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Abstract. The problem of aggregating multiple criteria to form an over-
all measure is of considerable importance in many disciplines. The or-
dered weighted averaging (OWA) aggregation, introduced by Yager, uses
weights assigned to the ordered values rather than to the specific crite-
ria. This allows one to model various aggregated preferences, preserving
simultaneously the impartiality (neutrality) with respect to the individ-
ual criteria. However, importance weighted averaging is a central task in
multicriteria decision problems of many kinds. It can be achieved with
the Weighted OWA (WOWA) aggregation, introduced by Torra, cover-
ing both the weighted means and the OWA averages as special cases. In
this paper we analyze the monotonicity properties of the WOWA aggre-
gation with respect to changes of importance weights. In particular, we
demonstrate that a rank reversal phenomenon may occur in the sense
that increasing the importance weight for a given criterion may enforce
the opposite WOWA ranking than that imposed by the criterion values.
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1 Introduction

Consider a decision problem defined by m criteria. That means the decisions are
characterized by m-dimensional outcome vectors η = (η1, η2, . . . , ηm). In order
to make the multicriteria model operational for the decision support process,
one needs to assume some aggregation function a : Rm → R. The aggregated
value can then be optimized (maximized or minimized).

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . ,m) are allocated to several criteria

Ap(η) =

m∑

i=1

piηi (1)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1). However, the
weighted mean while being able to define the importance of criteria is not able to
model the decision maker’s preferences regarding the distribution of outcomes.
The latter is crucial when aggregating (normalized) uniform achievement criteria
like those used in the fuzzy optimization methodologies [18] as well as in the goal
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programming and the reference point approaches to multiple criteria decision
support [7]. In stochastic problems uniform objectives may represent various
possible values of the same (uncertain) outcome under several scenarios [6].

The preference weights can be effectively introduced with the so-called Or-
dered Weighted Averaging (OWA) aggregation function developed by Yager [16].
In the OWA aggregation the weights are assigned to the ordered values (i.e. to
the smallest value, the second smallest and so on) rather than to the specific cri-
teria. Since its introduction, the OWA aggregation has been successfully applied
to many fields of decision making [18,19].

The OWA operator is able to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one. On the
other hand, the OWA is not able to allocate any importance weights to specific
criteria. Actually, the weighted mean (1) cannot be expressed in terms of the
OWA aggregations.

Importance weighted averaging is a central task in multicriteria decision prob-
lems of many kinds, such as selection, classification, object recognition, and in-
formation retrieval. Therefore, several attempts have been made to incorporate
importance weighting into the OWA operator [17,2]. Finally, Torra [13] has in-
troduced the Weighted OWA (WOWA) aggregation defined by two weighting
vectors: the preferential weights w and the importance weights p. It covers both
the weighted means (defined with p) and the OWA averages (defined with w) as
special cases. Actually, the WOWA average is reduced to the weighted mean in
the case of equal preference weights and it becomes the standard OWA average
in the case of equal importance weights. Since its introduction, the WOWA oper-
ator has been successfully applied to many fields of decision making [15,9,10,7,8]
including metadata aggregation problems [1,5].

While considering the importance weighting of the criteria one may expect
some monotonicity properties of the aggregation with respect to the (relative)
increase of a given importance weight. The basic stability requirements with re-
spect to a given importance weight can be formalized as two properties: rank
stability and asymptotic monotonicity. We say that an aggregation satisfies the
rank stability property if whenever the aggregation ranks two vectors consis-
tently with the inequality on a given criterion it preserves this ranking for any
positive increase of importance weight for the given criterion. If despite that for
some importance weights the aggregation ranks two vectors consistently with
the relation on a given criterion, a positive increase of importance weight for the
given criterion may result in an opposite inequality, we say that the rank reversal
phenomenon occurs. We say that an aggregation satisfies the asymptotic mono-
tonicity property if for any importance weights independently from the relation
between the aggregation values for two vectors, a sufficiently large increase of the
importance weight for a given criterion enforces the aggregation ranking consis-
tently with the inequality on the given criterion values. Both stability properties
are satisfied by the weighted mean (1). We analyze how the WOWA aggrega-
tion models the importance weighting stability properties. Unfortunately, we are
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able to show a possible rank reversal phenomenon which may be considered a
serious flaw of the WOWA importance weighting scheme. However, the WOWA
aggregation fulfills the asymptotic monotonicity property.

