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Abstract. The Reference Point Method (RPM) is an interactive tech-
nique formalizing the so-called quasi-satisficing approach to multiple cri-
teria optimization. The DM’s preferences are there specified in terms of
reference (target) levels for several criteria. The reference levels are fur-
ther used to build the scalarizing achievement function which generates
an efficient solution when optimized. Typical RPM scalarizing functions
are based on the augmented min-max aggregation where the worst indi-
vidual achievement minimization process is additionally regularized with
the average achievement. The regularization by the average achievement
is easily implementable but it may disturb the basic min-max model.
We show that the OWA regularization allows one to overcome this flaw
since taking into account differences among all ordered achievement val-
ues. Further, allowing to define importance weights we introduce the
WOWA enhanced RPM. Both the theoretical and implementation issues
of the WOWA enhanced method are analyzed. Linear Programming im-
plementation model is developed and proven.

1 Introduction

Consider a decision problem defined as an optimization problem with m criteria
(objective functions). In this paper, without loss of generality, it is assumed that
all the criteria are minimized. Hence, we consider the following Multiple Criteria
Optimization (MCO) problem:

min { (f1(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables to be selected within the feasible
set Q ⊂ Rn, and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that maps
the feasible set Q into the criterion space Rm. Note that neither any specific
form of the feasible set Q is assumed nor any special form of criteria fi(x) is
required. We refer to the elements of the criterion space as outcome vectors. An
outcome vector y is attainable if it expresses outcomes of a feasible solution, i.e.
y = f(x) for some x ∈ Q.
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Model (1) only specifies that we are interested in minimization of all objec-
tive functions fi for i ∈ I = {1, 2, . . . , m}. Thus it allows only to identify (to
eliminate) obviously inefficient solutions leading to dominated outcome vectors,
while still leaving the entire efficient set to look for a satisfactory compromise
solution. In order to make the multiple criteria model operational for the de-
cision support process, one needs assume some solution concept well adjusted
to the DM preferences. This can be achieved with the so-called quasi-satisficing
approach to multiple criteria decision problems. The best formalization of the
quasi-satisficing approach to multiple criteria optimization was proposed and de-
veloped mainly by Wierzbicki [15] as the Reference Point Method (RPM). The
reference point method was later extended to permit additional information
from the DM and, eventually, led to efficient implementations of the so-called
Aspiration/Reservation Based Decision Support (ARBDS) approach with many
successful applications [2,16].

The RPM is an interactive technique. The basic concept of the interactive
scheme is as follows. The DM specifies requirements in terms of reference levels,
i.e., by introducing reference (target) values for several individual outcomes. The
reference levels are used to build the scalarizing achievement function which
generates an efficient solution when minimized. The computed efficient solution
is presented to the DM as the current solution allowing comparison with previous
solutions and modifications of the aspiration levels if necessary. In building the
function it is assumed that the DM prefers outcomes that satisfy all the reference
levels to any outcome that does not reach one or more of the reference levels.

The scalarizing achievement function can be viewed as two-stage transforma-
tion of the original outcomes. First, the strictly monotonic partial achievement
functions are built to measure individual performance with respect to given
reference levels. Having all the outcomes transformed into a uniform scale of in-
dividual achievements they are aggregated at the second stage to form a unique
scalarization. The RPM is based on the so-called augmented (or regularized)
min-max aggregation. Thus, the worst individual achievement is essentially min-
imized but the optimization process is additionally regularized with the term
representing the average achievement. The min-max aggregation is crucial for
allowing the RPM to generate all efficient solutions even for nonconvex (and
particularly discrete) problems. On the other hand, the regularization is neces-
sary to guarantee that only efficient solution are generated. The regularization
by the average achievement is easily implementable but it may disturb the basic
min-max model. Actually, the only consequent regularization of the min-max
aggregation is the lex-min order or more practical the OWA aggregation with
monotonic weights. The latter combines all the partial achievements allocating
the largest weight to the worst achievement, the second largest weight to the sec-
ond worst achievement, the third largest weight to the third worst achievement,
and so on. The recent progress in optimization methods for ordered averages
[8,11] allows one to implement the OWA RPM quite effectively. Further, follow-
ing the concept of Weighted OWA [13,14] the importance weighting of several
achievements may be incorporated into the RPM. Such a WOWA enhancement
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of the ARBDS uses importance weights to affect achievement importance by
rescaling accordingly its measure within the distribution of achievements rather
than straightforward rescaling of achievement values against those defined by
the reference levels [12].

