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Abstract. The problem of aggregating multiple numerical criteria to
form overall objective functions is of considerable importance in many
disciplines. The ordered weighted averaging (OWA) aggregation, intro-
duced by Yager, uses the weights assigned to the ordered values rather
than to the specific criteria. This allows one to model various aggregation
preferences, preserving simultaneously the impartiality (neutrality) with
respect to the individual criteria. However, importance weighted averag-
ing is a central task in multicriteria decision problems of many kinds. It
can be achieved with the Weighted OWA (WOWA) aggregation though
the importance weights make the WOWA concept much more compli-
cated than the original OWA. We show that the WOWA aggregation
with monotonic preferential weights can be reformulated in a way al-
lowing to introduce linear programming optimization models, similar to
the optimization models we developed earlier for the OWA aggregation.
Computational efficiency of the proposed models is demonstrated.

1 Introduction

Consider a decision problem defined as an optimization problem with m objec-
tive functions fi(x). They can be either maximized or minimized. When all the
objective functions are maximized the problem can be written as follows:

max { (f1(x), f2(x), . . . , fm(x)) : x ∈ F } (1)

where x denotes a vector of decision variables to be selected within the feasible set
F ⊂ Rq, of constraints under consideration and f(x) = (f1(x), f2(x), . . . , fm(x))
is a vector function that maps the feasible set F into the criterion space Rm.
Model (1) only specifies that we are interested in maximization of all objective
functions fi for i = 1, 2, . . . , m. In order to make the multiple criteria model
operational for the decision support process, one needs to assume some solution
concept well adjusted to the decision maker’s preferences. The solution concepts
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are defined by aggregation functions a : Rm → R. Thus the multiple criteria
problem (1) is replaced with the (scalar) maximization problem

max {a(f(x)) : x ∈ F} (2)

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . , m) are allocated to several criteria

Ap(y) =
m∑

i=1

yipi (3)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1). Due to
positive weights, every optimal solution to the weighted mean aggregation (i.e.
problem (2) with the aggregation function (3)) is an efficient solution of the orig-
inal multiple criteria problem. However, the weighted mean allowing to define
the importance of criteria does not allow to model the decision maker’s prefer-
ences regarding distribution of outcomes. The latter is crucial when aggregating
(normalized) uniform achievement criteria like those used in the fuzzy optimiza-
tion methodologies [19] as well as in the goal programming and the reference
point approaches to the multiple criteria decision support [8]. In the stochastic
problems uniform objectives may represent various possible values of the same
(uncertain) outcome under several scenarios [9].

The preference weights can be effectively introduced with the so-called Or-
dered Weighted Averaging (OWA) aggregation developed by Yager [15]. In the
OWA aggregation the weights are assigned to the ordered values (i.e. to the
smallest value, the second smallest and so on) rather than to the specific crite-
ria. Since its introduction, the OWA aggregation has been successfully applied
to many fields of decision making [19,20,2]. When applying the OWA aggre-
gation to multicriteria optimization problem (1) the weighting of the ordered
outcome values causes that the OWA optimization problem is nonlinear even
for linear programming (LP) formulation of the original constraints and crite-
ria. Yager [16] has shown that the nature of the nonlinearity introduced by the
ordering operations allows one to convert the OWA optimization into a mixed
integer programming problem. We have shown [11] that the OWA optimization
with monotonic weights can be formed as a standard linear program of higher
dimension.

The OWA operator allows to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one. On the
other hand, the OWA does not allow to allocate any importance weights to spe-
cific criteria. Actually, the weighted mean (3) cannot be expressed in terms of
the OWA aggregations.

Importance weighted averaging is a central task in multicriteria decision prob-
lems of many kinds, such as selection, classification, object recognition, and in-
formation retrieval. Therefore, several attempts have been made to incorporate
importance weighting into the OWA operator [18,5]. Finally, Torra [12] has intro-
duced the Weighted OWA (WOWA) aggregation as a particular case of Choquet
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integral using a distorted probability as the measure. The WOWA averaging is
defined by two weighting vectors: the preferential weights w and the impor-
tance weights p. It covers both the weighted means (defined with p) and the
OWA averages (defined with w) as special cases. Actually, the WOWA average
is reduced to the weighted mean in the case of equal all the preference weights
and it becomes the standard OWA average in the case of equal all the impor-
tance weights. Since its introduction, the WOWA operator has been successfully
applied to many fields of decision making [14] including metadata aggregation
problems [1,7].

