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Abstract. The approach called the Lexicographic Min-Max (LMM) op-
timization depends on searching for solutions minimal according to the
lex-max order on a multidimensional outcome space. LMM is a refine-
ment of the standard Min-Max optimization, but in the former, in addi-
tion to the largest outcome, we minimize also the second largest outcome
(provided that the largest one remains as small as possible), minimize
the third largest (provided that the two largest remain as small as possi-
ble), and so on. The necessity of point-wise ordering of outcomes within
the lexicographic optimization scheme causes that the LMM problem is
hard to implement. For convex problems it is possible to use iterative
algorithms solving a sequence of properly defined Min-Max problems
by eliminating some blocked outcomes. In general, it may not exist any
blocked outcome thus disabling possibility of iterative Min-Max process-
ing. In this paper we analyze two alternative optimization models allow-
ing to form lexicographic sequential procedures for various nonconvex
(possibly discrete) LMM problems. Both the approaches are based on
sequential optimization of directly defined artificial criteria. The criteria
can be introduced into the original model with some auxiliary variables
and linear inequalities thus the methods are easily implementable.

1 Lexicographic Min-Max

There are several multiple criteria decision problems where the Pareto-optimal
solution concept is not powerful enough to resolve the problem since the equity
or fairness among uniform individual outcomes is an important issue [10, 11, 17].
Uniform and equitable outcomes arise in many dynamic programs where indi-
vidual objective functions represent the same outcome for various periods [9]. In
the stochastic problems uniform objectives may represent various possible values
of the same nondeterministic outcome ([15] and references therein). Moreover,
many modeling techniques for decision problems first introduce some uniform
objectives and next consider their impartial aggregations. The most direct mod-
els with uniform equitable criteria are related to the optimization of systems
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which serve many users. For instance, efficient and fair way of distribution of
network resources among competing demands becomes a key issue in computer
networks [5] and the telecommunication networks design, in general [20].

The generic decision problem we consider may be stated as follows. There is
given a set I of m clients (users, services). There is also given a set Q of feasible
decisions. For each service j ∈ I a function fj(x) of the decision x is defined.
This function, called the individual objective function, measures the outcome
(effect) yj = fj(x) of the decision for client j. An outcome can be measured
(modeled) as service time, service costs, service delays as well as in a more
subjective way as individual utility (or disutility) level. In typical formulations
a smaller value of the outcome means a better effect (higher service quality or
client satisfaction). Therefore, without loss of generality, we can assume that
each individual outcome yi is to be minimized.

The Min-Max solution concept depends on optimization of the worst outcome

min
x

{ max
j=1,...,m

fj(x) : x ∈ Q }

and it is regarded as maintaining equity. Indeed, for a simplified resource allo-
cation problem min{maxj yj :

∑
j yj ≤ b } the Min-Max solution takes the

form ȳj = b/m for all j ∈ I thus meeting the perfect equity. In the general case
with possibly more complex feasible set structure this property is not fulfilled.
Actually, the distribution of outcomes may make the Min-Max criterion par-
tially passive when one specific outcome is relatively large for all the solutions.
For instance, while allocating clients to service facilities, such a situation may
be caused by existence of an isolated client located at a considerable distance
from all facilities. Minimization of the maximum distance is then reduced to
that single isolated client leaving other allocation decisions unoptimized. This is
a clear case of inefficient solution where one may still improve other outcomes
while maintaining fairness (equitability) by leaving at its best possible value the
worst outcome.

The Min-Max solution may be lexicographically regularized according to the
Rawlsian principle of justice [22]. Applying the Rawlsian approach, any two
states should be ranked according to the accessibility levels of the least well–off
individuals in those states; if the comparison yields a tie, the accessibility levels
of the next–least well–off individuals should be considered, and so on. Formal-
ization of this concept leads us to the lexicographic Min-Max optimization. Let
〈a〉 = (a〈1〉, a〈2〉, . . . , a〈m〉) denote the vector obtained from a by rearranging its
components in the non-increasing order. That means a〈1〉 ≥ a〈2〉 ≥ . . . ≥ a〈m〉
and there exists a permutation π of set I such that a〈i〉 = aπ(i) for i ∈ I. Com-
paring lexicographically such ordered vectors 〈y〉 one gets the so-called lex-max
order. The general problem we consider depends on searching for the solutions
that are minimal according to the lex-max order:

lex min
x

{(θ1(f(x)), . . . , θm(f(x))) : x ∈ Q} where θj(y) = y〈j〉 (1)

The lexicographic Min-Max under consideration is related to the problems with
outcomes being minimized. Similar consideration of the maximization problems
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leads to the lexicographic Max-Min solution concept. Obviously, all the results
presented further for the lexicographic Min-Max can be adjusted to the lexico-
graphic Max-Min while preserving assumption that the outcomes are ordered
from the worst one to the best one.