The paper is organized as follows. In the next section we formally introduce
the WOWA operator and recall some alternative computational formula based
on the Lorenz curves. In Section 3 we show some examples of the rank rever-
sal phenomenon for the WOWA aggregation. Next, in Section 4 we prove the
asymptotic monotonicity showing required levels for sufficiently large increase of
the importance weight for various special cases of the WOWA aggregation.

2 WOWA Aggregation

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and

∑m
i=1 wi = 1. The corresponding OWA aggregation of

outcomes η = (η1, . . . , ηm) can be mathematically formalized as follows [16]. Let
〈η〉 = (η〈1〉, η〈2〉, . . . , η〈m〉) denote the vector obtained from η by rearranging its
components in the non-increasing order. That means η〈1〉 ≥ η〈2〉 ≥ . . . ≥ η〈m〉
and there exists a permutation τ of set I = {1, . . . ,m} such that η〈i〉 = ητ(i)
for i = 1, . . . ,m. Further, we apply the weighted sum aggregation to ordered
outcome vectors 〈η〉, i.e. the OWA aggregation has the following form:

OWAw(η) =

m∑

i=1

wiη〈i〉 (2)

Due to the strict monotonicity of the OWA aggregation with positive weighting
vectors [4], the OWA optimization generates a Pareto optimal solution.

The OWA aggregation (2) allows to model various aggregation functions from
the maximum (w1 = 1, wi = 0 for i = 2, . . . ,m) through the arithmetic mean
(wi = 1/m for i = 1, . . . ,m) to the minimum (wm = 1, wi = 0 for i = 1, . . . ,m−
1). However, the weighted mean (1) cannot be expressed as an OWA aggregation.
Actually, the OWA aggregations are symmetric (impartial, neutral) with respect
to the individual criteria and it does not allow to represent any importance
weights allocated to specific criteria.

Importance weighted averaging is a central task in multicriteria decision prob-
lems of many kinds and the ordered averaging model enables one to introduce
importance weights to affect criteria importance by rescaling accordingly its mea-
sure within the distribution of achievements as defined in the so-called Weighted
OWA (WOWA) aggregation [13]. Let w = (w1, . . . , wm) be OWA weights and
let p = (p1, . . . , pm) be an additional importance weighting vector such that
pi ≥ 0 for i = 1, . . . , n and

∑m
i=1 pi = 1. The corresponding Weighted OWA

aggregation of achievements η = (η1, . . . , ηm) is defined as follows [13]:

WOWAw,p(η) =

m∑

i=1

vi(p, η)η〈i〉 (3)
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where weights vi are defined as

vi(p, η) = ϕ(
∑

k≤i

pτ(k))− ϕ(
∑

k<i

pτ(k)) (4)

with ϕ a monotone increasing function that interpolates points ( i
m ,

∑
k≤i wk)

together with point (0.0) and τ representing the ordering permutation for η
(i.e., ητ(i) = η〈i〉). Moreover, function ϕ is required to be a straight line when
the point can be interpolated in this way, thus allowing the WOWA to cover the
standard weighted mean with weights pi as a special case of equal OWA weights
(wi = 1/m for i = 1, . . . ,m). Indeed, the WOWA defined by (3)–(4) as OWA
aggregation with modified preferential weights may be rewritten as the weighted
mean with modified weights:

WOWAw,p(η) =
m∑

i=1

πi(p, η)ηi (5)

where the weights πi are defined as

πi(p, η) = ϕ(pi +
∑

k<τ(i)

pτ(k))− ϕ(
∑

k<τ(i)

pτ(k)). (6)

Actually, the WOWA aggregation is a special case of the rank dependent util-
ity [12] with a piecewise linear probability weighting function ϕ defined by the
importance weights.