In this paper we analyze solution procedures for optimization problems with
the WOWA objective functions. We show that the LP formulation of the OWA
optimization with monotonic preferential weights [11] can easily be extended to
cover optimization of the WOWA objective with arbitrary importance weights.
A special attention will be paid to multiple criteria problems (1) with linear
objective functions fi(x) = cix and polyhedral feasible sets:

y = f(x) = Cx and F = {x ∈ Rq : Ax = b, x >= 0} (4)

where C is an m × q matrix (consisting of rows ci), A is a given r × q matrix
and b = (b1, . . . , br)T is a given RHS vector. For such problems more efficient
computational models may be introduced by taking advantages of the LP duality.

The paper is organized as follows. In the next section we introduce formally
the WOWA operator and derive some alternative computational formula based
on the Lorenz curves. We also analyze the orness/andness properties of the
WOWA operator with monotonic preferential weights. In Section 3 we introduce
the LP formulations for minimization of the WOWA aggregation with decreasing
preferential weights and maximization of the WOWA aggregation with increasing
weights. Finally, in Section 4 we demonstrate computational efficiency of the
introduced models.

2 The Importance Weighted OWA Aggregation

2.1 The WOWA Operator

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . , m and

∑m
i=1 wi = 1. The corresponding OWA aggregation

of outcomes y = (y1, . . . , ym) can be mathematically formalized as follows
[15]. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . , m. Further, we
apply the weighted sum aggregation to ordered achievement vectors Θ(y), i.e.
the OWA aggregation has the following form:

Aw(y) =
m∑

i=1

wiθi(y) (5)
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The OWA aggregation (5) allows to model various aggregation functions from the
maximum (w1 = 1, wi = 0 for i = 2, . . . , m) through the arithmetic mean (wi =
1/m for i = 1, . . . , m) to the minimum (wm = 1, wi = 0 for i = 1, . . . , m − 1).

Let w = (w1, . . . , wm) and p = (p1, . . . , pm) be weighting vectors of dimension
m such that wi ≥ 0 and pi ≥ 0 for i = 1, . . . , m as well as

∑m
i=1 wi = 1

and
∑m

i=1 pi = 1. The corresponding Weighted OWA aggregation of outcomes
y = (y1, . . . , ym) is defined as follows [12]:

Aw,p(y) =
m∑

i=1

ωiθi(y) (6)

where the weights ωi are defined as

ωi = w∗(
∑

k≤i

pτ(k)) − w∗(
∑

k<i

pτ(k)) (7)

with w∗ a monotone increasing function that interpolates points ( i
m ,

∑
k≤i wk)

together with the point (0.0) and τ representing the ordering permutation for
y (i.e. yτ(i) = θi(y)). Moreover, function w∗ is required to be a straight line
when the point can be interpolated in this way. Due to this requirement, the
WOWA aggregation covers the standard weighted mean (3) with weights pi as
a special case of equal preference weights (wi = 1/m for i = 1, . . . , m). Actually,
the WOWA operator is a particular case of Choquet integral using a distorted
probability as the measure [4].

Note that function w∗ can be expressed as w∗(α) =
∫ α

0 g(ξ) dξ where g is a
generation function. Let us introduce breakpoints βi =

∑
k≤i pτ(k) and β0 = 0.

This allows one to express weights ωi as

ωi =
∫ βi

0
g(ξ) dξ −

∫ βi−1

0
g(ξ) dξ =

∫ βi

βi−1

g(ξ) dξ

and the entire WOWA aggregation as

Aw,p(y) =
m∑

i=1

θi(y)
∫ βi

βi−1

g(ξ) dξ =
∫ 1

0
g(ξ)F (−1)

y (ξ) dξ (8)

where F
(−1)
y is the stepwise function F

(−1)
y (ξ) = θi(y) for βi−1 < ξ ≤ βi. It

can also be mathematically formalized as follows. First, we introduce the left-
continuous right tail cumulative distribution function (cdf):