The lexicographic Min-Max solution is known in game theory as the nucle-
olus of a matrix game. It originates from an idea [6] to select from the optimal
strategy set those which allow one to exploit mistakes of the opponent optimally.
It has been later refined to the formal nucleolus definition [21]. The concept was
early considered in the Tschebyscheff approximation [23] as a refinement taking
into account the second largest deviation, the third one and further to be hi-
erarchically minimized. Similar refinement of the fuzzy set operations has been
recently analyzed [7]. Within the telecommunications or network applications
the lexicographic Max-Min approach has appeared already in [2] and now under
the name Max-Min Fairness (MMF) is treated as one of the standard fairness
concepts [16, 20]. The LMM approach has been used for general linear program-
ming multiple criteria problems [1, 12], as well as for specialized problems related
to (multiperiod) resource allocation [9, 11].

Note that the lexicographic minimization in the LMM is not applied to any
specific order of the original criteria. Nevertheless, in the case of linear program-
ming (LP) problems (or generally convex optimization), there exists a domi-
nating objective function which is constant (blocked) on the entire optimal set
of the Min-Max problem [12]. Hence, having solved the Min-Max problem, one
may try to identify the blocked objective and eliminate it to formulate a new
restricted Min-Max problem on the former optimal set. Therefore, the LMM
solution to LP problems can be found by the sequential Min-Max optimization
with elimination of the blocked outcomes.

The LMM approach has been considered also for various discrete optimiza-
tion problems [3, 4, 8] including the location-allocation ones [14]. In discrete mod-
els, due to the lack of convexity there may not exist any blocked outcome [13]
thus disabling possibility of the sequential Min-Max algorithm. In this paper we
analyze capabilities of an effective use of earlier developed ordered cumulated
outcomes methodology [17, 18, 19] to solve the LMM problem by sequential op-
timization of directly defined criteria. We develop and analyze two alternative
approaches allowing to form lexicographic sequential procedures for various non-
convex (possibly discrete) LMM problems. Both the approaches are based on
criteria directly introduced with some LP expansion of the original model.

2 Direct Models

2.1 Ordered Outcomes

The ordered outcomes y〈k〉 used in definition of the LMM solution concept can be
expressed with a direct formula, although requiring the use of integer variables
[24]. Namely, for any k = 1, 2, . . . , m the following formula is valid:

y〈k〉 = min
tk,zkj

{tk : tk − yj ≥ −Mzkj , zkj ∈ {0, 1} ∀j,
m∑

j=1

zkj ≤ k − 1}
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where M is a sufficiently large constant (larger than the span of individual
outcomes yj) which allows one to enforce inequality tk ≥ yj for zkj = 0 while
ignoring it for zkj = 1. Note that for k = 1 all binary variables z1j are forced to 0
thus reducing the optimization in this case to the standard LP model. However,
for any other k > 1 all m binary variables zkj are an important part of the model.
Nevertheless, with the use of auxiliary integer variables, any LMM problem
(either convex or non-convex) can be formulated as the standard lexicographic
minimization with directly given objective functions

lex min
x,tk,zkj

(t1, t2, . . . , tm) s.t. x ∈ Q,

m∑

j=1

zkj ≤ k − 1 ∀ k

tk − fj(x) ≥ −Mzkj , zkj ∈ {0, 1} ∀ j, k

(2)

Let us consider cumulated criteria θ̄k(y) =
∑k

i=1 y〈i〉 expressing, respectively:
the worst (largest) outcome, the total of the two worst outcomes, the total of the
three worst outcomes, etc. When normalized by k the quantities μk(y) = θ̄k(y)/k
can be interpreted as the worst conditional means [17]. Within the lexicographic
optimization a cumulation of criteria does not affect the optimal solution. Hence,
the LMM problem can be formulated as the standard lexicographic minimization
with cumulated ordered outcomes as objective functions

lexmin
x

{(θ̄1(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}

where θ̄k(y) =
∑k

i=1 y〈i〉. This simplifies dramatically the optimization problem
since quantities θ̄k(y) can be optimized without use of any integer variables.
First, let us notice that for any given vector y, the cumulated ordered value
θ̄k(y) can be found as the optimal value of the following LP problem:

θ̄k(y) = max
ukj

{
m∑

j=1

yjukj :
m∑

j=1

ukj = k, 0 ≤ ukj ≤ 1 ∀ j } (3)

The above problem is an LP for a given outcome vector y while it becomes non-
linear for y being a vector of variables. This difficulty can be overcome by taking
advantage of the LP dual to (3). Introducing dual variable tk corresponding to
the equation

∑m
j=1 ukj = k and variables dkj corresponding to upper bounds

on ukj one gets the following LP dual of problem (3):

θ̄k(y) = min
tk,dkj

{ktk +
m∑

j=1

dkj : tk + dkj ≥ yj , dkj ≥ 0 ∀ j} (4)

Due to the duality theory, for any given vector y the cumulated ordered coeffi-
cient θ̄k(y) can be found as the optimal value of the above LP problem.

It follows from (4) that θ̄k(f(x)) = min {ktk +
∑m

j=1(fj(x) − tk)+ : x ∈ Q },
where (.)+ denotes the nonnegative part of a number and tk is an auxiliary
(unbounded) variable. This is equivalent to the computational formulation of the
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k–centrum model introduced in [19]. Hence, formula (4) provides an alternative
proof of that formulation.

Following formula (4), the following assertion is valid for any LMM problem.

Theorem 1. Every optimal solution to the LMM problem (1) can be found as an
optimal solution to a standard lexicographic optimization problem with predefined
linear criteria:

lex min
x,tk,dkj

[t1 +
m∑

j=1

d1j , 2t2 +
m∑

j=1

d2j , . . . , mtm +
m∑

j=1

dmj ]

s.t. x ∈ Q, tk + dkj ≥ fj(x), dkj ≥ 0 ∀ j, k

(5)

This direct lexicographic formulation remains valid for nonconvex (e.g. discrete)
feasible sets Q, where the standard sequential approaches [11, 12] are not ap-
plicable [14]. Note that model (5) does not use integer variables and it can be
considered as an LP expansion of the original Min-Max problem. Thus, this
model preserves the problem’s convexity if the original problem is defined with a
convex feasible set Q and a linear objective functions fj . The size of the problem
is quadratic with respect to the number of outcomes (m2 +m auxiliary variables
and m2 constraints).

2.2 Ordered Values

For some specific classes of discrete, or rather combinatorial, optimization prob-
lems, one may take advantage of the finiteness of the set of all possible values of
functions fj on the finite set of feasible solutions. The ordered outcome vectors
may be treated as describing a distribution of outcomes generated by a given de-
cision x. In the case when there exists a finite set of all possible outcomes of the
individual objective functions (or the set of outcome values can be restricted to
its finite approximation, i.e. with fuzzy modeling), one can directly describe the
distribution of outcomes with frequencies of outcomes. Let V = {v1, v2, . . . , vr}
(where v1 > v2 > . . . > vr) denote the set of all attainable outcomes (all pos-
sible values of the individual objective functions fj for x ∈ Q). We introduce
integer functions hk(y) (k = 1, 2, . . . , r) expressing the number of values vk in
the outcome vector y. Having defined functions hk we can introduce cumulative
distribution functions h̄k(y) =

∑k
l=1 hl(y) where h̄r(y) = m for any outcome

vector. Function h̄k expresses the number of outcomes larger or equal to vk. Since
we want to minimize all the outcomes, we are interested in the minimization of
all functions h̄k for k = 1, 2, . . . , r − 1. Indeed, the LMM solution concept can
be expressed in terms of the standard lexicographic minimization problem with
objectives h̄k(f(x)) [13].