The paper is organized as follows. In the next section we formalize the scalar-
ization achievement functions of the RPM with the detailed formulas for the
ARBDS technique. In Section 3 we introduce the OWA and WOWA extensions
of the RPM. We show that the WOWA enhanced RPM always generates an
efficient solution to the original MCO problem complying simultaneously with
the ARBDS preference model assumptions. Further, in Section 4 we develop and
prove the Linear Programming implementation model for the method.

2 Scalarizations of the RPM

In the RPM method, depending on the specified reference levels, a special scalar-
izing achievement function is built which, when minimized, generates an efficient
solution to the problem. While building the scalarizing achievement function the
following properties of the preference model are assumed. First of all, each so-
lution generated by the scalarizing function optimization must be an efficient
solution of the original MCO problem. To meet this requirement the function
must be strictly increasing with respect to each outcome. Second, a solution
with all individual outcomes satisfying the corresponding reference levels is pre-
ferred to any solution with at least one individual outcome worse (greater) than
its reference level. That means, the scalarizing achievement function minimiza-
tion must enforce reaching the reference levels prior to further improving of
criteria. Thus, similar to the goal programming approaches, the reference levels
are treated as the targets but following the quasi-satisficing approach they are
interpreted consistently with basic concepts of efficiency in the sense that the
optimization is continued even when the target point has been reached already.

The generic scalarizing achievement function takes the following form [15]:

S(a) = max
1≤i≤m

{ai} +
ε

m

m∑

i=1

ai (2)

where ε is an arbitrary small positive number and ai = si(fi(x)), for i =
1, 2, . . . , m, are the partial achievement measuring actual performances of the
individual outcomes with partial achievement functions si : R → R with respect
to the corresponding reference levels. Let a = (a1, a2, . . . , am) represent the
achievement vector. The scalarizing achievement function (2) is, essentially, de-
fined by the worst partial (individual) achievement but additionally regularized
with the sum of all partial achievements. The regularization term is introduced
only to guarantee the solution efficiency in the case when the minimization of
the main term (the worst partial achievement) results in a non-unique optimal
solution. Due to combining two terms with arbitrarily small parameter ε, for-
mula (2) is easily implementable and it provides a direct interpretation of the
scalarizing achievement function as expressing (dis)utility.
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Various functions si provide a wide modeling environment for measuring par-
tial achievements [16]. The basic RPM model is based on a single vector of the
reference levels, the aspiration vector ra and the piecewise linear functions si.
Real-life applications of the RPM methodology usually deal with more complex
partial achievement functions defined with more than one reference point [1,16]
which enriches the preference models and simplifies the interactive analysis. In
particular, the ARBDS models taking advantages of two reference vectors: vec-
tor of aspiration levels ra and vector of reservation levels rr [2] are used, thus
allowing the DM to specify requirements by introducing acceptable and required
values for several outcomes. The partial achievement function si can be inter-
preted then as a measure of the DM’s satisfaction with the current value of
outcome of the ith criterion. It is a strictly increasing function of outcome with
value ai = 0 if fi(x) = ra

i , and ai = 1 for fi(x) = rr
i . Thus the partial achieve-

ment functions map the outcomes values onto a normalized scale of the DM’s
satisfaction. Various functions can be built meeting those requirements [16]. The
simplest for implementation is convex piece-wise linear partial achievement func-
tion introduced in the ARBDS system for the multiple criteria transshipment
problems with facility location [7]:

ai = si(fi(x)) =

⎧
⎨

⎩

α(fi(x) − ra
i )/(rr

i − ra
i ), fi(x) ≤ ra

i

(fi(x) − ra
i )/(rr

i − ra
i ), ra

i < fi(x) < rr
i

γ(fi(x) − rr
i )/(rr

i − ra
i ) + 1, fi(x) ≥ rr

i

(3)

where α and γ are arbitrarily defined parameters satisfying 0 < α < 1 < γ.
Parameter α represents additional increase of the DM’s satisfaction (negative
dissatisfaction values) when a criterion generates outcomes better than the cor-
responding aspiration level. On the other hand, parameter γ > 1 represents
dissatisfaction connected with outcomes worse than the reservation level.