Fy(d) =
∑

i∈I

piδi(d) where δi(d) =
{

1 if yi ≥ d
0 otherwise (9)

which for any real (outcome) value d provides the measure of outcomes greater or
equal to d. Next, we introduce the quantile function F

(−1)
y as the right-continuous

inverse of the cumulative distribution function Fy:

F (−1)
y (ξ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1.
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Formula (8) provides the most general expression of the WOWA aggregation
allowing for expansion to continuous case. The original definition of WOWA al-
lows one to build various interpolation functions w∗ [13] thus to use different
generation functions g in formula (8). Let us focus our analysis on the the piece-
wise linear interpolation function w∗. It is the simplest form of the interpolation
function. Note, however, that the piecewise linear functions may be built with
various number of breakpoints, not necessarily m. Thus, any nonlinear function
can be well approximated by a piecewise linear function with appropriate num-
ber of breakpoints. Therefore, we will consider weights vectors w of dimension
n not necessarily equal to m. Any such piecewise linear interpolation function
w∗ can be expressed with the stepwise generation function

g(ξ) = nwk for (k − 1)/n < ξ ≤ k/n, k = 1, . . . , n (10)

This leads us to the following specification of formula (8):

Aw,p(y) =
∫ 1

0
g(ξ)F (−1)

y (ξ) dξ =
n∑

k=1

nwk

∫ k/n

(k−1)/n

F (−1)
y (ξ) dξ (11)

We will treat formula (11) as a formal definition of the WOWA aggregation of
m-dimensional outcomes y defined by m-dimensional importance weights p and
n-dimensional preferential weights w. When in (8) using the integrals from the
left end rather than those on intervals one gets

Aw,p(y) =
n∑

k=1

nwk(L(y,p,
k

n
) − L(y,p,

k − 1
n

)) (12)

where L(y,p, β) is defined by left-tail integrating F
(−1)
y , i.e.

L(y,p, 0) = 0 and L(y,p, β) =
∫ β

0
F (−1)

y (α)dα for 0 < β ≤ 1 (13)

In particular, L(y,p, 1) =
∫ 1
0 F

(−1)
y (α)dα = Ap(y). Graphs of functions L(y,p,

β) (with respect to β) take the form of concave curves, the so-called (upper)
absolute Lorenz curves.

Alternatively, one may refer in formula (11) to the integrals from the right
end instead of intervals getting

Aw,p(y) =
n∑

k=1

nwk(L(y,p, 1 − k − 1
n

) − L(y,p, 1 − k

n
)) (14)

where L(y,p, β) is defined by right tail integrating F
(−1)
y , i.e.

L(y,p, 0) = 0 and L(y,p, β) =
∫ 1−β

0
F (−1)

y (1 − α)dα for 0 < β ≤ 1 (15)
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One may easily notice that for any 0 ≤ β ≤ 1

L(y,p, β) + L(y,p, 1 − β) =
∫ 1

0
F (−1)

y (α)dα = Ap(y)

Hence, L(y,p, 1) = Ap(y). Graphs of functions L(y,p, β) (with respect to β)
take the form of convex curves, the (lower) absolute Lorenz curves.

2.2 The Orness Measures

The OWA aggregation may model various preferences from the optimistic (max)
to the pessimistic (min). Yager [15] introduced a well appealing concept of the
orness measure to characterize the OWA operators. The degree of orness asso-
ciated with the OWA operator Aw(y) is defined as

orness(w) =
m∑

i=1

m − i

m − 1
wi (16)

For the max aggregation representing the fuzzy ‘or’ operator with weights w =
(1, 0, . . . , 0) one gets orness(w) = 1 while for the min aggregation representing
the fuzzy ‘and’ operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0.
For the average (arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2.
Actually, one may consider a complementary measure of andness defined as
andness(w) = 1−orness(w). OWA aggregations with orness greater or equal 1/2
are considered or-like whereas the aggregations with orness smaller or equal 1/2
are treated as and-like. The former correspond to rather optimistic preferences
while the latter represents rather pessimistic preferences.

