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Abstract—The problem of evaluation outcomes under several
scenarios to form overall objective functions is of considerable
importance in decision support under uncertainty. The fuzzy
operator defined as the so-called weighted OWA (WOWA) ag-
gregation offers a well-suited approach to this problem. The
WOWA aggregation, similar to the classical ordered weighted
averaging (OWA), uses the preferential weights assigned to the
ordered values (i.e., to the worst value, the second worst and
so on) rather than to the specific criteria. This allows one to
model various preferences with respect to the risk. Simulta-
neously, importance weighting of scenarios can be introduced.
In this paper we analyze solution procedures for optimiza-
tion problems with the WOWA objective functions related to
decisions under risk. Linear programming formulations are
introduced for optimization of the WOWA objective represent-
ing risk averse preferences. Their computational efficiency is
demonstrated.

Keywords— aggregation methods, decisions under risk, OWA,

scenarios, WOWA.

1. Introduction

In decision problems under uncertainty, we consider, the
decision is based on the maximization of a scalar (real
valued) outcome. The final outcome is uncertain and only
its realizations under various scenarios are known. Exactly,
for each scenario Si (i∈ I = {1,2, . . . ,m}) the corresponding
outcome realization is given as a function of the decision
variables yi = fi(x). We are interested in larger outcomes
under each scenario. Hence, the decision under uncertainty
can be considered a multiple criteria optimization problem:

max { ( f1(x), f2(x), . . . , fm(x)) : x ∈ F } , (1)

where x denotes a vector of decision variables to be selected
within the feasible set F ⊂Rq and f(x)= ( f1(x), . . . , fm(x))
is a vector function that maps the feasible set F into the
criterion space Rm. The feasible set F is usually defined
by some constraints. The elements of the criterion space
we refer to as achievement vectors. An achievement vector
y ∈ Y is attainable if it expresses outcomes of a feasible
solution x ∈ F (y = f(x)). The set of all the attainable
achievement vectors is denoted by A, i.e., A = {y = f(x) :

for some x ∈ F}.
From the perspective of decisions under uncertainty,
model (1) only specifies that we are interested in maxi-
mization of all objective functions fi for i ∈ I. In order

to make it operational, one needs to assume some solu-
tion concept specifying what it means to maximize multiple
objective functions. The solution concepts are defined by
aggregation functions a : Rm → R. Thus the multiple crite-
ria problem (1) is replaced with the (scalar) maximization
problem:

max {a(f(x)) : x ∈ F} .

The most commonly used aggregation is based on the
weighted mean where positive importance weights pi (i =
1, . . . ,m) are allocated to several scenarios:

Ap(y) =
m

∑
i=1

yi pi . (2)