When accepting the loss of a direct utility interpretation, one may consider
more powerful lexicographic preference modeling [4,5] based on linear partial
achievement ai = (fi(x) − ra

i )/(rr
i − ra

i ) but splitted into separate preemptive
multilevel interval achievement measures: the reservation level underachievement
ar

i , the aspiration level underachievement aa
i and the aspiration level overachieve-

ment ao
i defined by the following formula:

ar
i = sr

i (fi(x)) = (fi(x) − rr
i )+/(rr

i − ra
i ) ∀ i ∈ I

aa
i = sa

i (fi(x)) = min{(fi(x) − ra
i )+/(rr

i − ra
i ), 1} ∀ i ∈ I

ao
i = so

i (fi(x)) = (ra
i − fi(x))+/(rr

i − ra
i ) ∀ i ∈ I

(4)

Minimization of the scalarizing achievement function (2)–(3) is then replaced
with the lexicographic optimization of the multilevel aggregations:

lexmin
x

{(S(ar), S(aa), S(−ao)) : Eq. (4), x ∈ Q} (5)

Note that instead of (4), the interval achievements may be defined with the goal
programming modeling techniques [6]:

fi(x)/(rr
i − ra

i ) + ao
i − aa

i − ar
i = ra

i , ao
i ≥ 0, 0 ≤ aa

i ≤ 1, ar
i ≥ 0 ∀ i ∈ I (6)
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3 WOWA Extension of the RPM

The crucial properties of the RPM are related to the min-max aggregation of
partial achievements while the regularization is only introduced to guarantee the
aggregation monotonicity. Unfortunately, the distribution of achievements may
make the min-max criterion partially passive when one specific achievement is
relatively very small for all the solutions. Minimization of the worst achievement
may then leave all other achievements unoptimized. Nevertheless, the selection
is then made according to linear aggregation of the regularization term instead
of the min-max aggregation, thus destroying the preference model of the RPM.
This can be illustrated with an example of a simple discrete problem of 7 alter-
native feasible solutions to be selected according to 6 criteria. Table 1 presents
six partial achievements for all the solutions where all the outcome values were
within the corresponding intervals between the aspiration and the reservation
levels. Thus the partial achievements may be viewed as aa

i defined according to
formula (4) (with ar

r = 0 and ao
i = 0) as well as the ai defined according to

formula (3). All the solutions are efficient. Solutions S1 to S5 reach the aspira-
tion levels (achievement values 0.0) for four of the first five criteria while being
quite far from one of them and the aspiration level for the sixth criterion as well
(achievement values 0.9). Solution S6 is close to the aspiration levels (achieve-
ment values 0.2) for the first five criteria while being far only to the aspiration
level for the sixth criterion (achievement values 0.9). All the solutions generate
the same worst achievement value 0.9. Therefore, while using the standard aug-
mented min-max aggregation (2) the final selection of a solution depends on the
total achievement (regularization term). Actually, one of solutions S1 to S5 will
be selected as better than S6.

In order to avoid inconsistencies caused by the regularization in the aggre-
gation (2), the min-max solution may be regularized according to the ordered
averaging rules [17]. This is mathematically formalized as follows. Within the
space of achievement vectors we introduce map Θ = (θ1, θ2, . . . , θm) which
orders the coordinates of achievements vectors in a nonincreasing order, i.e.,
Θ(a1, . . . , am) = (θ1(a), . . . , θm(a)) iff there exists a permutation τ such that
θi(a) = aτ(i) for all i and θ1(a) ≥ θ2(a) ≥ . . . ≥ θm(a). The standard min-max
aggregation depends on minimization of θ1(a) and it ignores values of θi(a) for
i ≥ 2. In order to take into account all the achievement values, one needs to
maximize the weighted combination of the ordered achievements thus represent-
ing the so-called Ordered Weighted Averaging (OWA) aggregation [17]. Note
that the weights are then assigned to the specific positions within the ordered
achievements rather than to the partial achievements themselves. With the OWA
aggregation one gets the following RPM model:

min
x

{
m∑

i=1

wiθi(a) : ai = si(fi(x)) ∀ i, x ∈ Q } (7)

