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Abstract. The problem of averaging outcomes under several scenar-
ios to form overall objective functions is of considerable importance in
decision support under uncertainty. The fuzzy operator defined as the
so-called Weighted OWA (WOWA) aggregation offers a well-suited ap-
proach to this problem. The WOWA aggregation, similar to the clas-
sical ordered weighted averaging (OWA), uses the preferential weights
assigned to the ordered values (i.e. to the worst value, the second worst
and so on) rather than to the specific criteria. This allows one to model
various preferences with respect to the risk. Simultaneously, importance
weighting of scenarios can be introduced. In this paper we analyze so-
lution procedures for optimization problems with the WOWA objective
function. A linear programming formulation is introduced for optimiza-
tion of the WOWA objective with monotonic preferential weights. Its
computational efficiency is analyzed.

1 Introduction

Consider a decision problem under uncertainty where the decision is based on the
maximization of a scalar (real valued) outcome. The final outcome is uncertain
and only its realizations under various scenarios are known. Exactly, for each
scenario Si (i = 1, . . . , m) the corresponding outcome realization is given as a
function of the decision variables yi = fi(x). We are interested in larger outcomes
under each scenario. Hence, the decision under uncertainty can be considered a
multiple criteria optimization problem:

max { (f1(x), f2(x), . . . , fm(x)) : x ∈ F } (1)

where x denotes a vector of decision variables to be selected within the feasible set
F ⊂ Rq, of constraints under consideration and f(x) = (f1(x), f2(x), . . . , fm(x))
is a vector function that maps the feasible set F into the criterion space Rm.
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From the perspective of decisions under uncertainty, model (1) only specifies
that we are interested in maximization of all objective functions fi for i ∈ I =
{1, 2, . . . , m}. In order to make it operational, one needs to assume some solution
concept specifying what it means to maximize multiple objective functions. The
solution concepts are defined by aggregation functions a : Rm → R. Thus the
multiple criteria problem (1) is replaced with the (scalar) maximization problem

max {a(f(x)) : x ∈ F}

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . , m) are allocated to several scenarios

Ap(y) =
m∑

i=1

yipi (2)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1) with pos-
sible interpretation as scenarios (subjective) probabilities. The weighted mean
allowing to define the importance of scenarios does not allow one to model the
decision maker’s preferences regarding distribution of outcomes. The latter is
crucial when aggregating various realizations of the same (uncertain) outcome
under several scenarios one needs to model risk averse preferences [7].

The preference weights can be effectively introduced within the fuzzy opti-
mization methodology with the so-called Ordered Weighted Averaging (OWA)
aggregation developed by Yager [15]. In the OWA aggregation the weights are
assigned to the ordered values (i.e. to the smallest value, the second smallest
and so on) rather than to the specific criteria. This guarantees a possibility to
model various preferences with respect to the risk. Since its introduction, the
OWA aggregation has been successfully applied to many fields of decision mak-
ing [18,19,6]. The weighting of the ordered outcome values causes that the OWA
optimization problem is nonlinear even for linear programming (LP) formulation
of the original constraints and criteria. Yager [16] has shown that the OWA opti-
mization can be converted into a mixed integer programming problem. We have
shown [10] that the OWA optimization with monotonic weights can be formed
as a standard linear program of higher dimension.

The OWA operator allows one to model various aggregation functions from
the maximum through the arithmetic mean to the minimum. Thus, it enables
modeling of various preferences from the optimistic to the pessimistic one. On the
other hand, the OWA does not allow one to allocate any importance weights to
specific scenarios. Actually, the weighted mean (2) cannot be expressed in terms
of the OWA aggregations. Torra [12] has incorporated importance weighting into
the OWA operator within the Weighted OWA (WOWA) aggregation introduced
as a particular case of Choquet integral using a distorted probability as the
measure. The WOWA average becomes the weighted mean in the case of equal
all the preference weights and it is reduced to the standard OWA average for
equal all the importance weights. Since its introduction, the WOWA operator
has been successfully applied to many fields of decision making [14] including
metadata aggregation problems [1].
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In this paper we analyze solution procedures for optimization problems with
the WOWA objective functions. A linear programming formulation is introduced
for optimization of the WOWA objective with increasing preferential weights
thus representing risk averse preferences. The paper is organized as follows. In
the next section we introduce formally the WOWA operator and derive some
alternative computational formula based on direct application of the preferential
weights to the conditional means according to the importance weights. In Section
3 we introduce the LP formulations for maximization of the WOWA aggregation
with increasing weights. Finally, in Section 4 we demonstrate computational
efficiency of the introduced models.