The weights are typically normalized to the total 1
(∑m

i=1 pi = 1) with possible interpretation as scenarios (sub-
jective) probabilities. The weighted mean enables to define
the importance of scenarios but it does not allow one to
model the decision maker’s preferences regarding the dis-
tribution of outcomes. The latter is crucial when aggregat-
ing various realizations of the same (uncertain) outcome
under several scenarios and one needs to model risk averse
preferences [1].
The preference weights can be effectively introduced within
the fuzzy optimization methodology with the so-called or-
dered weighted averaging (OWA) aggregation [2]. In the
OWA aggregation the weights are assigned to the ordered
values (i.e., to the largest value, the second largest and
so on) rather than to the specific criteria. This guaran-
tees a possibility to model various preferences with respect
to the risk. Since its introduction, the OWA aggregation
has been successfully applied to many fields of decision
making [3]–[6]. The weighting of the ordered outcome
values causes that the OWA optimization problem is non-
linear even for linear programming (LP) formulation of the
original constraints and criteria. Yager [7] has shown that
the OWA optimization can be converted into a mixed inte-
ger programming problem. We have shown [8], [9] that the
OWA optimization with monotonic weights can be formed
as a standard linear program of higher dimension.
The OWA operator allows one to model various aggrega-
tion functions from the maximum through the arithmetic
mean to the minimum. Thus, it enables modeling of vari-
ous preferences from the optimistic to the pessimistic one.
On the other hand, the OWA does not allow one to al-
locate any importance weights to specific scenarios. Actu-
ally, the weighted mean (2) cannot be expressed in terms of
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the OWA aggregations. Several attempts have been made
to incorporate importance weighting into the OWA opera-
tor [10], [11]. Finally, Torra [12] has incorporated impor-
tance weighting into the OWA operator within the weighted
OWA (WOWA) aggregation introduced as a particular case
of Choquet integral using a distorted probability as the
measure. The WOWA averaging is defined by two weight-
ing vectors: the preferential weights w and the importance
weights p. It covers both the weighted means (defined
with p) and the OWA averages (defined with w) as special
cases. Actually, the WOWA average becomes the weighted
mean in the case of equal all the preference weights and
it is reduced to the standard OWA average for equal all
the importance weights. Since its introduction, the WOWA
operator has been successfully applied to many fields of
decision making [13], [14] including metadata aggregation
problems [15], [16].
In this paper we analyze solution procedures for optimiza-
tion problems with the WOWA objective functions model-
ing decisions under risk. A linear programming formula-
tions are introduced for optimization of the WOWA objec-
tive with increasing preferential weights thus representing
risk averse preferences. The paper is organized as follows.
In Section 2 we introduce formally the WOWA operator
and derive some alternative computational formula based
on direct application of the preferential weights to the con-
ditional means according to the importance weights. Fur-
ther, in Section 3, we analyze the orness/andness properties
of the WOWA operator with monotonic preferential weights
and the corresponding risk profiles. In Section 4 we intro-
duce the LP formulations for maximization of the WOWA
aggregation with increasing weights. Finally, in Section 5
we demonstrate computational efficiency of the introduced
models.

2. The WOWA Aggregation

Let w = (w1, . . . ,wm) be a weighting vector of dimension m

such that wi ≥ 0 for i = 1, . . . ,m and ∑m
i=1 wi = 1. The cor-

responding OWA aggregation of outcomes y = (y1, . . . ,ym)
can be mathematically formalized as follows [2]. First,
we introduce the ordering map Θ : Rm → Rm such that
Θ(y) = (θ1(y),θ2(y), . . . ,θm(y)), where θ1(y) ≥ θ2(y) ≥
·· · ≥ θm(y) and there exists a permutation τ of set I such
that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we apply the
weighted sum aggregation to ordered achievement vectors
Θ(y), i.e., the OWA aggregation is defined as follows:

Aw(y) =
m

∑
i=1

wiθi(y) , (3)

where wi ≥ 0 for i = 1, . . . ,m are normalized weights
(∑m

i=1 wi = 1). The OWA aggregation (3) allows one to
model various aggregation functions from the maximum
(w1 = 1, wi = 0 for i = 2, . . . ,m) through the arithmetic
mean (wi = 1/m for i = 1, . . . ,m) to the minimum (wm = 1,
wi = 0 for i = 1, . . . ,m−1).

Now, let again w = (w1, . . . ,wm) be an m-dimensional vec-
tor of preferential weights wi ≥ 0 for i = 1, . . . ,m and
∑m

i=1 wi =1. Additionally, let p = (p1, . . . , pm) be an m-di-
mensional vector of importance weights such that pi ≥ 0

for i = 1, . . . ,m and ∑m
i=1 pi = 1. The corresponding

weighted OWA aggregation of vector y = (y1, . . . ,ym) is
defined [12] as follows:

Aw,p(y) =
m

∑
i=1

ωiθi(y) (4)

with the weights ωi defined as

ωi = w∗(∑
k≤i

pτ(k))−w∗(∑
k<i

pτ(k)) , (5)

where w∗ is an increasing function interpolating points
( i

m
,∑k≤i wk) together with the point (0.0) and τ repre-

senting the ordering permutation for y (i.e., yτ(i) = θi(y)).
Moreover, function w∗ is required to be a straight line when
the point can be interpolated in this way. For our purpose
of decision support under risk we will focus on the linear
interpolation thus leading to the piecewise function w∗.