where w1 > w2 > . . . > wm are positive and strictly decreasing weights. Ac-
tually, they should be significantly decreasing to represent regularization of
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Table 1. Sample achievements with passive min-max criterion

w 0.5 0.25 0.15 0.05 0.03 0.02
Sol. a1 a2 a3 a4 a5 a6 max

�
θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 0.9 0.0 0.0 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S2 0.0 0.9 0.0 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S3 0.0 0.0 0.9 0.0 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S4 0.0 0.0 0.0 0.9 0.0 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S5 0.0 0.0 0.0 0.0 0.9 0.9 0.9 1.8 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S6 0.2 0.2 0.2 0.2 0.2 0.9 0.9 1.9 0.9 0.2 0.2 0.2 0.2 0.2 0.550
S7 0.9 0.9 0.9 0.2 0.6 0.2 0.9 3.7 0.9 0.9 0.9 0.6 0.2 0.2 0.895

the min-max order. Note that the standard RPM model with the scalarizing
achievement function (2) can be expressed as the OWA model (7) with weights
w2 . . . = wm = ε/m and w1 = 1 + ε/m thus strictly decreasing in the case of
m = 2. Unfortunately, for m > 2 it abandons the differences in weighting of the
second largest achievement, the third largest one etc (w2 = . . . = wm = ε/m).
The OWA RPM model (7) allows one to differentiate all the weights by intro-
ducing decreasing series (e.g. geometric ones). One may notice that application
of decreasing weights w = (0.5, 0.25, 0.15, 0.05, 0.03, 0.02) within the OWA RPM
enables selection of solution S6 from Table 1.

Typical RPM model allows weighting of several achievements only by straight-
forward rescaling of the achievement values [12]. The OWA RPM model enables
one to introduce importance weights to affect achievement importance by rescal-
ing accordingly its measure within the distribution of achievements as defined in
the so-called Weighted OWA (WOWA) aggregation [13]. Let w = (w1, . . . , wm)
be a vector of preferential (OWA) weights and let p = (p1, . . . , pm) denote the
vector of importance weights (pi ≥ 0 for i = 1, 2, . . . , m as well as

∑m
i=1 pi = 1).

The corresponding Weighted OWA aggregation of achievements a = (a1, . . . , am)
is defined as follows:

Aw,p(a) =
m∑

i=1

ωiθi(a), ωi = w∗(
∑

k≤i

pτ(k)) − w∗(
∑

k<i

pτ(k)) (8)

where w∗ is a monotone increasing function that interpolates points ( i
m ,

∑
k≤i wk)

together with the point (0.0) and τ representing the ordering permutation for a
(i.e. aτ(i) = θi(a)). We focus on the linear interpolation. The WOWA may be
expressed with more direct formula where preferential (OWA) weights wi are ap-
plied to averages of the corresponding portions of ordered achievements (quantile
intervals) according to the distribution defined by importance weights pi [9,10]:

Aw,p(a) =
m∑

i=1

wim

∫ i
m

i−1
m

F
(−1)
a (ξ) dξ (9)
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Table 2. WOWA selection with p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12 )

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)
S1 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7425
S2 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.675
S3 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5625
S4 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45
S5 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45
S6 0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.375
S7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.6 0.2 0.2 0.8815

Table 3. WOWA selection with p = ( 1
12 , 1

12 , 1
12 , 1

12 , 1
12 , 7

12 )

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)
S1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.855
S6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.2 0.2 0.2 0.8475
S7 0.9 0.9 0.9 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6875

where F
(−1)
y is the stepwise function F

(−1)
y (ξ) = θi(y) for βi−1 < ξ ≤ βi. It

can also be mathematically formalized as follows. First, we introduce the left-
continuous right tail cumulative distribution function (cdf) defined as:

Fy(d) =
∑

i∈I

piδi(d) where δi(d) =
{

1 if yi ≥ d
0 otherwise (10)

which for any real (outcome) value d provides the measure of outcomes greater or
equal to d. Next, we introduce the quantile function F

(−1)
y as the right-continuous

inverse of the cumulative distribution function Fy:

F
(−1)
y (ξ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1.