2 The Weighted OWA Aggregation

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . , m and

∑m
i=1 wi = 1. The corresponding OWA aggregation

of outcomes y = (y1, . . . , ym) can be mathematically formalized as follows
[15]. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . , m. Further, we
apply the weighted sum aggregation to ordered achievement vectors Θ(y), i.e.
the OWA aggregation has the following form:

Aw(y) =
m∑

i=1

wiθi(y) (3)

Yager [15] introduced a well appealing concept of the orness measure to char-
acterize the OWA operators. orness(w) =

∑m
i=1

m−i
m−1wi. For the max aggre-

gation representing the fuzzy ‘or’ operator with weights w = (1, 0, . . . , 0) one
gets orness(w) = 1 while for the min aggregation representing the fuzzy ‘and’
operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0. For the average
(arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2. Actually, one
may consider a complementary measure of andness defined as andness(w) =
1 − orness(w). OWA aggregations with orness smaller or equal 1/2 are treated
as and-like and they correspond to rather pessimistic (risk averse) preferences.

The OWA aggregations with increasing weights w1 ≤ w2 ≤ . . . ≤ wm define
an and-like OWA operator. Actually, the andness properties of the OWA oper-
ators with increasing weights are total in the sense that they remain valid for
any subaggregations defined by subsequences of their weights. Namely, for any
2 ≤ k ≤ m one gets

∑k
j=1

k−j
k−1wij ≤ 1

2 . Such total andness properties repre-
sent consequent risk averse preferences [7]. Therefore, we will refer to the OWA
aggregation with increasing weights as the risk averse OWA.

Let w = (w1, . . . , wm) be an m-dimensional vector of preferential weights such
that wi ≥ 0 for i = 1, . . . , m and

∑m
i=1 wi = 1. Further, let p = (p1, . . . , pm) be

an m-dimensional vector of importance weights such that pi ≥ 0 for i = 1, . . . , m
and

∑m
i=1 pi = 1. The corresponding Weighted OWA aggregation of outcomes

y = (y1, . . . , ym) is defined [12] as follows:
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Aw,p(y) =
m∑

i=1

ωiθi(y) with ωi = w∗(
∑

k≤i

pτ(k)) − w∗(
∑

k<i

pτ(k)) (4)

where w∗ is an increasing function interpolating points ( i
m ,

∑
k≤i wk) together

with the point (0.0) and τ representing the ordering permutation for y (i.e.
yτ(i) = θi(y)). Moreover, function w∗ is required to be a straight line when
the point can be interpolated in this way. We will focus our analysis on the
piecewise linear interpolation function w∗ which is the simplest form of the
required interpolation.

The WOWA aggregation covers the standard weighted mean (2) with weights
pi as a special case of equal preference weights (wi = 1/m for i = 1, . . . , m).
Actually, the WOWA operator is a particular case of Choquet integral using a
distorted probability as the measure [3].

Example 1. Consider outcome vectors y′ = (1, 3, 2, 4, 5) and y′′ = (1, 1, 2, 6, 4)
where individual outcomes correspond to five scenarios. While introducing pref-
erential weights w = (0.05, 0.1, 0.15, 0.2, 0.5) one may calculate the OWA aver-
ages: Aw(y′) = 0.05 · 5 + 0.1 · 4 + 0.15 · 3 + 0.2 · 2 + 0.5 · 1 = 2 and Aw(y′′) =
0.05 · 6 + 0.1 · 4 + 0.15 · 2 + 0.2 · 1 + 0.5 · 1 = 1.7. Further, let us introduce
importance weights p = (0.1, 0.1, 0.2, 0.5, 0.1) which means that results under
the third scenario are 2 times more important then those under scenario 1, 2 or
5, while the results under scenario 4 are even 5 times more important. To take
into account the importance weights in the WOWA aggregation (4) we introduce
piecewise linear function

w∗(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.05ξ/0.2 for 0 ≤ ξ ≤ 0.2
0.05 + 0.10(ξ − 0.2)/0.2 for 0.2 < ξ ≤ 0.4
0.15 + 0.15(ξ − 0.4)/0.2 for 0.4 < ξ ≤ 0.6
0.3 + 0.2(ξ − 0.6)/0.2 for 0.6 < ξ ≤ 0.8
0.5 + 0.5(ξ − 0.8)/0.2 for 0.8 < ξ ≤ 1.0