The OWA aggregations with monotonic weights are either or-like or and-
like. Exactly, decreasing weights w1 ≥ w2 ≥ . . . ≥ wm define an or-like OWA
operator, while increasing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like
OWA operator. Actually, the orness and the andness properties of the OWA
operators with monotonic weights are total in the sense that they remain valid
for any subaggregations defined by subsequences of their weights. Namely, for
any 2 ≤ k ≤ m one gets

k∑

j=1

k − j

k − 1
wij ≥ 1

2
and

k∑

j=1

k − j

k − 1
wij ≤ 1

2

for the OWA operators with decreasing or increasing weights, respectively. More-
over, the weights monotonicity is necessary to achieve the above total orness
and andness properties. Therefore, we will refer to the OWA aggregation with
decreasing weights as the totally or-like OWA operator, and to the OWA aggre-
gation with increasing weights as the totally and-like OWA operator.

Yager [17] proposed to define the OWA weighting vectors via the regular
increasing monotone (RIM) quantifiers, which provide a dimension independent
description of the aggregation. A fuzzy subset Q of the real line is called a RIM
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quantifier if Q is (weakly) increasing with Q(0) = 0 and Q(1) = 1. The OWA
weights can be defined with a RIM quantifier Q as wi = Q(i/m)−Q((i−1)/m).
and the orness measure can be extended to a RIM quantifier (according to
m → ∞) as follows [17]

orness(Q) =
∫ 1

0
Q(α) dα (17)

Thus, the orness of a RIM quantifier is equal to the area under it. The measure
takes the values between 0 (achieved for Q(1) = 1 and Q(α) = 0 for all other
α) and 1 (achieved for Q(0) = 1 and Q(α) = 0 for all other α). In particular,
orness(Q) = 1/2 for Q(α) = α which is generated by equal weights wk = 1/n.
Formula (17) allows one to define the orness of the WOWA aggregation (6)
which can be viewed with the RIM quantifier Q(α) = w∗(α) [6]. Let us consider
piecewise linear function Q = w∗ defined by weights vectors w of dimension n
according to the stepwise generation function (10). One may easily notice that
decreasing weights w1 ≥ w2 ≥ . . . ≥ wn generate a strictly increasing concave
curve Q(α) ≥ α thus guaranteeing the or-likeness of the WOWA operator. Sim-
ilarly, increasing weights w1 ≤ w2 ≤ . . . ≤ wn generate a strictly increasing
convex curve Q(α) ≤ α thus guaranteeing the and-likeness of the WOWA oper-
ator. Actually, the monotonic weights generate the totally or-like and and-like
operators, respectively, in the sense that
∫ 1

0

Q(a + α(b − a)) − Q(a)
Q(b) − Q(a)

dα ≥ 1
2

and
∫ 1

0

Q(a + α(b − a)) − Q(a)
Q(b) − Q(a)

dα ≤ 1
2

for the WOWA operators with decreasing or increasing weights, respectively.

3 LP Models for WOWA Optimization

3.1 Minimization of the Totally Or-Like WOWA Aggregation

Consider minimization of a totally or-like WOWA aggregation defined by de-
creasing weights w1 ≥ w2 ≥ . . . ≥ wn

min{Aw,p(y) : y = f(x), x ∈ F} (18)

Note that following (12) the WOWA objective function may be expressed as

Aw,p(y) =
n∑

k=1

nwk(L(y,p,
k

n
) − L(y,p,

k − 1
n

)) =
n∑

k=1

w′
kL(y,p,

k

n
) (19)

where w′
n = nwn, w′

k = n(wk −wk+1) while values of function L(y,p, α) for any
0 ≤ α ≤ 1 can be found by optimization:

L(y,p, α) = max
ui

{
m∑

i=1

yiui :
m∑

i=1

ui = α, 0 ≤ ui ≤ pi ∀ i } (20)
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The above problem is an LP for a given outcome vector y while it becomes non-
linear for y being a vector of variables. This difficulty can be overcome by taking
advantage of the LP dual to (20). Introducing dual variable t corresponding to
the equation

∑m
i=1 ui = α and variables di corresponding to upper bounds on

ui one gets the following LP dual of problem (20):

L(y,p, α) = min
t,di

{αt +
m∑

i=1

pidi : t + di ≥ yi, di ≥ 0 ∀ i} (21)