Fig. 1. Function w∗ for w = (0.05,0.1,0.15,0.2,0.5).

To illustrate the WOWA average let us consider two out-
come vectors y′ = (3,1,2,4,5) and y′′ = (1,1,2,6,4), where
individual outcomes correspond to five scenarios. While in-
troducing preferential weights w = (0.05,0.1,0.15,0.2,0.5)
one may calculate the OWA averages: Aw(y′) = 0.05 ·5 +
0.1 ·4+0.15 ·3+0.2 ·2+0.5 ·1= 2 and Aw(y′′) = 0.05 ·6+
0.1 ·4+0.15 ·2+0.2 ·1+0.5 ·1 = 1.7. Further, let us intro-
duce importance weights p = (0.1,0.1,0.2,0.5,0.1) which
means that results under the third scenario are 2 times
more important then those under scenario 1, 2 or 5, while
the results under scenario 4 are even 5 times more im-
portant. To take into account the importance weights in
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the WOWA aggregation (4) we introduce the following
piecewise linear function (cf. Fig. 1):

w∗(ξ ) =



































0.05ξ/0.2, 0 ≤ ξ ≤ 0.2

0.05 + 0.10(ξ −0.2)/0.2, 0.2 < ξ ≤ 0.4

0.15 + 0.15(ξ −0.4)/0.2, 0.4 < ξ ≤ 0.6

0.3 + 0.2(ξ −0.6)/0.2, 0.6 < ξ ≤ 0.8

0.5 + 0.5(ξ −0.8)/0.2, 0.8 < ξ ≤ 1.0

and calculate weights ωi according to formula (4) as w∗

increments corresponding to importance weights of the or-
dered outcomes, as illustrated in Fig. 2. In particular, one
get ω1 = w∗(p5) = 0.025 and ω2 = w∗(p5 + p4)−w∗(p5) =
0.275 for vector y′ while ω1 = w∗(p4) = 0.225 and
ω2 = w∗(p4 + p5)−w∗(p4) = 0.075 for vector y′′. Finally,

Fig. 2. Definition of weights ωi for WOWA formula (4) for
w = (0.05, 0.1, 0.15, 0.2, 0.5) and p = (0.1, 0.1, 0.2, 0.5, 0.1):
(a) vector y′ = (3,1,2,4,5); (b) vector y′′ = (1,1,2,6,4).

Aw,p(y′) = 0.025 ·5+0.275 ·4+0.1 ·3+0.35 ·2+0.25 ·1=
2.475 and Aw,p(y′′)= 0.225 ·6+0.075 ·4+0.2·2+0.25 ·1+
0.25 ·1 = 2.55.
Note that one may alternatively compute the WOWA values
by using the importance weights to replicate correspond-
ing scenarios and calculate then OWA aggregations. In the
case of our importance weights p we need to consider five
copies of scenario 4 and two copies of scenario 3 thus gen-
erating corresponding vectors ỹ′ = (3,1,2,2,4,4,4,4,4,5)
and ỹ′′ = (1,1,2,2,6,6,6,6,6,4) of ten equally important
outcomes. Original five preferential weights must be then
applied respectively to the average of the two largest out-
comes, the average of the next two largest outcomes, etc.
Indeed, we get Aw,p(y

′) = 0.05 · 4.5 + 0.1 · 4 + 0.15 · 4 +
0.2 · 2.5 + 0.5 · 1.5 = 2.475 and Aw,p(y′′) = 0.05 · 6 +
0.1 · 6 + 0.15 · 5 + 0.2 · 2 + 0.5 · 1 = 2.55. We will further
formalize this approach and take its advantages to build the
LP computational models.
Function w∗ can be defined by its generation function g with
the formula w∗(α) =

∫ α
0 g(ξ ) dξ . Introducing breakpoints

αi = ∑k≤i pτ(k) and α0 = 0 we get

ωi =
∫ αi

0

g(ξ ) dξ −
∫ αi−1

0

g(ξ ) dξ =
∫ αi

αi−1

g(ξ ) dξ

and finally [17], [18]:

Aw,p(y) =
m

∑
i=1

θi(y)

∫ αi

αi−1

g(ξ ) dξ

=

∫ 1

0

g(ξ )F
(−1)
y (ξ ) dξ ,

(6)

where F
(−1)
y is the stepwise function F

(−1)
y (ξ ) = θi(y) for

αi−1 < ξ ≤ αi. It can also be mathematically formalized
as follows. First, we introduce the right-continuous cumu-
lative distribution function (cdf):

Fy(d) =
m

∑
i=1

piδi(d) , (7)

where

δi(d) =

{

1 if yi ≤ d

0 otherwise

which for any real (outcome) value d provides the measure
of outcomes smaller or equal to d. Next, we introduce the

quantile function F
(−1)
y = inf {η : Fy(η)≥ ξ} for 0 < ξ ≤ 1

as the left-continuous inverse of the cumulative distribution
function Fy, and finally F

(−1)
y (ξ ) = F

(−1)
y (1− ξ ).

Formula (6) provides the most general expression of the
WOWA aggregation allowing for expansion to continuous
case. The original definition of WOWA allows one to
build various interpolation functions w∗ [19] thus to use
different generation functions g in formula (6). Let us fo-
cus our analysis on the the piecewise linear interpolation
function w∗. It is the simplest form of the interpolation
function. Note, however, that the piecewise linear func-
tions may be built with various number of breakpoints, not
necessarily m. Thus, any nonlinear function can be well
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approximated by a piecewise linear function with appro-
priate number of breakpoints. Therefore, we will consider
weights vectors w of dimension n not necessarily equal
to m. Any such piecewise linear interpolation function w∗

can be expressed with the stepwise generation function:

g(ξ ) = nwk for (k−1)/n < ξ ≤ k/n, k = 1, . . . ,n . (8)

This leads us to the following specification of formula (6):

Aw,p(y) =
n

∑
k=1

wkn

∫ k/n

(k−1)/n
F

(−1)
y (ξ ) dξ

=
n

∑
k=1

wkn

∫ k/n

(k−1)/n
F

(−1)
y (1− ξ ) dξ .

(9)

Note that n
∫ k/n

(k−1)/n
F

(−1)
y (ξ ) dξ represents the average

within the kth portion of 1/n largest outcomes, the corre-
sponding conditional mean [20], [21]. Hence, formula (9)
defines WOWA aggregations with preferential weights w

as the corresponding OWA aggregation but applied to the
conditional means calculated according to the importance
weights p instead of the original outcomes. Figure 3 il-
lustrates application of formula (9) to computation of the
WOWA aggregations for vectors from Fig. 2.

Fig. 3. Formula (9) applied to WOWA calculations for p =
(0.1,0.1,0.2,0.5,0.1): (a) vector y′ = (3,1,2,4,5); (b) vector
y′′ = (1,1,2,6,4).

We will treat formula (9) as a formal definition of the
WOWA aggregation of m-dimensional outcomes y defined

by the m-dimensional importance weights p and the n-di-
mensional preferential weights w. Formula (9) may be re-
formulated to use the tail averages:

Aw,p(y) =
n

∑
k=1

nwk

(

L
(

y,p,1−
k−1

n

)

−L
(

y,p,1−
k

n

)

)

(10)

with L(y,p,ξ ) defined by left-tail integrating of F
(−1)
y ,

i.e., L(y,p,0) = 0,

L(y,p,ξ ) =

∫ ξ

0

F
(−1)
y (α)dα for 0 < ξ ≤ 1 (11)

and L(y,p,1) = Ap(y) thus representing the weighted aver-
age. Finally,

Aw,p(y) =
n

∑
k=1

w′
kL

(

y,p,
k

n

)

(12)

with weights

w′
k = n(wn−k+1 −wn−k) for k = 1, . . . ,n−1

w′
n = nw1 .