and calculate weights ωi according to formula (4) as w∗ increments corresponding
to importance weights of the ordered outcomes, as illustrated in Fig. 1. In par-
ticular, one get ω1 = w∗(p5) = 0.025 and ω2 = w∗(p5 + p4) − w∗(p5) = 0.275 for
vector y′ while ω1 = w∗(p4) = 0.225 and ω2 = w∗(p4 + p5) − w∗(p4) = 0.075 for
vector y′′. Finally, Aw,p(y′) = 0.025·5+0.275·4+0.1·3+0.35·2+0.25·1 = 2.475
and Aw,p(y′′) = 0.225 · 6 + 0.075 · 4 + 0.2 · 2 + 0.25 · 1 + 0.25 · 1 = 2.55.

Note that one may alternatively compute the WOWA values by using the im-
portance weights to replicate corresponding scenarios and calculate then OWA
aggregations. In the case of our importance weights p we need to consider five
copies of scenario 4 and two copies of scenario 3 thus generating correspond-
ing vectors ỹ′ = (1, 3, 2, 2, 4, 4, 4, 4, 4, 5) and ỹ′′ = (1, 1, 2, 2, 6, 6, 6, 6, 6, 4) of ten
equally important outcomes. Original five preferential weights must be then ap-
plied respectively to the average of the two largest outcomes, the average of the
next two largest outcomes etc. Indeed, we get Aw,p(y′) = 0.05 ·4.5+0.1 ·4+0.15 ·
4+0.2·2.5+0.5·1.5 = 2.475 and Aw,p(y′′) = 0.05·6+0.1·6+0.15·5+0.2·2+0.5·1 =
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Fig. 1. Definition of weights ωi for Example 1: (a) vector y′, (b) vector y′′

2.55. We will further formalize this approach and take its advantages to build
the LP computational models.

Function w∗ can be defined by its generation function g with the formula w∗(α) =∫ α

0 g(ξ) dξ Introducing breakpoints βi =
∑

k≤i pτ(k) and β0 = 0 allows us to

express ωi =
∫ βi

0 g(ξ) dξ −
∫ βi−1

0 g(ξ) dξ =
∫ βi

βi−1
g(ξ) dξ and the entire WOWA

aggregation as

Aw,p(y) =
m∑

i=1

θi(y)
∫ βi

βi−1

g(ξ) dξ =
∫ 1

0
g(ξ)F

(−1)
y (ξ) dξ (5)

where F
(−1)
y is the stepwise function F

(−1)
y (ξ) = θi(y) for βi−1 < ξ ≤ βi. It

can also be mathematically formalized as follows. First, we introduce the right-
continuous cumulative distribution function (cdf):

Fy(d) =
m∑

i=1

piδi(d) where δi(d) =
{

1 if yi ≤ d
0 otherwise (6)

which for any real (outcome) value d provides the measure of outcomes smaller or
equal to d. Next, we introduce the quantile function F

(−1)
y = inf {η : Fy(η) ≥ ξ}

for 0 < ξ ≤ 1 as the left-continuous inverse of the cumulative distribution
function Fy, and finally F

(−1)
y (ξ) = F

(−1)
y (1 − ξ).

Formula (5) provides the most general expression of the WOWA aggregation
allowing for expansion to continuous case. The original definition of WOWA
allows one to build various interpolation functions w∗ [13] thus to use different
generation functions g in formula (5). We have focused our analysis on the the
piecewise linear interpolation function w∗. Note, however, that the piecewise
linear functions may be built with various number of breakpoints, not necessarily
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m. Thus, any nonlinear function can be well approximated by an piecewise linear
function with appropriate number of breakpoints. Therefore, we will consider
weights vectors w of dimension n not necessarily equal to m. Any such piecewise
linear interpolation function w∗ can be expressed with the stepwise generation
function g(ξ) = nwk for (k − 1)/n < ξ ≤ k/n, k = 1, . . . , n. This leads us to the
following specification of formula (5):

Aw,p(y) =
n∑

k=1

wkn

∫ k/n

(k−1)/n

F
(−1)
y (ξ) dξ =

n∑

k=1

wkn

∫ k/n

(k−1)/n

F (−1)
y (1−ξ) dξ (7)