Minimization of WOWA with decreasing weights results in positive values of
w′

k and leads to the problem

min
tk,dik

{
n∑

k=1

w′
k[

k

n
tk +

m∑

i=1

pidik] : tk + dik ≥ yi, dik ≥ 0 ∀ i, k}

While taking into account the criteria and constraints of the MOLP problem (4)
we get the following LP formulation of the WOWA optimization problem (18):

min
n∑

k=1

k

n
w′

ktk +
n∑

k=1

m∑

i=1

w′
kpidik (22)

s.t. Ax = b (23)
y − Cx = 0 (24)
dik ≥ yi − tk for i = 1, . . . , m; k = 1, . . . , n (25)
dik ≥ 0 for i = 1, . . . , m; k = 1, . . . , n; xj ≥ 0 ∀ j (26)

This LP problem contains mn+m+n+ q variables and mn+m+ r constraints.
Thus, for not too large values of m and n it can be solved directly. Actually, the
LP model is quite similar to that introduced in [11] for the OWA optimization
(c.f., model (30)–(34)).

The number of constraints in problem (22)–(26) is similar to the number of
variables. However, the crucial number of variables (mn variables dik) is associ-
ated with singleton columns. Therefore, it may be better to deal with the dual of
(22)–(26) where the corresponding rows become simple upper bounds, thus re-
ducing dramatically the LP problem size. While introducing the dual variables:
u = (u1, . . . , ur), v = (v1, . . . , vm) and z = (zik)i=1,...,m; k=1,...,n corresponding
to the constraints (23), (24) and (25), respectively, we get the following dual:

max ub
s.t. uA − vC <= 0

vi −
n∑

k=1

zik = 0 for i = 1, . . . , m

m∑

i=1

zik =
k

n
w′

k for k = 1, . . . , n

0 ≤ zik ≤ piw
′
k for i = 1, . . . , m; k = 1, . . . , n

(27)
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The dual problem (27) is consisted of only m + n + q structural constraints
on mn + r + m variables. Since the average complexity of the simplex method
depends on the number of constraints, the dual model (27) can be directly solved
for quite large values of m and n. Moreover, the columns corresponding to mn
variables zik form the network (node-link incidence) matrix thus allowing one to
employ special techniques of the network embedded simplex algorithm [3].

3.2 Maximization of the Totally And-Like WOWA Aggregation

Consider now maximization of a totally and-like WOWA aggregation defined by
increasing weights w1 ≤ w2 ≤ . . . ≤ wn

max{Aw,p(y) : y = f(x), x ∈ F} (28)

By consideration of −y instead of y the problem may be reduced to the mini-
mization of a totally or-like WOWA aggregation defined by decreasing weights.
Alternatively, taking advantages of formula (14) the WOWA objective function
may be expressed as

Aw,p(y) =
n∑

k=1

nwk(L(y,p, 1− k − 1
n

)−L(y,p, 1− k

n
)) =

n∑

k=1

w′′
kL(y,p,

k

n
) (29)

with weights w′′
k = −w′

n−k = n(wn−k+1 − wn−k) for k = 1, . . . , n − 1 and
w′′

n = nw1 while values of function L(y,p, ξ) for any 0 ≤ ξ ≤ 1 are given by
optimization:

L(y,p, ξ) = min
ui

{
m∑

i=1

yiui :
m∑

i=1

uj = ξ, 0 ≤ ui ≤ pi ∀ i } (30)

Introducing dual variable t corresponding to the equation
∑m

i=1 ui = ξ and
variables di corresponding to upper bounds on ui one gets the following LP dual
expression of L(y,p, ξ)

L(y,p, ξ) = max
t,di

{ξt −
m∑

i=1

pidi : t − di ≤ yi, di ≥ 0 ∀ i} (31)

