
On Fuzzy Driven Support for SD-Efficient
Portfolio Selection�

W�lodzimierz Ogryczak1 and Andrzej Romaszkiewicz2

1 Warsaw University of Technology, Institute of Control & Computation Engineering,
Warsaw, Poland

wogrycza@ia.pw.edu.pl
2 Warsaw School of Economics, Collegium of Economic Analysis, Warsaw, Poland

romaszki@bluewin.ch

Abstract. The stochastic dominance (SD) is based on an axiomatic
model of risk-averse preferences and therefore, the SD-efficiency is an
important property of selected portfolios. As defined with a continuum
of criteria representing some measures of failure in achieving several tar-
gets, the SD does not provide us with a simple computational recipe.
While limiting to a few selected target values one gets a typical mul-
tiple criteria optimization model approximating the corresponding SD
approach. Although, it is rather difficult to justify a selection of a few
target values, this difficulty can be overcome with the effective use of
fuzzy target values. While focusing on the first degree SD and extending
the target membership functions to some monotonic utility functions we
get the multiple criteria model which preserves the consistency with both
the first degree and the second degree SD. Further applying the reference
point methodology to the multiple criteria model and taking advantages
of fuzzy chance specifications we get the method that allows to model
interactively the preferences by fuzzy specification of the desired dis-
tribution. The model itself guarantees that every generated solution is
efficient according to the SD rules.

1 Introduction

The portfolio optimization problem considered in this paper follows the classical
formulation and is based on a single period model of investment. At the begin-
ning of a period, an investor allocates his capital among various securities, thus
assigning a nonnegative weight (share of the capital) to each security. During
the investment period, a security generates a random rate of return. This results
in a change of the capital invested (observed at the end of the period) which is
measured by the weighted average of the individual rates of return.

Let J = {1, 2, . . . , n} denote a set of securities considered for an investment.
For each security j ∈ J , its rate of return is represented by a random variable Rj

with a given mean zj = E{Rj}. Further, let x = (xj)j=1,2,...,n denote a vector of
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decision variables xj expressing the weights defining a portfolio. To represent a
portfolio, the weights must satisfy a set of constraints that form a feasible set P .
The simplest way of defining a feasible set is by a requirement that the weights
must sum to one and short sales are not allowed, i.e.

∑n
j=1 xj = 1 and xj ≥ 0 for

j = 1, . . . , n. Hereafter, it is assumed that P is a general LP feasible set given
in a canonical form as a system of linear equations with nonnegative variables.
Each portfolio x defines a corresponding random variable R(x) =

∑n
j=1 Rjxj

that represents the portfolio rate of return. The mean rate of return for portfolio
x is given as z(x) = E{R(x)} =

∑n
j=1 zjxj . Following the seminal work by

Markowitz [6], the portfolio optimization problem is modeled as a mean-risk
bicriteria optimization problem where z(x) is maximized and some risk measure
�(x) is minimized. In the original Markowitz model [6] the risk is measured by
the standard deviation or variance while several other risk measures have been
later considered thus creating the entire family of mean-risk (Markowitz-type)
models [2,5].

The Markowitz model is frequently criticized as not consistent with axiomatic
models of preferences for choice under risk [13]. Models consistent with the pref-
erence axioms are based on the relations of stochastic dominance or on expected
utility theory [3,14]. In stochastic dominance, uncertain returns (random vari-
ables) are compared by pointwise comparison of some performance functions
constructed from their distribution functions. The right-continuous cumulative
distribution function (cdf): FR(x)(η) = P{R(x) ≤ η}. is used to define the first
degree stochastic dominance (FSD). The second function is derived from the
cdf as F

(2)
R(x)(η) =

∫ η

−∞ FR(x)(ξ) dξ and it defines the second degree stochastic

dominance (SSD). Function F
(2)
R(x), used to define the SSD relation, can also be

presented [10] as F
(2)
R(x)(η) = E{(η − R(x))+} where (.)+ denotes the nonnega-

tive part. Hence, while function FR(x) expresses the probability of a shortfall to
target η, function F

(2)
R(x) measures the mean shortfall to the target. The weak

relations of stochastic dominance (FSD or SSD) are defined by pointwise in-
equalities for all real targets: R(x′) �

F SD
R(x′′) if FR(x′)(η) ≤ FR(x′′)(η) for all

η, and respectively, R(x′) �
SSD

R(x′′) if F
(2)
R(x′)(η) ≤ F

(2)
R(x′′)(η) for all η. We say

that portfolio x′ dominates x′′ under the FSD (SSD) if F
(1)
R(x′)(η) ≤ F

(1)
R(x′′)(η)

(F (2)
R(x′)(η) ≤ F

(2)
R(x′′)(η), respectively) for all η, with at least one strict inequality.