Note that n
∫ k/n

(k−1)/n F
(−1)
y (ξ) dξ represents the average within the k-th por-

tion of 1/n largest outcomes, the corresponding conditional mean [9,11]. Hence,
formula (7) defines WOWA aggregations with preferential weights w as the cor-
responding OWA aggregation but applied to the conditional means calculated
according to the importance weights p instead of the original outcomes. Fig. 2 il-
lustrates application of formula (7) for computation of the WOWA aggregations
in Example 1.
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Fig. 2. Formula (7) applied to calculations in Example 1: (a) vector y′, (b) vector y′′

We will treat formula (7) as a formal definition of the WOWA aggregation
of m-dimensional outcomes y defined by m-dimensional importance weights p
and n-dimensional preferential weights w. We will focus our analysis on the
WOWA aggregation defined by increasing weights w1 ≤ w2 ≤ . . . ≤ wn. Follow-
ing formula (7), maximization of such WOWA aggregation models risk averse
preferences since equally important unit of a smaller outcome is considered with
a larger weight. This is mathematically represented by the convexity of func-
tion w∗ as well as it may be viewed as andness of the WOWA operator [4] when
considered as the OWA defined via the regular increasing monotone (RIM) quan-
tifiers [17] (

∫ 1
0 w∗(ξ)dξ ≤ 0.5).
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3 The LP Model for WOWA Optimization

Formula (7) defines the WOWA value applying preferential weights wi to im-
portance weighted averages within quantile intervals. It may reformulated to use
the tail averages

Aw,p(y) =
n∑

k=1

nwk(L(y,p, 1− k − 1
n

)−L(y,p, 1− k

n
)) =

n∑

k=1

w′
kL(y,p,

k

n
) (8)

where L(y,p, ξ) is defined by left-tail integrating of F
(−1)
y , i.e.

L(y,p, 0) = 0 and L(y,p, ξ) =
∫ ξ

0
F (−1)

y (α)dα for 0 < ξ ≤ 1 (9)

while weights w′
k = n(wn−k+1 − wn−k) for k = 1, . . . , n − 1 and w′

n = nw1.
Graphs of functions L(y,p, ξ) (with respect to ξ) take the form of convex

piecewise linear curves, the so-called absolute Lorenz curves [8] connected to
the relation of the second order stochastic dominance (SSD). Therefore, formula
(8) relates the WOWA average to the SSD consistent risk measures based on
the tail means [5] provided that the importance weights are treated as scenario
probabilities.

Following (8), maximization of a risk averse WOWA aggregation defined by
increasing weights w1 ≤ w2 ≤ . . . ≤ wn

max{Aw,p(y) : y = f(x), x ∈ F} (10)

results in problem

max{
n∑

k=1

w′
kL(y,p,

k

n
) : y = f(x), x ∈ F}

with positive weights w′
k.

According to (9), values of function L(y,p, ξ) for any 0 ≤ ξ ≤ 1 can be given
by optimization:

L(y,p, ξ) = min
si

{
m∑

i=1

yisi :
m∑

i=1

si = ξ, 0 ≤ si ≤ pi ∀ i } (11)

The above problem is an LP for a given outcome vector y while it becomes non-
linear for y being a vector of variables. This difficulty can be overcome by taking
advantage of the LP dual to (11). Introducing dual variable t corresponding to
the equation

∑m
i=1 si = ξ and variables di corresponding to upper bounds on si

one gets the following LP dual expression of L(y,p, ξ)

L(y,p, ξ) = max
t,di

{ξt −
m∑

i=1

pidi : t − di ≤ yi, di ≥ 0 ∀ i} (12)
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Therefore, maximization of the WOWA aggregation (10) can be expressed as
follows

max
tk,dik,yi,xj

n∑

k=1

w′
k[

k

n
tk −

m∑

i=1

pidik]

s.t. tk − dik ≤ yi, dik ≥ 0 ∀ i, k
y = f(x), x ∈ F

Consider multiple criteria problems (1) with linear objective functions fi(x) =
cix and polyhedral feasible sets:

max{(y1, y2, . . . , ym)) : y = Cx, Ax = b, x >= 0} (13)

where C is an m×q matrix (consisting of rows ci), A is a given r×q matrix and
b = (b1, . . . , br)T is a given RHS vector. For such problems, we get the following
LP formulation of the WOWA maximization (10):

max
tk,dik,yi,xj

n∑

k=1

k

n
w′

ktk −
n∑

k=1

m∑

i=1

w′
kpidik (14)

s.t. Ax = b (15)
y − Cx = 0 (16)
dik ≥ tk − yi ∀ i, k (17)
dik ≥ 0 ∀ i, k; xj ≥ 0 ∀ j (18)