The WOWA may be expressed with a more direct formula where preferential
(OWA) weights wi are applied to the averages of the corresponding portions
of ordered outcomes (quantile intervals) according to the distribution defined
by importance weights pi [9]. Note that one may alternatively compute the
WOWA values by using rational importance weights to replicate the correspond-
ing achievements and then calculate the OWA aggregations. This approach can
be generalized to any real importance weights and the WOWA aggregation can
be equivalently defined as follows [9]:

WOWAw,p(η) =

m∑

i=1

wim

∫ i
m

i−1
m

F
(−1)

η (ξ) dξ (7)

where F
(−1)

η is the stepwise function F
(−1)

η (ξ) = η〈k〉 for
∑

j<k pτ(j) < ξ ≤∑
j≤k pτ(j), for k = 1, . . . ,m with τ representing the ordering permutation for

η (i.e., ητ(k) = η〈k〉). It can also be mathematically formalized as the quantile
function defined as the left-continuous inverse of the decumulative distribution
function, i.e., F

(−1)

η (ξ) = sup {z : F η(z) ≥ ξ} for 0 < ξ ≤ 1 with F η(z) =∑n
i=1 piζi(z) where ζi(z) = 1 if ηi ≥ z and 0 otherwise.
Formula (7), defining the WOWA value by applying preferential weights wi

to importance weighted averages within quantile intervals, may be reformulated
with the tail averages (Lorenz components):

WOWAw,p(η) =

m∑

k=1

wkmL(η,p,
k

m
) where L(η,p, ξ) =

∫ ξ

0

F
(−1)

η (ζ)dζ (8)
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and differential weights

wk = wk − wk+1 for k = 1, . . . ,m− 1 and wm = wm (9)

Note that the differential weights wi are positive in the case of positive and
strictly decreasing preferential (OWA) weights w1 > w2 > . . . > wm > 0. Graphs
of functions L(η,p, ξ) (with respect to ξ) take the form of concave piecewise
linear curves, the so-called (upper) absolute Lorenz curves. Moreover, values of
function L(η,p, ξ) for any 0 ≤ ξ ≤ 1 can be given by linear programming (LP)
optimization which enables the WOWA minimization to be implemented with a
LP model [9], in the case of positive and decreasing preferential (OWA) weights
w1 ≥ w2 ≥ . . . ≥ wm > 0.

Applying the WOWA aggregation to a multiple criteria optimization problem
we get the WOWA optimization model. For any positive weights w and p, the
WOWA aggregation is strictly monotonic [7]. Therefore, the WOWA optimal
solutions are then Pareto-optimal.

3 Rank Reversal

When considering the importance weighting of the criteria one may expect some
monotonicity properties of the aggregation with respect to changes of the im-
portance weights. Note that for any vector of importance weights p any positive
increase of a given importance weight must be accompanied by decrease of some
other weights. We will focus on weights changes represented by a positive increase
of a given importance weight pio with proportional decrease of other weights,
i.e., we will consider a parameterized importance weight modification

p(ε) =
1

1 + ε
(p+ εeio) with ε > 0 (10)

where ei denotes the ith unit vector. The basic stability requirements with re-
spect to a given importance weight can be formalized as two properties: rank
stability and asymptotic monotonicity.

Rank stability and rank reversal. Let η′ and η′′ be vectors such that η′io < η′′io
for a criterion io ∈ I. We say that an aggregation satisfies the rank stability
property if whenever for any importance weights p, the aggregation of η′ is less
or equal to that for η′′, then this inequality remains valid for any positive increase
of importance weight pio with proportional decrease of other weights. If despite
that for some importance weights p the aggregation of η′ is less than that for
η′′, a positive increase of importance weight pio with proportional decrease of
other weights may result in opposite inequality, we say that the rank reversal
phenomenon occurs.