A feasible portfolio x0 ∈ P is called FSD (SSD) efficient if there is no x ∈ P
such that R(x) �

FSD
R(x0) (R(x) �

SSD
R(x0)).

We consider T scenarios with probabilities pt (where t = 1, . . . , T ). We assume
that for each random variable Rj its realization rjt under the scenario t is known.
Typically, the realizations are derived from historical data treating T historical
periods as equally probable scenarios (pt = 1/T ). The realizations of the port-
folio return R(x) are given as rt(x) =

∑n
j=1 rjtxj and the expected value can

be computed as z(x) =
∑T

t=1 rt(x)pt =
∑T

t=1

[∑n
j=1 rjtxj

]
pt. Similarly, values

of functions F
(1)
R(x)(η) and F

(2)
R(x)(η) can easily be computed then for any given
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target η. Nevertheless, as defined with a continuum of criteria representing some
measures of failure in achieving several targets, the stochastic dominance mod-
els do not provide us with a simple computational recipe. While limiting to a
few selected target values one gets typical multiple criteria optimization models
approximating the corresponding stochastic dominance approaches [7,8,9]. How-
ever, in practice, it is rather difficult to justify a selection of a few target values.
This difficulty can be overcome with the effective use of fuzzy target values.

2 Fuzzy Targets

Let us focus on the FSD model. Although the right-continuous cdf defines the
FSD relation, the left-continuous cdf F

(1)
R(x)(η) = P{R(x) < η} can equivalently

be used for this purpose. It provides a lucid interpretation of the FSD relation
as pointwise comparison of downside (below-target) risk measures representing
probabilities of not achieving given levels (targets), as well as it allows us to build
a simple optimization model for those measures. Suppose one has preselected m
return values η1 > η2 > . . . > ηm as targets to evaluate probabilities of the
corresponding shortfalls. Introducing m corresponding criteria

sk(x) = F
(1)
R(x)(ηk) for k = 1, 2, . . . , m (1)

one gets the multiple criteria portfolio optimization model:

min{(s1(x), s2(x), . . . , sm(x)) : x ∈ P} (2)

Due to the use of the left-continuous cdf as criteria sk(x) = F
(1)
R(x)(ηk), optimiza-

tion (2) can be formulated as mixed integer linear programming problem

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

bktpt for k = 1, . . . , m

Mbkt ≥ ηk −
n∑

j=1

rjtxj , bkt ∈ {0, 1} for k = 1, . . . , m; t = 1, . . . , T

where M a sufficiently large constant and bkt are binary variables taking value 1
whenever realization of the portfolio return under scenario t is below the target
value ηk (i.e., bkt ≥ sign((ηk − rt(x))+)).

Model (2) represents an approximation to the FSD approach. One can easily
notice that any portfolio x̄ ∈ P efficient (Pareto-optimal) solution to (2) can be
FSD dominated only by an alternative efficient portfolio x ∈ P with the same
values of criteria sk(x) = sk(x̄) for all k = 1, . . . , m. Hence, a small number
of targets results in serious threat of FSD ambiguity in the sense the selected
portfolio efficient to the multiple criteria model can easily be FSD dominated
by another quite a different portfolio with the same values of the cdf at the few
targets.
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Note that values ηk actually represent the targets defined as corresponding
(closed) crisp sets {η ∈ R | η ≥ ηk}, and their characteristic functions