Note that maximization of the WOWA with increasing weights wk results in
problem

max{
n∑

k=1

w′′
kL(y,p,

k

n
) : y = f(x), x ∈ F}

with positive weights w′′
k . Therefore, maximization of the WOWA aggregation

(28) can be expressed as follows

max
tk,dik,yi,xj

n∑

k=1

w′′
k [

k

n
tk −

m∑

i=1

pidik]

s.t. tk − dik ≤ yi, dik ≥ 0 for i = 1, . . . , m; k = 1, . . . , n
y ≤ f(x), x ∈ F
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In the case of MOLP model (4) this leads us to the following LP formulation of
the WOWA maximization problem (28):

max
n∑

k=1

k

n
w′′

k tk −
n∑

k=1

m∑

i=1

w′′
kpidik (32)

s.t. Ax = b (33)
y − Cx = 0 (34)
dik ≥ tk − yi for i = 1, . . . , m; k = 1, . . . , n (35)
dik ≥ 0 for i = 1, . . . , m; k = 1, . . . , n; xj ≥ 0 ∀ j (36)

The problem has the identical structure as that of (22)–(26) differing only with
some negative signs in the objective function (32) and the deviation variable def-
inition (35). While in (22)–(26) variables dik represent the upperside deviations
from the corresponding targets tk, here they represent the downside deviations
for those targets. Note that WOWA model (32)–(36) differs from the analo-
gous deviational model for the OWA optimization [11] only due to coefficients
within the objective function (32) and the possibility of different values of m
and n. In other words, the OWA deviational model [11] can easily be expanded
to accommodate the importance weighting of WOWA.

Model (32)–(36) is an LP problem with mn+m+n+q variables and mn+m+r
constraints. Thus, for problems with not too large number of criteria (m) and
preferential weights (n) it can be solved directly. However, similar to the case of
minimization of the or-like WOWA, it may be better to deal with the dual of
(32)–(36) where mn rows corresponding to variables dik represent only simple
upper bounds. Indeed, while introducing the dual variables: u = (u1, . . . , ur),
v = (v1, . . . , vm) and z = (zik)i=1,...,m; k=1,...,n corresponding to the constraints
(33), (34) and (35), respectively, we get the following dual:

min ub
s.t. uA − vC >= 0

vi −
n∑

k=1

zik = 0 for i = 1, . . . , m

m∑

i=1

zik =
k

n
w′′

k for k = 1, . . . , n

0 ≤ zik ≤ w′′
kpi for i = 1, . . . , m; k = 1, . . . , n

(37)

The dual problem (37), similar to (27), contains mn+r+m variables and m+n+q
structural constraints. Therefore, it can be directly solved for quite large values
of m and n.

4 Computational Tests

In order to examine computational performances of the LP models for the
WOWA optimization we have solved randomly generated problems with varying
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number q of decision variables and number m of criteria. The core LP feasible set
has been defined by a single knapsack-type constraint. Thus, we have analyzed
the WOWA maximization problem

max {Aw,p(f(x)) :
q∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , q} (38)

where fi(x) = cix =
∑q

j=1 cijxj . Such problems may be interpreted as resource
allocation decisions [10].

For our computational tests we have randomly generated problems (38).
Coefficients cij were generated as follows. First, for each j the upper bound
rj was generated as a random number uniformly distributed in the interval
[0.05, 0.15]. Next, individual coefficients cij were generated as uniformly dis-
tributed in the interval [−0.75rj, rj ]. In order to generate strictly increasing and
positive preference weights wk, we generated randomly the corresponding in-
crements δk = wk − wk−1. The latter were generated as uniformly distributed
random values in the range of 1.0 to 2.0, except from a few (5 on average)
possibly larger increments ranged from 1.0 to n/3. Importance weights pi were
generated according to the exponential smoothing scheme, pi = α(1 − α)i−1

for i = 1, 2, . . . , m and the parameter α is chosen for each test problem size
separately to keep the smallest weight pm around 0.001.

The optimization times were analyzed for various size parameters m and q.
The basic tests were performed for the standard WOWA model with n = m.
However, we also analyzed the case of larger n for more detailed preferences
modeling, as well as the case of smaller n thus representing a rough preferences
model. For each number of decision variables q and number of criteria m we
solved 10 randomly generated problems (38). All computations were performed
on a PC with the Pentium 4 2.4GHz processor employing the CPLEX 9.1 pack-
age. The 600 seconds time limit was used in all the computations.