Theorem 2. In the case of finite outcome set f(Q) = V m, the LMM problem
(1) is equivalent to the standard lexicographic optimization problem with r − 1
criteria:

lex min
x

{(h̄1(f(x)), . . . , h̄r−1(f(x))) : x ∈ Q} (6)
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Unfortunately, for functions h̄k there is no simple analytical formula allowing to
minimize them without use of some auxiliary integer variables. This difficulty
can be overcome by taking advantages of possible weighting and cumulating
criteria in lexicographic optimization. Namely, for any positive weights wi the
lexicographic optimization

lex min
x

{(w1h̄1(f(x)), w1h̄1(f(x)) + w2h̄2(f(x)), . . . ,
r−1∑

i=1

wlh̄i(f(x))) : x ∈ Q}

is equivalent to (6). Let us cumulate vector h̄(y) weights wi = vi − vi+1 to get

ĥk(y) =
k−1∑

i=1

(vi − vi+1)h̄i(y) =
k−1∑

i=1

(vi − vk)hi(y) =
m∑

j=1

(yj − vk)+

where quantities ĥk(f(y)) for k = 2, 3, . . . , r represent the total exceed of out-
comes over the corresponding values vk. Due to the use of positive weights wi > 0,
the lexicographic problem (6) is equivalent to the lexicographic minimization

lex min
x

{(ĥ2(f(x)), . . . , ĥr(f(x))) : x ∈ Q}

Moreover, criteria defined this way are piecewise linear convex functions [13]
which allow to compute them directly by the minimization:

ĥk(y) = min
vk,hkj

{
m∑

j=1

hkj : hkj ≥ yj − vk, hkj ≥ 0 ∀ j}

Therefore, the following assertion is valid for any LMM problem.

Theorem 3. In the case of finite outcome set f(Q) = V m, every optimal solu-
tion to the LMM problem (1) can be found as an optimal solution to a standard
lexicographic optimization problem with predefined linear criteria:

lex min
x,vk,hkj

[
m∑

j=1

h2j ,

m∑

j=1

h3j , . . . ,

m∑

j=1

hrj]

s.t. x ∈ Q, hkj ≥ fj(x) − vk, hkj ≥ 0 ∀ j, k

(7)

Formulation (7) does not use integer variables and can be considered as an LP
expansion of the original problem. Thus, this model preserves the problem’s
convexity if the original problem is defined with a convex feasible set Q and
objective functions fj. The size of the problem depends on the number of dif-
ferent outcome values. For many models with not too large number of outcome
values, the problem can easily be solved directly and even for convex problems
such an approach may be more efficient than the sequential algorithms. Note
that in many problems of systems optimization the objective functions express
the quality of service and one can easily consider a limited finite scale (grid) of
the corresponding outcome values (possibly fuzzy values).
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3 Computational Experiments

We have run initial tests to analyze the computational performances of both
direct models for the LMM problem. For this purpose we have solved randomly
generated (discrete) location problems defined as follows. There is given a set
of m clients. There is also given a set of n potential locations for the facilities,
in particular, we considered all points representing the clients as valid potential
locations (n = m). Further, the number (or the maximal number) p of facilities
to be located is given (p ≤ n). The main decisions to be made in the location
problem can be described with the binary variables: xi equal to 1 if location i is
to be used and equal to 0 otherwise (i = 1, 2, . . . , n). The allocation decisions are
modeled with the additional allocation variables: x′

ij equal to 1 if location i is
used to service client j and equal to 0 otherwise (i = 1, 2, . . . , n; j = 1, 2, . . . , m).

n∑

i=1

xi = p,

n∑

i=1

x′
ij = 1 j = 1, 2, . . . , m

x′
ij ≤ xj , xj , x′

ij ∈ {0, 1} i = 1, 2, . . . , n; j = 1, 2, . . . , m

(8)

For each client j a function fj(x) of the location pattern x has been defined
to measure the outcome (effect) of the location pattern for client j. Individual
objective functions fj depend on effects of several allocations decisions. It means
they depend on allocation effect coefficients dij > 0 (i = 1, . . . , m; j = 1, . . . , n),
called hereafter simply distances as they usually express the distance (or travel
time) between location i and client j. For the standard uncapacitated location
problem it is assumed that all the potential facilities provide the same type of
service and each client is serviced by the nearest located facility. With the explicit
use of the allocation variables and the corresponding constraints the individual
objective functions fj can be written in the linear form: fj(x) =

∑n
i=1 dijx

′
ij .

There should be found the location pattern x lexicographically minimaximizing
the vector of individual objective functions (fj(x))j=1,...,m.