χ
k
(η) =

{
0 for η < ηk

1 for η ≥ ηk

allow to express the FSD criteria as sk(x) = E{1−χ
k
(R(x))}. Taking advantages

of the discrete distribution we have assumed they can be written as sk(x) =
1 −

∑T
t=1 χ

k
(rt(x))pt. We propose to replace crisp targets with fuzzy targets

Ck. We will focus on trapezoidal fuzzy sets defined by nondecreasing piecewise
linear membership functions:

μk(η) =

⎧
⎨

⎩

0 for η < η−
k

(η − η−
k )/(η+

k − η−
k ) for η−

k ≤ η < η+
k

1 for η ≥ η+
k

(3)

defined by two parameters (breakpoints) η−
k and η+

k representing the largest
return with membership level 0 and the smallest return with membership level
1, respectively. To relate them with values ηk defining the crisp targets we will
assume that η+

k = ηk while η−
k = ηk − Δk for a given fuzzyfication parameter

Δk > 0. Hence, the fuzzy targets Ck can be specified by the interval [η−
k , η+

k ] or
equivalently by the pair of numbers (ηk, Δk).

With fuzzy targets Ck, the corresponding FSD criteria are expressed as

sk(x) = E{1 − μ
k
(R(x))} =

1
Δk

∫ ηk

ηk−Δk

FR(x)(η) dη (4)

Applying them in multiple criteria model (2) one gets the fuzzy portfolio op-
timization model which offers more intuitive way to define targets. It provides
an opportunity to define expectations in fuzzy terms like: “minimize the proba-
bility of shortfall to medium profit.” Moreover, due to aggregation on intervals
[ηk − Δk, ηk] made in (4), the following assertion is valid.

Proposition 1. Except for portfolios with identical cdf values within all inter-
vals [ηk −Δk, ηk], every portfolio x ∈ P efficient to the multiple criteria problem
(2) with fuzzy defined criteria (4) is FSD efficient.

Proof. Let x̄ ∈ P be an efficient solution to the multiple criteria problem (2) with
criteria (4). IF it is FSD dominated by portfolio x ∈ P , then FR(x)(η) ≤ FR(x̄)(η)
for all η with at least one inequality strict. Hence, due to (4), sk(x̄) ≥ sk(x) for
all k and any strict inequality FR(x)(η) < FR(x̄)(η) for some η ∈ [ηk − Δk, ηk]
would result in strict inequality sk(x̄) > sk(x) thus contradicting the efficiency
of x̄ to (2).

Note that distributions of rates of return are usually characterized by bounded
support which can easily be covered by the interval [ηm − Δm, η1] while all
Δk ≥ ηk − ηk+1. Following Proposition 1, every portfolio efficient to the cor-
responding multiple criteria problem (2) with fuzzy defined criteria (4) is then
(unconditionally) FSD efficient.
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Problem (2) with fuzzy defined criteria (4) can be expressed as

min{(1 − E{μ1(R(x))}, 1 − E{μ2(R(x))}, . . . , 1 − E{μ
m

(R(x))}) : x ∈ P} (5)

Hence, taking advantages of the discrete distributions, it can be formulated as
the following mixed integer programming problem:

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

vktpt for k = 1, . . . , m

vkt ≥ bkt, bkt ∈ {0, 1} for k = 1, . . . , m; t = 1, . . . , T

Δkvkt + Mbkt ≥ ηk −
n∑

j=1

rjtxj for k = 1, . . . , m; t = 1, . . . , T

(6)

where M a sufficiently large constant and bkt are binary variables taking value 1
whenever realization of the portfolio return under scenario t is below the value
ηk − Δk while vkt ≥ 1 − μk(rt(x)).

3 Extension to Concave Utility

Membership functions μk in criteria 1 − E{μ
k
(R(x))} of problem (5) may be

interpreted as utility functions used to maximize the corresponding expected
utility value. In order to guarantee full consistency of the expected utility max-
imization with FSD the utility function must be strictly increasing. Moreover
concave utility function represent risk aversion (SSD consistency). Membership
function μk is strictly increasing within the interval [η−

k , η+
k ] while being con-

stant for η smaller than η−
k or larger than η+

k . Moreover, it is neither concave
nor convex. Nevertheless, one can easily extend μk to a strictly increasing con-
cave utility function μ̄k preserving the original values on interval [η−

k , η+
k ]. The

simplest such an extension is given by the following piecewise linear function:

μ̄k(η) =
{

(η − η−
k )/(η+

k − η−
k ) for η < η+

k

1 + β(η − η+
k )/(η+

k − η−
k ) for η ≥ η+

k

(7)

where 0 < β < 1 is an arbitrary small positive constant (Fig. 1). Note that
function (7) can alternatively be expressed in terms of η+

k = ηk and η−
k = ηk−Δk

as
μ̄k(η) = 1 − β(ηk − η)/Δk − (1 − β)(ηk − η)+/Δk (8)

Reformulating (5) with functions μ̄k we get the multiple criteria problem

min{(1 − E{μ̄1(R(x))}, 1 − E{μ̄2(R(x))}, . . . , 1 − E{μ̄m(R(x))}) : x ∈ P} (9)

Since μ̄k are no longer fuzzy membership functions, the problem is not a fuzzy
optimization model. It is a fuzzy driven multiple criteria model as the utility
functions are defined by parameters of fuzzy targets. However, the use of utility
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μk

ηη−
k η+
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ηη−
k η+

k

Fig. 1. Membership functions μk and increasing concave utility function μ̄k

functions in (9) guarantees the model consistency with the SD rules. Note that,
due to (8)

1 − E{μ̄k(R(x))} =
β

Δk
(ηk − E{R(x)}) +

(1 − β)
Δk

∫ ηk

−∞
FR(x)(η) dη

= [β(ηk − z(x)) + (1 − β)F (2)
R(x)(ηk)]/Δk

(10)

thus allowing us to prove the following consistency statements.

Proposition 2. Every portfolio x ∈ P efficient to multiple criteria problem (9)
is FSD efficient.

Proof. Suppose that x̄ ∈ P efficient to (9) is FSD dominated by portfolio x ∈ P ,
i.e. FR(x)(η) ≤ FR(x̄)(η) for all η with at least one inequality strict. Then z(x) >

z(x̄) and F
(2)
R(x)(ηk) ≤ F

(2)
R(x̄)(ηk) for all k. Hence. due to (10), 1−E{μ̄k(R(x̄))} >

1 − E{μ̄k(R(x))} for all k thus contradicting the efficiency of x̄ to (9).

Proposition 3. Except for portfolios with identical values of the expected utility
criteria E{μ̄k(R(x))}, every portfolio x ∈ P efficient to the multiple criteria
problem (9) is SSD efficient.

Proof. If x̄ ∈ P is SSD dominated by x ∈ P , then F
(2)
R(x)(η) ≤ F

(2)
R(x̄)(η) for all η

and z(x) ≥ z(x̄) [10]. Hence. due to (10), 1 − E{μ̄k(R(x̄))} > 1 − E{μ̄k(R(x))}
for all k and actually 1 − E{μ̄k(R(x̄))} = 1 − E{μ̄k(R(x))} for all k due to the
efficiency of x̄ to (9).

Taking advantages of the discrete distributions, problem (9) can be formulated
as the following linear programming problem. Note that concave piecewise linear
utility functions replacing the fuzzy membership functions allow us to eliminate
binary variables form the optimization problem thus leading to the following
linear programming model

min (y1, y2, . . . , ym) s.t. x ∈ P , yk =
T∑

t=1

vktpt for k = 1, . . . , m

Δkvkt ≥ β(ηk −
n∑

j=1

rjtxj) for k = 1, . . . , m; t = 1, . . . , T

Δkvkt ≥ ηk −
n∑

j=1

rjtxj for k = 1, . . . , m; t = 1, . . . , T

(11)



584 W. Ogryczak and A. Romaszkiewicz

4 Reference Point Method and Fuzzy Chances

An operational use of multiple criteria model (9) requires to select one efficient
portfolio for implementation. This can be achieved with the so-called quasisat-
isficing approach to multiple criteria optimization introduced as the reference
point method [15] and later extended the aspiration/reservation based deci-
sion support (ARBDS) approach with many successful applications [4]. In the
ARBDS interactive scheme the decision maker (DM) specifies requirements in
terms of aspiration and reservation levels, i.e., by introducing acceptable and
required values for several criteria. Depending on the specified aspiration and
reservation levels, a special scalarizing achievement function is built which gen-
erates an efficient solution to the multiple criteria problem when maximized.
The computed efficient solution is presented to the DM as the current solution
in a form that allows comparison with the previous ones and modification of the
aspiration and reservation levels if necessary.