Table 1. WOWA optimization times [s]: primal model (32)–(36)

Number of Number of variables (q)
criteria (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
20 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1
50 1.5 2.4 3.1 4.0 4.0 4.1 3.9 4.0
100 54.6 73.2 89.4 110.7 139.1 185.7 253.7 –

In Tables 1 and 2 we show the solution times for the primal (32)–(36) and the
dual (37) forms of the computational model, being the averages of 10 randomly
generated problems. Upper index in front of the time value indicates the number
of tests among 10 that exceeded the time limit. The empty cell (minus sign) shows
that this has occurred for all 10 instances. Both model forms were solved by the
CPLEX code with the standard settings. As one can see, the dual form of the
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model performs much better in each tested problem size. It behaves very well
with increasing number of variables if the number of criteria does not exceed
100, and satisfactory if the number of criteria equals 150. Similarly, the model
performs very well with increasing number of criteria if only the number of
variables does not exceed 50.

Table 2. WOWA optimization times [s]: dual model (37)

Number of Number of variables (q)
criteria (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
50 0.0 0.0 0.3 0.5 0.7 0.9 1.3 1.6
100 0.7 0.8 2.8 17.3 21.5 26.6 29.7 34.7
150 1.8 2.6 6.0 69.0 145.9 177.5 189.0 183.3
200 4.6 6.2 13.6 179.3 395.5 6573.3 8593.2 –
300 16.3 24.6 82.4 7473.3 – – – –
400 42.7 77.5 239.6 – – – – –

In order to examine how much importance weighting of the WOWA compli-
cates our optimization models we have rerun all the tests assuming equal im-
portance weights thus restricting the models to the standard OWA optimization
according to [11]. Tables 3 and 4 show the solution times for the primal (32)–
(36) and the dual (37) optimization models, respectively, with equal importance
weights while all the other parameters remain generated randomly.

Table 3. OWA optimization times [s]: primal model with equal importance weights

Number of Number of variables (q)
criteria (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
50 1.3 1.7 2.3 2.4 2.6 2.7 2.8 2.9
100 51.2 73.4 86.6 105.9 94.4 116.6 143.6 155.5

One may notice that in the case of the primal model the WOWA optimization
times (Table 1) are 10–30% longer than the corresponding OWA optimization
times (Table 3). On the other hand, in the case of the dual model the WOWA
optimization times (Table 2) turn out to be similar to the corresponding OWA
times (Table 4), and frequently even shorter.

Table 5 presents solution times for different numbers of the preferential weights
for problems with 100 criteria and 50 variables. One may notice that the com-
putational efficiency can be improved by reducing the number of preferential
weights which can be reasonable in non-automated decision making support
systems. On the other hand, increasing the number of preferential weights and
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Table 4. OWA Optimization times [s]: dual model with equal importance weights

Number of Number of variables (q)
criteria (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
50 0.1 0.2 0.3 0.7 1.0 1.5 1.6 2.3
100 0.7 0.9 5.0 18.0 29.6 25.7 32.5 42.1
150 2.2 2.8 12.6 82.3 130.5 143.9 163.2 194.8
200 4.8 7.8 22.4 172.2 323.6 2452.3 4505.5 9586.9
300 18.8 28.9 186.8 9549.5 – – – –
400 44.9 96.1 417.9 – – – – –

Table 5. WOWA optimization times [s]: varying number of preferential weights (m =
100, q = 50)

Number of preferential weights (n)
3 5 10 20 50 100 150 200 300 400

0.0 0.1 0.1 0.3 2.9 2.8 1.8 2.9 5.0 7.4

thus the number of breakpoints in the interpolation function does not induce
the massive increase in the computational complexity.

5 Concluding Remarks

The problem of aggregating multiple criteria to form overall objective functions
is of considerable importance in many disciplines. The WOWA aggregation [12]
represents a universal tool allowing to take into account both the preferential
weights allocated to ordered outcomes and the importance weights allocated to
several criteria. The ordering operator used to define the WOWA aggregation
is, in general, hard to implement. We have shown that the WOWA aggrega-
tions with the monotonic weights can be modeled by introducing auxiliary lin-
ear constraints. Exactly, the OWA LP-solvable models introduced in [11] can be
expanded to accommodate the importance weighting of the WOWA aggregation.

Our computational experiments have shown that the formulations enable to
solve effectively medium size problems. While taking advantages of the dual
model the WOWA problems with up to 100 criteria have been solved directly
by general purpose LP code within less than half a minute.
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