Asymptotic monotonicity. Let η′ and η′′ be vectors such that η′io < η′′io for a
criterion io ∈ I. We say that an aggregation satisfies the asymptotic monotonic-
ity property if for any importance weights p independently from the relation
between the aggregation values of η′ and η′′, a sufficiently large increase of im-
portance weight pio with proportional decrease of other weights enforces the
aggregation ranking consistently with inequality η′io < η′′io .
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One may notice that both the stability properties are satisfied by the weighted
mean (1). Indeed, for any vectors η′, η′′ and importance weights p, while increas-
ing importance weight pio with proportional decrease of other weights, following
(10) one gets

Ap(ε)(η
′)−Ap(ε)(η

′′) =
m∑

i=1

pi(ε)(η
′
i − η′′i )

=
1

1 + ε

m∑

i=1

pi(η
′
i − η′′i ) +

ε

1 + ε
(η′io − η′′io)

=
1

1 + ε
(Ap(η

′)−Ap(η
′′)) +

ε

1 + ε
(η′io − η′′io)

(11)

This leads to the following statements.

Proposition 1. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a crite-
rion io ∈ I. If Ap(η

′) ≤ Ap(η
′′) for some importance weights p, then any positive

increase of importance weight pio with proportional decrease of other weights, fol-
lowing (10), results in strict inequality on averages Ap(ε)(η

′) < Ap(ε)(η
′′).

Proposition 2. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any vector of importance weights p, a sufficiently large
increase of importance weight pio with proportional decrease of other weights,
following (10) with

ε >
max{Ap(η

′)−Ap(η
′′), 0}

η′′io − η′io
results in strict inequality on averages Ap(ε)(η

′) < Ap(ε)(η
′′).

Unfortunately, the WOWA aggregation does not guarantee the rank stability.
We will show that the rank reversal phenomenon may occur for the WOWA
aggregation even in a simple case of ordered vectors. Consider two vectors η′ =
(1000, 102, 10) and η′′ = (1000, 100, 12). While introducing preferential weights
w = (0.8, 0.1, 0.1) and assuming an equal importance of all the criteria, i.e.
p = (1/3, 1/3, 1/3), one gets:

WOWAw,p(η
′) = OWAw(η′) = 0.8 · 1000 + 0.1 · 102 + 0.1 · 10 = 811.2

WOWAw,p(η
′′) = OWAw(η′′) = 0.8 · 1000 + 0.1 · 100 + 0.1 · 12 = 811.2

Thus with equally important criteria WOWAw,p(η
′) = WOWAw,p(η

′′) and ac-
cording to the ordered aggregation both the vectors are equally good.

Suppose one wish to consider criterion η3 as much more important, say 4
times more important than those related to the first or second criterion. For
this purpose, importance weights p̄ = (1/6, 1/6, 2/3) are introduced. Note that
p̄ may be understood as a result of increasing p3 by 1 and renormalizing all
weights, i.e., p̄ = 1

1+ε (p + εe3) with ε = 1. Since η′3 < η′′3 , one may expect
WOWAw,p̄(η

′) < WOWAw,p̄(η
′′). However this is not the case, as we show

now.
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Fig. 1. Definition of function ϕ for w = (0.8, 0.1, 0.1) and WOWA weights vi for
equally important attributes p = (1/3, 1/3, 1/3) and vectors η with ordered coefficients
η1 ≥ η2 ≥ η3

To take into account the importance weights in the WOWA aggregation (3)
we introduce the piecewise linear function ϕ (Fig. 1):

ϕ(ξ) =

⎧
⎨

⎩

2.4ξ for 0 ≤ ξ ≤ 1/3
0.8 + 0.3(ξ − 1/3) for 1/3 < ξ ≤ 2/3
0.9 + 0.3(ξ − 2/3) for 2/3 < ξ ≤ 1.0

(12)

Actually, since vectors η′ and η′′ are both already ordered, the ordered weights vi
are identical for both of them vi(p, η