The scalarizing achievement function must be strictly monotonic with respect
to each outcome (decreasing for the minimization problem (9)). Second, a so-
lution with all individual outcomes yk satisfying the corresponding reservation
levels is preferred to any solution with at least one individual outcome worse
than its reservation level. Next, provided that all the reservation levels are sat-
isfied, a solution with all individual outcomes yk equal to the corresponding
aspiration levels is preferred to any solution with at least one outcome worse
than its aspiration level. The generic scalarizing achievement function takes the
following form [15]:

a(y) = min
1≤k≤m

{ak(yk)} + ε

m∑

i=k

ak(yk) (12)

where ε is an arbitrary small positive number and ak are the partial achieve-
ment functions measuring actual achievement of outcome yk with respect to the
corresponding aspiration and reservation levels (ya

k < yr
k, respectively). Thus

the scalarizing achievement function is, essentially, defined by the worst partial
achievement but additionally regularized with the sum of all partial achieve-
ments. The regularization term is introduced only to guarantee the solution
efficiency in the case when the maximization of the main term (the worst partial
achievement) results in a non-unique optimal solution.

The partial achievement function ak can be interpreted as a measure of the
DM’s satisfaction with the current value of outcome of the kth criterion. It is
a strictly decreasing function of outcome yk with value ak = 1 if yk = ya

k , and
ak = 0 for yi = yr

k. Various functions can be built meeting those requirements.
We use the piecewise linear partial achievement function given by

ak(yk) =
{

(yr
k − yk)/(yr

k − ya
k) for yk > ya

k

1 + α(ya
k − yk)/(yr

k − ya
k) for yk ≤ ya

k

(13)

where α is arbitrarily defined small parameter satisfying 0 < α < 1 repre-
senting additional increase of the DM’s satisfaction over level 1 when a criterion
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generates outcomes better than the corresponding aspiration level. Partial
achievement function (13) is strictly decreasing and concave piecewise linear
function, which guarantees its LP computability with respect to outcomes yk.
Finally, maximization of the entire scalarizing achievement function (12) can be
implemented by auxiliary LP constraints thus preserving the LP structure of the
entire RPM model:

max{a(y) : x ∈ P , yk = 1 − E{μ̄
k
(R(x))} for k = 1, . . . , m} (14)

Model (14) generates efficient solutions to the corresponding problem (9). Hence,
due to Propositions 2 and 3, the following assertions are valid.

Proposition 4. Every portfolio x ∈ P optimal to the RPM problem (14) is
FSD efficient.

Proposition 5. Except for portfolios with identical values of the expected utility
criteria E{μ̄k(R(x))}, every portfolio x ∈ P optimal to the RPM problem (14)
is SSD efficient.

For outcomes between the reservation and the aspiration levels, the partial
achievement function ak can be interpreted as a trapezoidal membership func-
tion μk for a fuzzy generalization of the crisp target {yk : yk ≤ ya

k}. Hence, the
partial achievement function (13), similar to (7), can be viewed as an extension
of the fuzzy membership function to a strictly monotonic and concave utility.
One may also notice that the aggregation scheme used to build the scalarizing
achievement function (12) from the partial ones may be interpreted as some
fuzzy aggregation operator using the ordered weighted averaging [16]. In other
words, maximization of the scalarizing achievement function (12) is consistent
with the fuzzy optimization methodology and the aspiration and reservation
levels may be regarded as the specification of fuzzy targets for the criteria val-
ues. Actually, as the original criteria sk represent the shortfall probabilities, the
aspiration and reservation levels represent the fuzzy chances. For instance, to
seek low chance of losses and high chance of medium profit one may specify two
(criteria) fuzzy targets: (η−

1 , η+
1 ) = (0.00, 0.02) with ya

1 = 0.0 and yr
1 = 0.02 and

(η−
2 , η+

2 ) = (0.02, 0.05) with ya
2 = 0.2 and yr

2 = 0.5. Sample list of such simple
fuzzy terms for portfolio selection is given in Table 1.