For instance applying importance weighting p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12 ) to so-
lution achievements from Table 1 and using them together with given there OWA
weights w one gets the WOWA aggregations from Table 2. The corresponding
RPM method selects then solution S6, similarly to the case of equal importance
weights. On the other hand, when increasing the importance of the last outcome
achievements with p = ( 1

12 , 1
12 , 1

12 , 1
12 , 1

12 , 7
12 ) one gets the WOWA values from

Table 3.
The WOWA enhanced ARBDS can be formulated as based on the following

lexicographic optimization problem:

lexmin
x

{(Aw,p(ar), Aw,p(aa), Aw,p(−ao)) : Eq. (4), x ∈ Q} (11)
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used to generate current solutions according to the specified preferences. We
will show that problem (11) always generates an efficient solution to the original
MCO problem complying simultaneously with the ARBDS preference model
assumptions.

Theorem 1. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then x̄ is an efficient
solution of the corresponding multiple criteria problem (1).

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that x̄ is not efficient to the multiple
criteria problem (1). This means, there exists a decision vector x ∈ Q such
that fi(x) ≤ fi(x̄) for all i ∈ I and fio(x) < fio(x̄) for some outcome index
io ∈ I. Let us define ar

i , aa
i and ao

i according to formula (4). The quadruple
(x,ar ,aa,ao) is then a feasible solution of problem (11). Moreover, ar

i ≤ ār
i ,

aa
i ≤ āa

i and ao
i ≥ āo

i for all i ∈ I where at least one of strict inequalities
ar

i0
< ār

i0
or aa

i0
< āa

i0
or ao

i0
> āo

i0
holds. Hence, due to strict monotonicity of

the WOWA aggregation with positive weighting vectors, one gets Aw,p(ar) ≤
Aw,p(ār), Aw,p(aa) ≤ Aw,p(āa) and Aw,p(−ao) ≤ Aw,p(−āo) with at least one
inequality strict. The latest assertion contradicts the lexicographic optimality of
(x̄, ār, āa, āo) for problem (11), which completes the proof.

Theorem 2. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then all the reservation
level underachievements ār

i are equal 0 whenever there exists a feasible solution
x ∈ Q such that fi(x) ≤ rr

i for all i ∈ I.

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that ār

i0 > 0 for some i0 ∈ I and
there exists a feasible solution x ∈ Q such that fi(x) ≤ rr

i for all i ∈ I. Let
us define ar

i , aa
i and ao

i according to formula (4) and note that ar
i = 0 for all

i ∈ I. The quadruple (x,ar ,aa, ao) is then a feasible solution of problem (11)
and, due to positive weights, Aw,p(ar) = 0 < Aw,p(ār) thus contradicting the
lexicographic optimality of (x̄, ār, āa, āo).

Theorem 3. For any reference levels ra
i < rr

i , any positive weights w and p, if
(x̄, ār, āa, āo) is an optimal solution of the problem (11), then all the aspiration
level underachievements āa

i are equal 0 whenever there exists a feasible solution
x ∈ Q such that fi(x) ≤ ra

i for all i ∈ I.

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (11) with some
positive weighting vectors w and p. Suppose that āa

i0
> 0 for some i0 ∈ I and

there exists a feasible solution x ∈ Q such that fi(x) ≤ ra
i for all i ∈ I. Let us

define ar
i , aa

i and ao
i according to formula (4) and note that aa

i = ar
i = 0 for all

i ∈ I. The quadruple (x,ar ,aa, ao) is then a feasible solution of problem (11)
and, due to positive weights, Aw,p(aa) = 0 < Aw,p(āa) thus contradicting the
lexicographic optimality of (x̄, ār, āa, āo).
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In order to show that the WOWA ARBDS model provides us with a complete pa-
rameterization of the efficient set, we will prove in the following theorem that for
each efficient solution x̄ there exist aspiration and reservation vectors for which
x̄ with the corresponding values of the multilevel achievements is an optimal
solution of problem (11).

Theorem 4. If x̄ is an efficient solution of the multiple criteria problem (1),
then there exist aspirations levels ra

i such that the quadruple (x̄, ār, āa, āo) is an
optimal solution of the corresponding problem (11), for any reservation levels
rr
i > ra

i and positive weighting vectors w and p.