(13)

Graphs of functions L(y,p,ξ ) (with respect to ξ ) take the
form of convex piecewise linear curves, the so-called ab-
solute Lorenz curves [22] connected to the relation of the
second order stochastic dominance (SSD). Therefore, for-
mula (12) relates the WOWA average to the SSD consistent
risk measures based on the tail means [23] provided that the
importance weights are treated as scenario probabilities.

3. The Orness and Risk Preferences

The OWA aggregation may model various preferences from
the optimistic (max) to the pessimistic (min). Yager [2]
introduced a well appealing concept of the orness measure
to characterize the OWA operators. The degree of orness
associated with the OWA operator Aw(y) is defined as

orness(w) =
m

∑
i=1

m− i

m−1
wi . (14)

For the max aggregation representing the fuzzy OR oper-
ator with weights w = (1,0, . . . ,0) one gets orness(w) = 1

while for the min aggregation representing the fuzzy
AND operator with weights w = (0, . . . ,0,1) one has
orness(w) = 0. For the average (arithmetic mean) one
gets orness((1/m,1/m, . . . ,1/m))= 1/2. Actually, one may
consider a complementary measure of andness defined as
andness(w) = 1− orness(w). OWA aggregations with or-
ness greater or equal 1/2 are considered or-like whereas the
aggregations with orness smaller or equal 1/2 are treated as
and-like. The former correspond to rather optimistic pref-
erences while the latter represents rather pessimistic pref-
erences.
The OWA aggregations with monotonic weights are either
or-like or and-like. Exactly, decreasing weights w1 ≥ w2 ≥
. . . ≥ wm define an or-like OWA operator, while increas-
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ing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like OWA
operator. Actually, the orness and the andness properties
of the OWA operators with monotonic weights are total in
the sense that they remain valid for any subaggregations
defined by subsequences of their weights. Namely, for any
2 ≤ k ≤ m one gets

k

∑
j=1

k− j

k−1
wi j

≥
1

2
and

k

∑
j=1

k− j

k−1
wi j

≤
1

2

for the OWA operators with decreasing or increasing
weights, respectively. Moreover, the weights monotonicity
is necessary to achieve the above total orness and andness
properties. Therefore, we will refer to the OWA aggregation
with decreasing weights as the totally or-like OWA opera-
tor, and to the OWA aggregation with increasing weights
as the totally and-like OWA operator.
Yager [24] proposed to define the OWA weighting vec-
tors via the regular increasing monotone (RIM) quantifiers,
which provide a dimension independent description of the
aggregation. A fuzzy subset Q of the real line is called
a RIM quantifier if Q is (weakly) increasing with Q(0) = 0

and Q(1) = 1. The OWA weights can be defined with
a RIM quantifier Q as wi = Q(i/m)−Q((i − 1)/m) and
the orness measure can be extended to a RIM quantifier
(according to m → ∞) as follows [24]:

orness(Q) =

∫ 1

0

Q(α) dα . (15)

Thus, the orness of a RIM quantifier is equal to the area
under it. The measure takes the values between 0 (achieved
for Q(1) = 1 and Q(α) = 0 for all other α) and 1 (achieved
for Q(0) = 1 and Q(α) = 0 for all other α). In particu-
lar, orness(Q) = 1/2 for Q(α) = α which is generated by
equal weights wk = 1/n. Formula (15) allows one to de-
fine the orness of the WOWA aggregation (4) which can be
viewed with the RIM quantifier Q(α) = w∗(α) [25]. Let
us consider piecewise linear function Q = w∗ defined by
weights vectors w of dimension n according to the step-
wise generation function (8). One may easily notice that
decreasing weights w1 ≥ w2 ≥ . . . ≥ wn generate a strictly
increasing concave curve Q(α) ≥ α thus guaranteeing the
or-likeness of the WOWA operator. Similarly, increasing
weights w1 ≤ w2 ≤ . . . ≤ wn generate a strictly increasing
convex curve Q(α) ≤ α thus guaranteeing the and-likeness
of the WOWA operator. Actually, the monotonic weights
generate the totally or-like and and-like operators, respec-
tively, in the sense that

∫ 1

0

Q(a + α(b−a))−Q(a)

Q(b)−Q(a)
dα ≥

1

2
(16)

or
∫ 1

0

Q(a + α(b−a))−Q(a)

Q(b)−Q(a)
dα ≤

1

2
(17)

for the WOWA operators with decreasing or increasing
weights, respectively.