In our initial tests we have applied the model to the portfolio selection within
the set of assets representing 32 major stock exchange indexes from various
countries.1 The analysis was based on the period 04.07.1997 – 24.09.2004 with the
quotations every 4 weeks. The tests [12] has confirmed easiness of the interactive
preference specification with fuzzy targets and fuzzy chances as well as good
quality of generated portfolios with respect to the classical Markowitz criteria.
Here we present an illustrative example of a simple analysis performed using
only simplified fuzzy terms from Table 1.

We start with the requirement to find a portfolio with low chance of losses.
This requirement leads us to the single-criterion model (m = 1) defined by

1 The quotation data supplied by http://finance.yahoo.com
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Table 1. Sample list of fuzzy terms

Fuzzy targets Definition (η−, η+)
losses rate of return below 2% (0.00,0.02)
medium profit rate of return about 5% (0.02,0.05)
large profit rate of return about 10% (0.05,0.10)

Fuzzy chances Definition (yr, ya)
low chance prob. below 2% (0.00, 0.02)
medium chance prob. about 50% (0.20, 0.50)
high chance prob. about 80% (0.50, 0.80)

Table 2. Sample portfolios characteristics

P1 P2 P3 P4
Expected return rate 1.011 1.015 1.02 1.013
Variance 0.0008 0.0015 0.0044 0.0011
Mean absolute deviation 0.0284 0.029 0.0472 0.0254

the fuzzy target (η−, η+) = (0.00, 0.02) and the aspiration/reservation pair
(yr, ya) = (0.00, 0.02). Note that, due to the use of model (14) with strictly
monotonic utility function μ̄ all probabilities of underachievements are mini-
mized despite only losses are specified as a fuzzy target. This results in a FSD
efficient portfolio (Proposition 4) presented as portfolio P1 in Table 2 where
simplified portfolio characteristics are reported. Next, we try to examine a pos-
sibility of achieving portfolios with higher returns by maximizing the chance
of getting medium or high return, respectively. This leads us to the single-
criterion models (m = 1) defined by the fuzzy targets (η−, η+) = (0.02, 0.05) and
(η−, η+) = (0.05, 0.10), respectively. In both models the aspiration/reservation
pair (yr, ya) = (0.50, 0.80) is used to represent high chance of reaching the re-
sults. The corresponding portfolios are presented as P2 and P3 in Table 2. Again,
following Proposition 4, both the portfolios are FSD efficient. When comparing
to P1, portfolio P2 (high chance of medium return) is characterized by more than
25% increase of the expected return while preserving very similar level risk mea-
sured with mean absolute deviation (mean absolute deviation is a risk measure
consistent with the FSD and SSD orders whereas variance not [8]). Portfolio P3
(high chance of high return) reaches almost doubled expected return but with
similar increase of the mean absolute deviation. Finally, in order to find a portfo-
lio with low chance of losses and high chance to achieve medium return we solve
a bicriteria model (m = 2) defined by the fuzzy targets (η−

1 , η+
1 ) = (0.00, 0.02)

and (η−
2 , η+

2 ) = (0.02, 0.05). Generated FSD efficient portfolio P4 is indeed char-
acterized by medium return and low risk (mean absolute deviation). Thus, it
might be accepted as the final solution.
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5 Concluding Remarks

Application of the FSD criteria to a few fuzzy targets of rate of return with
membership functions expanded to monotonic concave utility functions allows
us to specify easily an FSD and SSD consistent multiple criteria portfolio op-
timization model. Further, formally FSD criteria allow us to define aspiration
and reservation levels via fuzzy definition of chances. The resulting RPM model
is SSD consistent while allowing for easily defined preference parameters con-
trolling the interactive analysis. The complete model is LP computable in the
case of discrete random variables (historical data). The initial tests [12] has con-
firmed easiness of the interactive preference specification with fuzzy targets and
fuzzy chances as well as good quality of generated portfolios with respect to the
classical Markowitz criteria.
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