′) = vi(p, η
′′) = vi(p). In the case of equal

importance weights p = (1/3, 1/3, 1/3), obviously, vi(p) = wi (as presented in
Fig. 1). Calculating weights vi according to formula (4) with function ϕ given by
(12), as illustrated in Fig. 2, one gets v1(p̄) = ϕ(1/6) = 0.4, v2(p̄) = ϕ(1/3)−
ϕ(1/6) = 0.4 and v3(p̄) = 1− ϕ(1/3) = 0.2. Hence,

WOWAw,p̄(η
′) = 0.4 · 1000 + 0.4 · 102 + 0.2 · 10 = 442.8

WOWAw,p̄(η
′′) = 0.4 · 1000 + 0.4 · 100 + 0.2 · 12 = 442.4

Thus, despite η′′3 is 20% larger than η′3 while η′′2 is only 2% smaller than η′2,
an increase of the importance weight for the third criterion results in a lower
WOWA evaluation of η′′ in comparison to η′.

Compare with the same weights vector η′ = (1000, 102, 10) with η′′′ =
(1000, 100, 13). Assuming an equal importance of all criteria, i.e. p =
(1/3, 1/3, 1/3), one gets:

WOWAw,p(η
′) = OWAw(η′) = 0.8 · 1000 + 0.1 · 102 + 0.1 · 10 = 811.2

WOWAw,p(η
′′′) = OWAw(η′′′) = 0.8 · 1000 + 0.1 · 100 + 0.1 · 13 = 811.3

Thus with equally important criteria WOWAw,p(η
′) is a little bit smaller than

WOWAw,p(η
′′′) similar to inequality on the third criterion η′3 < η′′′3 . Consider
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Fig. 2. Definition of WOWA weights vi with w = (0.8, 0.1, 0.1) and p̄ = (1/6, 1/6, 2/3)
for vectors η with ordered coefficients η1 ≥ η2 ≥ η3

now criterion η3 as 4 times more important than those related to the first or
second criterion, i.e., importance weights p̄ = (1/6, 1/6, 2/3). Since, the vectors
are already ordered, the corresponding ordered weights calculation remains the
same as for the earlier comparison of vectors η′ and η′′ (see Fig. 2). Hence,

WOWAw,p̄(η
′′′) = 0.4·1000+0.4·100+0.2·13 = 442.6 < 442.8 = WOWAw,p̄(η

′)

Thus, despite that for equal importance weights the WOWA aggregation ranks
vectors η′ and η′′′ consistently with the inequality on the third criterion, increas-
ing the importance weight for this criterion results in a rank reversal. Note that
this phenomenon occurs despite η′′′3 is 30% larger than η′3 while η′′′2 is only 2%
smaller than η′2.

Since our examples are built on ordered vectors, the WOWA rank reversal
phenomenon can easily be explained with an analysis of the graph of function
ϕ. Note that in the case of equal importance weights (Fig. 1), weight v1 is
defined by an interval on a high slope segment of ϕ whereas both v2 and v3 are
defined on a lower slope segment. While increasing the importance weight for η3
one gets increased v3 due to expanded interval. Intervals defining v1 and v2 are
appropriately decreased. However, while v1 is indeed decreased, v2 is actually
increased since a smaller interval is applied to a higher slope, as the expansion
of p̄3 pushes p̄2 on the high slope segment of function ϕ.

4 Asymptotic Monotonicity

In the previous section, we have given a counterexample illustrating that rank
stability may not hold for the WOWA aggregation. Now, we show that nonethe-
less it satisfies asymptotic monotonicity and we give the required levels of im-
portance weight change to guarantee it.
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The WOWA aggregation is continuous with respect to importance weights.
Therefore, it obviously fulfills the property of asymptotic monotonicity. Note that
for any outcome vectors η′ and η′′ such that η′io < η′′io for a criterion io ∈ I, one
gets WOWAw,p̄(η

′) < WOWAw,p̄(η
′′) with p̄ = eio = limε→∞ p(ε), following

(10). Indeed, the following statement can be directly proven.