Actually, the absolute Lorenz curve represent a dual charac-
terization of the second stochastic dominance relation [22]
which is the most general mathematical model of the
risk averse preferences in decisions under risk [26]. For-
mula (12) represents the WOWA aggregation with increas-
ing preferential weights as the weighted (positive) com-
bination of n tail averages. Therefore, the WOWA ob-
jective functions with increasing preferential weights are
SSD consistent and they represent the risk averse aggre-
gations of outcomes under several scenarios. Moreover,
such WOWA averages may be interpreted as the dual util-
ity criteria within the theory developed by Yaari [27] which
was recently reintroduced [28] in a simplified form of the

spectral risk measures
1
∫

0

φ(ξ )F
(−1)
y (ξ )dξ , where decreas-

ing (nonincreasing) distortion function φ represents risk
averse preferences. Indeed, according to (6),

Aw,p(y) =

∫ 1

0

g(ξ )F
(−1)
y (ξ ) dξ =

∫ 1

0

g(1−ξ )F
(−1)
y (ξ ) dξ

thus representing a spectral risk measure with distortion
function φ(ξ ) = g(1− ξ ), nonincreasing for the increas-
ing weights wk. Similarly, the generalized WOWA can be
expressed with φ(ξ )= gβ (1−ξ ) nonincreasing for the rela-
tively increasing weights wk. As pointed out by Acerbi [28],
the subjective risk aversion of a decision maker can be en-
coded in a function φ(ξ ) defined for all possible ξ ∈ (0,1]
and one cannot see any arbitrary choice of function φ(ξ ).
The WOWA aggregations allows one to seek an appropriate
function defined by a few preferential weights and possibly
breakpoints (for the generalized WOWA).

4. Linear Programming Models

Consider maximization of a risk averse WOWA aggregation
defined by increasing weights w1 ≤ w2 ≤ . . . ≤ wn

max{Aw,p(y) : y = f(x), x ∈ F} . (18)

Due to formula (12), the problem may be expressed as

max{
n

∑
k=1

w′
kL(y,p,

k

n
) : y = f(x), x ∈ F}

with positive weights w′
k defined by (13).

According to (11), values of function L(y,p,ξ ) for any
0 ≤ ξ ≤ 1 can be given by optimization:

L(y,p,ξ ) = min
si

{
m

∑
i=1

yisi :

m

∑
i=1

si = ξ ; 0 ≤ si ≤ pi, ∀ i } .
(19)

The above problem is an LP for a given outcome vector y

while it becomes nonlinear for y being a vector of variables.
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This difficulty can be overcome by taking advantage of the
LP dual to (19). Introducing dual variable t corresponding
to the equation ∑m

i=1 si = ξ and variables di correspond-
ing to upper bounds on si one gets the following LP dual
expression of L(y,p,ξ )

L(y,p,ξ ) = max
t,di

{ ξ t −
m

∑
i=1

pidi :

t −di ≤ yi, di ≥ 0 ∀ i} .

(20)

Therefore, maximization of the WOWA aggregation (18)
can be expressed as follows:

max
tk ,dik,yi,x j

n

∑
k=1

w′
k

[

k

n
tk −

m

∑
i=1

pidik

]

s.t. tk −dik ≤ yi, dik ≥ 0 ∀ i,k

y = f(x), x ∈ F .

