
must be below the mean thus leading to strict inequalities in the above bounds.



Bicriteria Models for Fair and Efficient Resource Allocation 155

Obviously, Δ-bounded (but not strictly) is also the maximum absolute downside
deviation Δ(y) itself. This allows us to justify the maximum downside deviation
Δ(y) (24), the mean absolute (downside) semideviation δ̄(y) (25), the standard
downside semideviation σ̄(y) (26) and the mean absolute difference Γ (y) (20)
as fairly 1-consistent (mean-complementary fairly consistent) in the sense of
(32). Recall that the mean absolute semideviation is twice the mean absolute
(downside) semideviation which means that αδ(y) is Δ-bounded for any 0 <
α ≤ 0.5.

We emphasize that, despite the standard semideviation is a fairly 1-consistent
inequality measure, the consistency is not valid for variance, semivariance and
even for the standard deviation. These measures, in general, do not satisfy the
all assumptions of Theorem 3. Certainly, we have enumerated only the simplest
inequality measures studied in the resource allocation context which satisfy the
assumptions of Theorem 3 and thereby they are fairly 1-consistent. Theorem 3
allows one to show this property for many other measures. In particular, one
may easily find out that any convex combination of fairly α-consistent inequal-
ity measures remains also fairly α-consistent. On the other hand, among typical
inequality measures the mean absolute difference seems to be the only one meet-
ing the stronger assumptions of Theorem 4 and thereby maintaining the strong
consistency.

Table 1. Fair consistency results for the basic inequality measures

Measure α–consistency

Mean absolute semideviation δ̄(y) (25) 1
Mean absolute deviation δ(y) (22) 0.5
Maximum semideviation Δ(y) (24) 1
Mean absolute difference Γ (y) (20) 1 strong
Standard semideviation σ̄(y) (26) 1

The fair consistency results for basic dispersion type inequality measures con-
sidered in resource allocation problems are summarized in Table 1 where α values
for unweighted as well as weighted problems are given and the strong consistency
is indicated. Table 1 points out how the inequality measures can be used in re-
source allocation models to guarantee their harmony both with outcome maxi-
mization (Pareto-optimality) and with inequalities minimization (Pigou-Dalton
equity theory). Exactly, for each inequality measure applied with the correspond-
ing value α from Table 1 (or smaller positive value), every efficient solution of
the bicriteria problem (31), ie. max{(μ(f(x)), μ(f(x)) − α
(f(x))) : x ∈ Q}, is
a fairly efficient allocation pattern, except for outcomes with identical values of
μ(y) and 
(y). In the case of strong consistency (as for mean absolute difference),
every solution x ∈ Q efficient to (31) is, unconditionally, fairly efficient.

As mentioned, the mean absolute semideviation is twice the mean absolute
semideviation which means that αδ(y) is Δ-bounded for any 0 < α ≤ 0.5. The
symmetry of mean absolute semideviations
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Table 2. Marginal fair consistency results for symmetric inequality measures

Measure α–consistency

Maximum absolute deviation R(y) (21)
min
i∈Iv

v̄i

(1 − min
i∈Iv

v̄i)

1

m − 1

Maximum absolute difference d(y) (19) min
i∈Iv

v̄i
1

m

Standard deviation σ(y) (23)
min
i∈Iv

v̄i

1 − min
i∈Iv

v̄i

1√
m − 1

strong

δ̄(y) =
∑

i∈Iv

(yvi − μ(y))+v̄i =
∑

i∈Iv

(μ(y) − yvi)+v̄i

can be also used to derive some marginal Δ-boundedness relations for other
inequality measures. In particular, one may find out that any downside semide-
viation from the mean cannot be larger than κ = (1 − min

i∈Iv

v̄i)/ min
i∈Iv

v̄i downside

semideviations, where κ = m−1 for the case of m unweighted agents. Hence, the
maximum absolute deviation satisfies the inequality min