Model (14)–(18) is an LP problem with mn+m+n+q variables and mn+m+r
constraints. Thus, for problems with not too large number of scenarios (m) and
preferential weights (n) it can be solved directly. Note that WOWA model (14)–
(18) differs from the analogous deviational model for the OWA optimizations [10]
only due to coefficients within the objective function (14) and the possibility of
different values of m and n.

The number of constraints in problem (14)–(18) is similar to the number of
variables. Nevertheless, for the simplex approach it may be better to deal with
the dual of (14)–(18) than with the original problem. Note that variables dik

in the primal are represented with singleton columns. Hence, the corresponding
rows in the dual represent only simple upper bounds.

Introducing the dual variables: u = (ul)l=1,...,r, v = (vi)i=1,...,m and z =
(zik)i=1,...,m; k=1,...,n corresponding to the constraints (15), (16) and (17), re-
spectively, we get the following dual:

min
zik,vi,ul

ub

s.t. uA − vC >= 0

vi −
n∑

k=1

zik = 0 ∀ i

m∑

i=1

zik =
k

n
w′

k ∀ k

0 ≤ zik ≤ piw
′
k ∀ i, k

(19)
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The dual problem (19) contains: m+n+q structural constraints, r+m unbounded
variables and mn bounded variables. Since the average complexity of the sim-
plex method depends on the number of constraints, the dual model (19) can be
directly solved for quite large values of m and n. Moreover, the columns corre-
sponding to mn variables zik form the transportation/assignment matrix thus
allowing one to employ special techniques of the simplex SON algorithm [2] for
implicit handling of these variables. Such techniques increase dramatically effi-
ciency of the simplex method but they require a special tailored implementation.
We have not tested this approach within our initial computational experiments
based on the use of a general purpose LP code.

4 Computational Tests

In order to analyze the computational performances of the LP model for the
WOWA optimization, similarly to [10], we have solved randomly generated prob-
lems of portfolio optimization according to the (discrete) scenario analysis ap-
proach [6]. There is given a set of securities for an investment J = {1, 2, . . . , q}.
We assume, as usual, that for each security j ∈ J there is given a vector of
data (cij)i=1,...,m, where cij is the observed (or forecasted) rate of return of se-
curity j under scenario i (hereafter referred to as outcome). We consider discrete
distributions of returns defined by the finite set I = {1, 2, . . . , m} of scenarios
with the assumption that each scenario can be assigned the importance weight
pi that can be seen as the subjective probability of the scenario. The outcome
data forms an m × q matrix C = (cij)i=1,...,m;j=1,...,q whose columns correspond
to securities while rows ci = (cij)j=1,2,...,q correspond to outcomes. Further, let
x = (xj)j=1,2,...,q denote the vector of decision variables defining a portfolio.
Each variable xj expresses the portion of the capital invested in the correspond-
ing security. Portfolio x generates outcomes

y = Cx = (c1x, c2x, . . . , cmx)

The portfolio selection problem can be considered as an LP problem with m
uniform objective functions fi(x) = cix =

∑q
j=1 cijxj to be maximized [6]:

max {Cx :
q∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , q}

Hence, our portfolio optimization problem can be considered a special case of
the multiple criteria problem and one may seek an optimal portfolio with some
criteria aggregation. Note that the aggregation must take into account the im-
portance of various scenarios thus allowing importance weights pi to be assigned
to several scenarios. Further the preferential weights wk must be increasing to
represent the risk averse preferences (more attention paid on improvement of
smaller outcomes). Thus we get the WOWA maximization problem