Consider multiple criteria problems (1) with linear objec-
tive functions fi(x) = cix and polyhedral feasible sets:

max{(y1,y2, . . . ,ym) : y = Cx, Ax = b, x
>
= 0} , (21)

where C is an m× q matrix (consisting of rows ci), A is
a given v × q matrix and b = (b1, . . . ,bv)

T is a given
RHS (right hand side) vector. For such problems, we get
the following LP formulation of the WOWA maximiza-
tion (18):

max
tk ,dik,yi,x j

n

∑
k=1

k

n
w′

ktk −
n

∑
k=1

m

∑
i=1

w′
k pidik (22)

s.t.
q

∑
j=1

ar jx j = br r = 1, . . . ,v (23)

yi −
q

∑
j=1

ci jx j = 0 i = 1, . . . ,m (24)

dik ≥ tk − yi, dik ≥ 0 i = 1, . . . ,m (25)

k = 1, . . . ,n

x j ≥ 0 j = 1, . . . ,q (26)

Model (22)–(26) is an LP problem with mn + m + n + q

variables and mn + m + v constraints. Thus, for problems
with not too large number of scenarios (m) and prefer-
ential weights (n) it can be solved directly. Note that
WOWA model (22)–(26) differs from the analogous de-
viational model for the OWA optimizations [8] only due
to coefficients within the objective function (22) and the
possibility of different values of m and n.
The number of constraints in problem (22)–(26) is similar
to the number of variables. Nevertheless, for the simplex
approach it may be better to deal with the dual of (22)–(26)
than with the original problem. Note that variables dik in
the primal are represented with singleton columns. Hence,
the corresponding rows in the dual represent only simple
upper bounds.

Introducing the dual variables: ur (r = 1, . . . ,v), νi (i =
1, . . . ,m) and zik (i = 1, . . . ,m; k = 1, . . . ,n) corresponding
to the constraints (23), (24) and (25), respectively, we get
the following dual:

min
zik,νi ,ur

v

∑
r=1

brur

s.t.
v

∑
r=1

ar jur −
m

∑
i=1

ci jνi
>
= 0 j = 1, . . . ,q

νi −
n

∑
k=1

zik ≥ 0 i = 1, . . . ,m

m

∑
i=1

zik =
k

n
w′

k k = 1, . . . ,n

0 ≤ zik ≤ piw
′
k i = 1, . . . ,m

k = 1, . . . ,n

(27)

The dual problem (27) contains: m+ n + q structural con-
straints, m+ v unbounded variables and mn bounded vari-
ables. Since the average complexity of the simplex method
depends on the number of constraints, the dual model (27)
can be directly solved for quite large values of m and n.
Moreover, the columns corresponding to mn variables zik

form the transportation/assignment matrix thus allowing
one to employ special techniques of the simplex SON (spe-
cial ordered network) algorithm [29] for implicit handling
of these variables. Such techniques increase dramatically
efficiency of the simplex method but they require a special
tailored implementation. We have not tested this approach
within our initial computational experiments based on the
use of a general purpose LP code.

5. Computational Tests

In order to analyze the computational performances of the
LP model for the WOWA optimization, similarly to [8],
we have solved randomly generated problems of portfolio
optimization according to the (discrete) scenario analysis
approach [6]. There is given a set of securities for an invest-
ment J = {1,2, . . . ,q}. We assume, as usual, that for each
security j ∈ J there is given a vector of data (ci j)i=1,...,m,
where ci j is the observed (or forecasted) rate of return of
security j under scenario i (hereafter referred to as out-
come). We consider discrete distributions of returns de-
fined by the finite set I = {1,2, . . . ,m} of scenarios with
the assumption that each scenario can be assigned the im-
portance weight pi that can be seen as the subjective prob-
ability of the scenario. The outcome data forms an m×q

matrix C = (ci j)i=1,...,m; j=1,...,q whose columns correspond
to securities while rows ci = (ci j) j=1,2,...,q correspond to
outcomes. Further, let x = (x j) j=1,2,...,q denote the vector
of decision variables defining a portfolio. Each variable x j

expresses the portion of the capital invested in the corre-
sponding security. Portfolio x generates outcomes

y = Cx = (c1x,c2x, . . . ,cmx) .
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The portfolio selection problem can be considered as an LP
problem with m uniform objective functions fi(x) = cix =

∑
q
j=1

ci jx j to be maximized [6]:

max {Cx :

q

∑
j=1

x j = 1; x j ≥ 0, j = 1, . . . ,q} .