Proof. Let us set the aspiration levels as ra
i = fi(x̄) for i ∈ I. For any reservation

levels rr
i > ra

i , all the corresponding multilevel achievements defined according
to formula (4) take the zero values: ār = 0, āa = 0 and āo = 0. Suppose
that for some weights the quadruple (x̄, 0, 0, 0) is not an optimal solution of the
corresponding problem (11). This means there exists a vector x ∈ Q such that
ar = 0, aa = 0, ao ≥ 0 and Aw,p(−ao) < Aw,p(−āo). Hence, fi(x) ≤ fi(x̄) ∀ i ∈
I and fio(x) < fio(x̄) for some index io ∈ I. The latest assertion contradicts the
efficiency of x̄ to (1), which completes the proof.

In the proof of Theorem 4 we have used one set of preferential parameters leading
to the given solution. Obviously, there are many alternative parameter settings
allowing to reach this goal. For instance, one may set the reservation levels as
rr
i = fi(x̄) for i ∈ I while taking any aspiration levels ra

i < rr
i .

4 Linear Programming Implementation

An important advantage of the RPM depends on its easy implementation as
an expansion of the original MCO problem. Actually, even complicated partial
achievement functions of the form (3) are strictly increasing and convex, thus
allowing for implementation of the entire RPM model (2) by an LP expansion
[7]. The same applies to the WOWA enhanced ARBDS.

Recall that formula (9) defines the WOWA value applying preferential weights
wi to importance weighted averages within quantile intervals. It may be refor-
mulated to use the tail averages

Aw,p(a) =
m∑

k=1

w′
kmL(a,p,

k

m
), L(y,p, ξ) =

∫ ξ

0
F

(−1)
y (α)dα (12)

where weights w′
k = wk −wk+1 for k = 1, . . . , m−1 and w′

m = wm and L(y,p, ξ)

is defined by left-tail integrating of F
(−1)
y .

Values L(a,p, ξ) for any 0 ≤ ξ ≤ 1 can be given by optimization:

L(a,p, ξ) = max
si

{
m∑

i=1

aisi :
m∑

i=1

si = ξ, 0 ≤ si ≤ pi ∀ i ∈ I} (13)
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Introducing dual variable t corresponding to the equation
∑m

i=1 si = ξ and
variables di corresponding to upper bounds on si one gets the following LP dual
expression for L(a,p, ξ)

L(a,p, ξ) = min
t,di

{ξt +
m∑

i=1

pidi : t + di ≥ ai, di ≥ 0 ∀ i ∈ I} (14)

Following (12) and (14) one gets finally the following model for the WOWA
enhanced ARBDS:

lex min [
m∑

k=1

w′
kzr

k,
m∑

k=1

w′
kza

k ,
m∑

k=1

w′
kzo

k]

s.t. x ∈ Q
fi(x)/(rr

i − ra
i ) + ao

i − aa
i − ar

i = ra
i ∀ i ∈ I

ao
i ≥ 0, 0 ≤ aa

i ≤ 1, ar
i ≥ 0 ∀ i ∈ I

zr
k = ktrk + m

m∑

i=1

pid
r
ik, ar

i ≤ trk + dr
ik, dr

ik ≥ 0 ∀ i, k ∈ I

za
k = ktak + m

m∑

i=1

pid
a
ik, aa

i ≤ tak + da
ik, da

ik ≥ 0 ∀ i, k ∈ I

zo
k = ktok + m

m∑

i=1

pid
o
ik, −ao

i ≤ tok + do
ik, do

ik ≥ 0 ∀ i, k ∈ I

(15)

thus allowing for implementation as an LP expansion of the original problem.
The following theorem justifies model (15) as an implementation of the WOWA
ARBDS approach (11) thus preserving its preference model properties.

Theorem 5. For any reference levels ra
i < rr

i , any positive importance weights
pi and positive strictly decreasing weights wi, if (x̄, ār, āa, āo) is an optimal so-
lution of the problem (15), then it is an optimal solution of the corresponding
problem (11).

Proof. Let (x̄, ār, āa, āo) be an optimal solution of the problem (15) with some
positive weighting vectors w and p. Following the WOWA formulas (12) and (14)
one may notice that the problem (15) is equivalent to the following lexicographic
optimization:

lexmin
x

{(Aw,p(ar), Aw,p(aa), Aw,p(−ao)) : Eq. (6), x ∈ Q} (16)

Hence, if ār
i , āa

i and āo
i fulfill formula (4) for x̄, then the quadruple x̄ is an optimal

solution of the corresponding problem (11). In order to prove that formula (4)
is satisfied it is enough to show that āo

i ā
a
i = 0 and (1 − āa

i )ār
i = 0.