max {Aw,p(f(x)) :
q∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , q} (20)
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Our computational tests were based on the randomly generated problems
(20) with varying number q of securities (decision variables) and number m of
scenarios. The generation procedure worked as follows. First, for each security
j the maximum rate of return rj was generated as a random number uniformly
distributed in the interval [0.05, 0.15]. Next, this value was used to generate
specific outcomes cij (the rate of return under scenarios i) as random variables
uniformly distributed in the interval [−0.75rj, rj ]. Further, strictly increasing
and positive weights wk were generated. The weights were not normalized which
allowed us to define them by the corresponding increments δk = wk −wk−1. The
latter were generated as uniformly distributed random values in the range of 1.0
to 2.0, except from a few (5 on average) possibly larger increments ranged from
1.0 to n/3. Importance weights pi were generated according to the exponential
smoothing scheme, which assigns exponentially decreasing weights to older or
subjectively less probable scenarios: pi = α(1 − α)i−1 for i = 1, 2, . . . , m and the
parameter α is chosen for each test problem size separately to keep the value of
pm around 0.001.

We tested solution times for different size parameters m and q. The basic tests
were performed for the standard WOWA model with n = m. However, we also
analyzed the case of larger n for more detailed preferences modeling, as well as
the case of smaller n thus representing a rough preferences model. For each num-
ber of decision variables (securities) q and number of criteria (scenarios) m we
solved 10 randomly generated problems (20). All computations were performed
on a PC with the Pentium 1.7GHz processor employing the CPLEX 9.1 package.
The 120 seconds time limit was used in all the computations.

Table 1. Solution times [s] for the primal model (14)–(18)

Number of Number of variables (q)
scenarios (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
50 1.8 2.5 3.5 4.0 4.1 4.0 3.9 4.0
100 55.7 77.4 89.5 2106.3 7117.7 – – –

In Tables 1 and 2 we show the solution times for the primal (14)–(18) and the
dual (19) forms of the computational model, being the averages of 10 randomly
generated problems. Upper index in front of the time value indicates the number
of tests among 10 that exceeded the time limit. The empty cell (minus sign) shows
that this occurred for all 10 instances. Both forms were solved by the CPLEX
code without taking advantages of the constraints structure specificity. The dual
form of the model performs much better in each tested problem size. It behaves
very well with increasing number of variables if the number of scenarios does
not exceed 100. Similarly, the model performs very well with increasing number
of scenarios if only the number of variables does not exceed 20.
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Table 2. Solution times [s] for the dual model (19)

Number of Number of variables (q)
scenarios (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1
50 0.1 0.1 0.4 0.7 0.9 1.0 1.5 1.9
100 0.7 1.0 3.4 19.5 24.9 30.0 33.6 38.9
150 2.3 3.5 7.9 80.2 – – – –
200 5.6 7.9 17.1 – – – – –
300 20.0 30.6 189.3 – – – – –
400 51.9 92.8 – – – – – –

Table 3. Solution times [s] for different numbers of preferential weights (m = 100,
q = 50)

Number of preferential weights (n)
3 5 10 20 50 100 150 200 300

0.0 0.1 0.1 0.4 3.3 3.4 2.6 3.6 6.5

Table 3 presents solution times for different numbers of the preferential weights
for problems with 100 scenarios and 50 variables. It can be noticed that the
computational efficiency can be improved by reducing the number of preferen-
tial weights which can be reasonable in non-automated decision making support
systems and actually provides very good results for portfolio optimization prob-
lems [5]. On the other hand increasing the number of preferential weights and
thus the number of breakpoints in the interpolation function does not induce
the massive increase in the computational complexity.

5 Concluding Remarks

The problem of averaging outcomes under several scenarios to form overall ob-
jective functions is of considerable importance in decision support under uncer-
tainty. The WOWA aggregation [12] represents such a universal tool allowing one
to take into account both the preferential weights allocated to ordered outcomes
and the importance weights allocated to several scenarios. The ordering opera-
tor used to define the WOWA aggregation is, in general, hard to implement. We
have shown that the WOWA aggregations with the increasing weights can be
modeled by introducing auxiliary linear constraints. Hence, an LP problem with
the risk averse WOWA aggregation can be formed as a standard linear program
and it can be further simplified by taking advantages of the LP duality.

Initial computational experiments show that the formulation enables to solve
effectively medium size problems. Actually, the number of 100 scenarios covered
by the dual approach to the LP model seems to be quite enough for most appli-
cations, including the fuzzy aggregations and decisions under risk. The problems
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have been solved directly by general purpose LP code. Taking advantages of the
constraints structure specificity may remarkably extend the solution capabilities.
In particular, the simplex SON algorithm [2] may be used for exploiting the LP
embedded network structure in the dual form of the model.
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