i∈Iv

v̄i/(1 − min
i∈Iv

v̄i)R(y) ≤
Δ(y), while the maximum absolute difference fulfills min

i∈Iv

v̄id(y) ≤ Δ(y). In the

case of unweighted agents these bounds take the forms 1
m−1R(y) ≤ Δ(y) and

1
md(y) ≤ Δ(y), respectively. Similarly, for the standard deviation one gets

√√√√√
min
i∈Iv

v̄i

1 − min
i∈Iv

v̄i
σ(y) ≤ Δ(y) or

1√
m − 1

σ(y) ≤ Δ(y)

for weighted or unweighted problems, respectively. Hence, ασ(y) is strictly Δ-

bounded for any

√
mini∈Iv v̄i

1 − mini∈Iv v̄i
, since for any unequal outcome vector at

least one outcome must be below the mean thus leading to strict inequalities
in the above bounds. These allow us to justify the maximum absolute devia-
tion with 0 < α ≤ min

i∈Iv

v̄i/(1 − min
i∈Iv

v̄i), the maximum absolute difference with

0 < α ≤ min
i∈Iv

v̄i and the standard deviation with 0 < α ≤ mini∈Iv v̄i

1−mini∈Iv v̄i
as fairly α-

consistent within the specified intervals of α. Moreover, the α-consistency of the
standard deviation is strong. These marginal consistency results are summarized
in Table 2 for weighted and unweighted agents, respectively.
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6 Conclusions

The problems of efficient and fair resource allocation arise in various systems
which serve many users. Fairness is, essentially, an abstract socio-political con-
cept that implies impartiality, justice and equity. Nevertheless, in operations
research it was quantified with various solution concepts. The equitable opti-
mization with the preference structure that complies with both the efficiency
(Pareto-optimality) and with the Pigou-Dalton principle of transfers may be
used to formalize the fair solution concepts. Multiple criteria models equivalent
to equitable optimization allows to generate a variety of fair and efficient resource
allocation patterns [31].

In this paper we have analyzed how scalar inequality measures can be used to
guarantee the fair consistency. It turns out that several inequality measures can
be combined with the mean itself into the optimization criteria generalizing the
concept of the worst outcome and generating fairly consistent underachievement
measures. We have shown that properties of convexity and positive homogene-
ity together with being bounded by the maximum downside semideviation are
sufficient for a typical inequality measure to guarantee the corresponding fair
consistency. It allows us to identify various inequality measures which can be
effectively used to incorporate fairness factors into various resource allocation
problems while preserving the consistency with outcomes maximization. Among
others the mean semideviation turns out to be such a consistent inequality mea-
sure while the mean absolute difference is strongly consistent. In multiagent
allocation problems another way of defining a fair allocation as a bicriteria de-
cision problem would be to take as second criterion a measure of envy-freeness
[5]. This could lead to another class of significant questions on consistency for
further research.

The considered fairness model is primarily well suited for the centralized re-
source allocation problems, like the bandwidth allocation problem [3,9,34]. Nev-
ertheless, the classical unweighted fairness models are used as the basis for some
distributed systems managements (c.f., [38]). The analyzed bicriteria fairness
models may be considered as introduction of a compensation term into the util-
itarian model. Hence, they may help to develop fair distributed mechanisms. It
seems to be a promising direction for further research on possible implementa-
tions for specific environments.

Our analysis is related to the properties of solutions to resource allocation
models. It has been shown how inequality measures can be included into the mod-
els avoiding contradiction to the maximization of outcomes. We do not analyze
algorithmic issues for the specific resource allocation problems. Generally, the
requirement of the measures convexity necessary for the fair consistency, guar-
antees that the corresponding optimization criteria belong to the class of con-
vex optimization, not complicating the original resource allocation model with
any additional discrete structure. Most of the inequality measures, we analyzed,
can be implemented with auxiliary linear programming constraints thus offering
reasonable optimization models for continuous as well as discrete problems [18].
Actually, among the measures of Table 1 only the standard semideviation leads
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to nonlinear optimization while the maximum semideviation, the mean absolute
semideviation as well as the mean absolute difference are LP implementable.
Nevertheless, further research on efficient computational algorithms for solving
the specific models is necessary.
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