Suppose that āo
i0

āa
i0

> 0 for some index i0 ∈ I. One may decrease then
values of both variables āo

i0 and āa
i0 by the same small positive number. This

means, for sufficiently small positive number δ the quadruple (x̄, āo − δei0 , ā
a −

δei0 , ā
r), where ei0 denotes the unit vector corresponding to index i0, is fea-

sible to problem (16). Due to positive weights wi and pi, one gets (Aw,p(ār),
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Aw,p(āa −δei0), Aw,p(−āo +δei0)) <lex (Aw,p(ār), Aw,p(āa), Aw,p(−āo)) which
contradicts optimality of (x̄, ār, āa, āo) to problem (16) and thereby (15).

Further, suppose that (1 − āa
i0)ā

r
i0 > 0 for some index i0 ∈ I. One may

decrease then value of variable ār
i0

and simultaneously increase āa
i0

by the same
small positive number. This means, for sufficiently small positive number δ the
quadruple (x̄, ā−, āa +δei0 , ā

r −δei0) is feasible to problem (16). Due to positive
weights wi and pi, one gets (Aw,p(ār − δei0), Aw,p(āa + δei0), Aw,p(−āo)) <lex

(Aw,p(ār), Aw,p(āa), Aw,p(−āo)) which contradicts optimality of (x̄, ār, āa, āo)
to problem (16) and thereby (15).

Thus (x̄, āo, āa, ār) fulfills formula (4) and therefore it is an optimal solution
of the corresponding problem (11).

Corollary 1. For any reference levels ra
i < rr

i any positive importance weights
pi and positive strictly decreasing weights wi, if (x̄, ār, āa, āo) is an optimal so-
lution of the problem (15), then x̄ is an efficient solution of the corresponding
multi-criteria problem (1).

Corollary 2. If x̄ is an efficient solution of the multiple criteria problem (1),
then there exist aspirations levels ra

i = fi(x) such that (x̄, ār, āa, āo) is an
optimal solution of the corresponding problem (15), for any reservation levels
rr
i > ra

i , any positive importance weights pi and positive strictly decreasing
weights wi.

5 Conclusions

The reference point method is a very convenient technique for interactive analy-
sis of the multiple criteria optimization problems. It provides the DM with a
tool for an open analysis of the efficient frontier. The interactive analysis is
navigated with the commonly accepted control parameters expressing reference
levels for the individual objective functions. The partial achievement functions
quantify the DM satisfaction from the individual outcomes with respect to the
given reference levels. The final scalarizing function is built as the augmented
min-max aggregation of partial achievements which means that the worst in-
dividual achievement is essentially maximized but the optimization process is
additionally regularized with the term representing the average achievement.
The regularization by the average achievement is easily implementable but it
may disturb the basic max-min aggregation. In order to avoid inconsistencies
caused by the regularization, the max-min solution may be regularized with
the OWA aggregation combining all the partial achievements by allocating the
largest weight to the worst achievement, the second largest weight to the second
worst achievement, the third largest weight to the third worst achievement, and
so on. Further following the concept of the Weighted OWA [13] the importance
weighting of several achievements may be incorporated into the RPM. Such a
WOWA enhancement of the RPM uses importance weights to affect achieve-
ment importance by rescaling accordingly its measure within the distribution of
achievements rather than straightforward rescaling of achievement values [12].
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The ordered regularizations are more complicated in implementation due to
the requirement of pointwise ordering of partial achievements. However, the re-
cent progress in optimization methods for ordered averages [8] allows one to
implement the OWA RPM quite effectively by taking advantages of piecewise
linear expression of the cumulated ordered achievements. Similar, model can be
achieved for the WOWA enhanced ARBDS. Actually, the resulting formulation
extends the original constraints and criteria with simple linear inequalities thus
allowing for a quite efficient implementation.
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9. Ogryczak, W., Śliwiński, T.: On Optimization of the Importance Weighted OWA
Aggregation of Multiple Criteria. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA
2007, Part I. LNCS, vol. 4705, pp. 804–817. Springer, Heidelberg (2007)
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