Proposition 3. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any positive preferential weights wi ≥ 0 and any vector of
importance weights p, a sufficiently large increase of importance weight pio with
proportional decrease of other weights, following (10) with ε > Δ

Δ = max

⎧
⎨

⎩

max
i	=io

(η′i − η′′i )max
k∈I

wk

(η′′io − η′io)min
k∈I

wk
, 0

⎫
⎬

⎭+
2max

i∈I
|η′′i |(max

k∈I
wk −min

k∈I
wk)

(η′′io − η′io )min
k∈I

wk

results in strict inequality WOWAw,p(ε)(η
′) < WOWAw,p(ε)(η

′′).

Proof. Note that following (5), one gets

WOWAw,p(ε)(η
′)−WOWAw,p(ε)(η

′′) =
m∑

i=1

πi(p(ε), η
′)η′i −

m∑

i=1

πi(p(ε), η
′′)η′′i

=

m∑

i=1

πi(p(ε), η
′)(η′i − η′′i ) +

m∑

i=1

(πi(p(ε), η
′)− πi(p(ε), η

′′))η′′i

and from (6), one gets for any outcome vector η

mpi(ε)min
k∈I

wk ≤ πi(p(ε), η) ≤ mpi(ε)max
k∈I

wk,

1−m(1− pi(ε))max
k∈I

wk ≤ πi(p(ε), η) ≤ 1−m(1− pi(ε))min
k∈I

wk.

Hence, |πi(p(ε), η
′)− πi(p(ε), η

′′)| ≤ m(max
k∈I

wk −min
k∈I

wk)min{pi(ε), 1− pi(ε)},
πio(p(ε), η

′) ≥ mpio(ε)min
k∈I

wk, πi(p(ε), η
′) ≤ mpi(ε)max

k∈I
wk for i �= io and

WOWAw,p(ε)(η
′)−WOWAw,p(ε)(η

′′)
≤ m[min

k∈I
wkpio(ε)(η

′
io − η′′io ) + max

k∈I
wk

∑

i	=io

pi(ε)max{max
i	=io

η′i − η′′i , 0}]

+m(max
k∈I

wk −min
k∈I

wk)[(1− pio(ε))|η′′io |+
∑

i	=io

pi(ε)max
i	=io

|η′′i |]

≤ mmin
k∈I

wk[pio(ε)− (1− pio(ε))Δ](η′io − η′′io).

Thus, for large enough ε > Δ one gets pio(ε) = (pio + ε)/(1 + ε) > Δ/(1 +Δ)
and thereby WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

Proposition 3 states that when having a WOWA optimal solution with a non
satisfactory achievement for criterion io, one may increase the importance of this
criterion, e.g., by setting new importance weights p(ε)io = (pio + ε)/(1 + ε) and
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p(ε)i = pi/(1 + ε) for all i �= io. For a sufficiently large increment ε, following
Proposition 3 it will exclude solutions with worse resulting values for criterion io.
However, the required amount of the weight increase for a general case, following
Δ in Proposition 3 is impracticably large. It can be reduced for special types of
the WOWA operators like for the case of monotonic preferential weights which
is well suited for decisions under risk [10] or fair optimization [11].

Note that, following (8), we have

WOWAw,p(η
′)−WOWAw,p(η

′′) =
m∑

i=1

wkm[L(η′,p,
k

m
)− L(η′′,p,

k

m
)]

where wk are positive differential OWA weights defined as (9) and

L(η′,p, ξ)− L(η′′,p, ξ) = max
u∈U(p,ξ)

m∑

i=1

η′iui − max
u∈U(p,ξ)

m∑

i=1

η′′i ui

with U(p, ξ) = {u = (u1, . . . , um) :

m∑

i=1

ui = ξ, 0 ≤ ui ≤ pi i ∈ I}. Hence,

L(η′,p, ξ)− L(η′′,p, ξ) ≤
m∑

i=1

η′iūi(ξ)−
m∑

i=1

η′′i ūi(ξ) =
m∑

i=1

(η′i − η′′i )ūi(ξ) (13)

where ū(ξ) is an optimal solution to the problem maxu∈U(p,ξ)

∑m
i=1 η

′
iui.