For the tests we used two-dimensional discrete location problems. The loca-
tions of the clients were defined by coordinates being the multiple of 5 generated
as random numbers uniformly distributed in the interval [0, 100]. In the compu-
tations we used rectilinear distances. We tested solution times for different size

Table 1. Computation times (in seconds) for the ordered outcomes approach

number of number of facilities (p)
clients (m) 1 2 3 5 7 10 15

2 0.1
5 0.0 0.0 0.1
10 0.7 1.5 1.4 0.9 0.4
15 4.7 15.2 14.6 10.8 6.5 4.4
20 13.2 54.0 118.6 84.7 60.9 26.9 11.0
25 36.6 − − − − − 67.4
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parameters m and p. All the experiments were performed on the PC computer
with Pentium 4, 1.7 Ghz processor employing the CPLEX 9.1 package.

Tables 1 and 2 present solution times for two approaches being analyzed.
The times are the averages of 10 randomly generated problems. The empty cell
(minus sign) shows that the timeout of 120 seconds occurred. One can see fast
growing times for the ordered outcomes approach with increasing number of
clients (criteria). The growth is faster than the corresponding growth of the

Table 2. Computation times (in seconds) for the ordered values approach

number of number of facilities (p)
clients (m) 1 2 3 5 7 10 15

2 0.0
5 0.1 0.0 0.0
10 0.2 0.1 0.1 0.0 0.0
15 0.7 0.7 0.3 0.1 0.1 0.0
20 1.7 2.5 2.6 1.2 0.3 0.1 0.1
25 3.4 8.8 2.7 0.8 1.7 0.4 0.2

Table 3. Computation times (in seconds) of algorithms steps (m = 20)

ordered outcomes ordered values
step approach approach

number p = 1 p = 3 p = 5 p = 1 p = 3 p = 5
1 0.8 3.5 3.2 0.0 0.0 0.1
2 2.0 5.2 4.4 0.1 0.1 0.0
3 1.2 4.4 4.1 0.1 0.1 0.2
4 1.1 4.5 4.4 0.1 0.2 0.1
5 0.8 4.3 4.3 0.0 0.2 0.3
6 0.9 4.7 4.7 0.1 0.2 0.2
7 0.8 5.1 4.9 0.1 0.4 0.2
8 0.7 5.9 5.6 0.0 0.3 0.1
9 0.8 5.9 5.0 0.1 0.3 0.0
10 0.7 12.5 5.5 0.0 0.3
11 0.9 7.7 6.5 0.1 0.3
12 0.7 6.0 6.2 0.0 0.1
13 0.4 6.8 5.7 0.1 0.1
14 0.3 7.8 5.0 0.0 0.0
15 0.3 8.1 4.4 0.0
16 0.2 6.8 3.3 0.1
17 0.2 6.6 2.8 0.0
18 0.2 3.7 1.8 0.0
19 0.1 6.3 1.5 0.1
20 0.1 2.8 1.4 0.0

21 − 30 0.6
31 − 34 0.0
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problem sizes. Actually, it turns out that the solution times for the ordered
outcomes model (5) are not significantly better (and in some instances even
worse) that those for model (2), despite the latter uses auxiliary integer variables.
On the other hand, the ordered values approach performs very well particularly
with the number of the clients increasing. In fact, in this approach the number
of steps depends not on the number of clients but on the number of different
values of distances and this is constant. Moreover, the ordered values approach
requires less steps for bigger number of facilities. This is due to the fact that the
largest distance in the experiments does not exceed 200/p.

Table 3 shows how introduction of the auxiliary constraints affects the per-
formance in consecutive steps of the algorithms. One can notice that the ordered
values technique generates MIP problems that are solved below 0.3 sec. (below
0.1 for p = 1) while the ordered outcomes problems require much longer compu-
tations. Despite a similar structure of auxiliary constraints in both approaches,
the ordered values problems are much easier to solve. This property addition-
ally contributes to the overall outperformance of the former and supports the
attractiveness of the ordered values algorithm even for problems with the large
number of different outcome values.

4 Concluding Remarks

The point-wise ordering of outcomes causes that the Lexicographic Min-Max
optimization problem is, in general, hard to implement. We have analyzed op-
timization models allowing to form lexicographic sequential procedures for vari-
ous nonconvex (possibly discrete) LMM optimization problems. Two approaches
based on some LP expansion of the original model remain relatively simple for
implementation independently of the problem structure. However, the ordered
outcomes model performs similarly to the classical model with integer variables
used to implement ordering and it is clearly outperfomed by the ordered val-
ues approach. Further work on specialized algorithms (including heuristics) for
the ordered values approach to various classes of discrete optimization problems
seems to be a very promising research direction.
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