Proposition 4. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I and η′io ≥ η′i for all i ∈ I. For any positive and decreasing
preferential weights w1 ≥ w2 ≥ . . . ≥ wm > 0 and any vector of importance
weights p, a sufficiently large increase of importance weight pio with proportional
decrease of other weights, following (10) with ε > Δ

Δ = max

{
max
i	=io

η′i − η′′i
η′′io − η′io

, 0

}

results in strict inequality WOWAw,p(ε)(η
′) < WOWAw,p(ε)(η

′′).

Proof. Applying inequality (13) to importance weights p(ε) one gets

L(η′,p(ε), ξ)− L(η′′,p(ε), ξ) ≤ [ūio(ξ)−Δ
∑

i	=io

ūi(ξ)](η
′
io − η′′io )

where, due to η′io ≥ η′i for all i, ūio(ξ) = min{ξ, pio(ε)} and ūi(ξ) ≤ min{ξ −
ūio(ξ), pi(ε)} for all i �= io. Hence,

L(η′,p(ε), ξ)− L(η′′,p(ε), ξ) ≤
⎧
⎨

⎩

ξ(η′io − η′′io) ξ ≤ pio(ε)

(pio(ε)−Δ
∑

i	=io

pi(ε))(η
′
io − η′′io) ξ > pio(ε)
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Therefore, for a large enough ε > Δ one gets pio(ε) > Δ/(1 + Δ) and
pio(ε)−Δ(1− pio(ε)) > 0. Thus L(η′,p(ε), ξ) < L(η′′,p(ε), ξ) for any 0 < ξ ≤ 1
and, due to nonnegative differential weights w̄k, inequality WOWAw,p(ε)(η

′) <
WOWAw,p(ε)(η

′′) is valid.

Proposition 5. Let η′ and η′′ be outcome vectors such that η′io < η′′io for a
criterion io ∈ I. For any positive and decreasing preferential weights w1 ≥ w2 ≥
. . . ≥ wm > 0 and any vector of importance weights p, a sufficiently large
increase of importance weight pio with proportional decrease of other weights,
following (10) with ε > Δ

Δ = max

{
max
i	=io

(η′i − η′′i )w1

(η′′io − η′io )wm
, 0

}

results in strict inequality WOWAw,p(ε)(η
′) < WOWAw,p(ε)(η

′′).

Proof. Let δ = max{maxi	=io (η
′
i − η′′i ), 0}/(η′′io − η′io). Applying inequality (13)

to importance weights p(ε) one gets

WOWAw,p(ε)(η
′)− WOWAw,p(ε)(η

′′)

≤
m∑

k=1

wkm[ūio(
k

m
)− δ

∑

i	=io

ūi(
k

m
)](η′io − η′′io)

≤ m[wmpio(ε)− δw1

∑

i	=io

pi(ε)](η
′
io − η′′io)

since ūio(
k
m ) ≥ 0 for all k, ūio(

m
m ) = pio(ε), and ūi(

k
m ) ≤ pi(ε) for all i. Thus,

for a large enough ε > Δ one gets pio(ε) > Δ/(1 +Δ) = δw1/(δw1 + wm) and
thereby WOWAw,p(ε)(η

′) < WOWAw,p(ε)(η
′′).

5 Concluding Remarks

In this paper, we have investigated the monotonicity of WOWA with respect to
weight perturbations in favor of a single criterion. Contrary to intuition, there
exist configurations where such an improvement in favor of a criterion io impact
negatively the performance of the optimal solution on that criterion. This may
reduce the controllability of WOWA when used as a scalarizing function in inter-
active exploration of feasible solutions. Hopefully, we also have established posi-
tive results showing that some controllability can be ensured for sufficiently large
weight improvements. Our results show that the WOWA importance weighting
mechanism alone is insufficient for effective multiple criteria preference model-
ing. For this purpose the WOWA aggregation should be supported by additional
control parameters like aspiration levels in the reference point methods [7]. We
think similar studies are worth investigating for a more general class of aggre-
gation operators, such as Choquet integrals.
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