Hence, our portfolio optimization problem can be consid-
ered a special case of the multiple criteria problem and one
may seek an optimal portfolio with some criteria aggrega-
tion. Note that the aggregation must take into account the
importance of various scenarios thus allowing importance
weights pi to be assigned to several scenarios. Further the
preferential weights wk must be increasing to represent the
risk averse preferences (more attention paid on improve-
ment of smaller outcomes). Thus we get the WOWA max-
imization problem:

max {Aw,p(Cx) :

q

∑
j=1

x j = 1; x j ≥ 0, j = 1, . . . ,q} . (28)

Our computational tests were based on the randomly gen-
erated problems (28) with varying number q of securities
(decision variables) and number m of scenarios. The gener-
ation procedure worked as follows. First, for each security j

the maximum rate of return r j was generated as a random
number uniformly distributed in the interval [0.05,0.15].
Next, this value was used to generate specific outcomes ci j

(the rate of return under scenarios i) as random variables
uniformly distributed in the interval [−0.75r j,r j]. Further,
strictly increasing and positive weights wk were generated.
The weights were not normalized which allowed us to de-
fine them by the corresponding increments δk = wk −wk−1.
The latter were generated as uniformly distributed random
values in the range of 1.0 to 2.0, except from a few (5 on
average) possibly larger increments ranged from 1.0 to n/3.
Importance weights pi were generated according to the ex-
ponential smoothing scheme, which assigns exponentially
decreasing weights to older or subjectively less probable
scenarios: pi = α(1−α)i−1 for i = 1,2, . . . ,m and the pa-
rameter α is chosen for each test problem size separately
to keep the value of pm around 0.001.
We tested solution times for different size parameters m

and q. The basic tests were performed for the standard
WOWA model with n = m. However, we also analyzed the
case of larger n for more detailed preferences modeling,
as well as the case of smaller n thus representing a rough
preferences model. For each number of securities q and
number of criteria (scenarios) m we solved 10 randomly
generated problems (28). All computations were performed
on a PC with the Athlon 64, 1.8 GHz processor employing
the CPLEX 9.1 package. The 600 seconds time limit was
used in all the computations.
In Tables 1 and 2 we show the solution times for the pri-
mal (22)–(26) and the dual (27) forms of the computa-
tional model, being the averages of 10 randomly generated
problems. Upper index in front of the time value indicates

Table 1

Solution times [s] for the primal model (22)–(26)

Scenarios Number of securities (q)

(m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.8 1.0 1.4 1.7 1.7 1.7 1.6 1.7

100 21.0 29.0 34.1 41.8 51.9 70.0 95.4 86.9

150 187.0 243.6 312.9 354.2 402.7 474.8 1474.9 6562.2

Table 2

Solution times [s] for the dual model (27)

Scenarios Number of securities (q)

(m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

50 0.0 0.0 0.3 0.3 0.4 0.4 0.5 0.6

100 0.4 0.6 1.5 6.7 8.4 10.2 11.6 13.4

150 1.3 2.0 3.8 24.2 49.0 59.2 62.1 62.7

200 3.0 4.1 8.7 66.6 144.8 225.0 243.0 246.9

300 9.7 14.3 31.0 1291.4 4491.3 – – –

400 22.8 34.4 82.2 4344.1 7555.1 – – –

the number of tests among 10 that exceeded the time limit.
The empty cell (minus sign) shows that this occurred for
all 10 instances. Both forms were solved by the CPLEX
code without taking advantages of the constraints structure
specificity. The dual form of the model performs much
better in each tested problem size. It behaves very well
with increasing number of securities if the number of sce-
narios does not exceed 100. Similarly, the model performs
very well with increasing number of scenarios if only the
number of securities does not exceed 50.

Table 3

Solution times [s] for different numbers of preferential
weights (q = 50)

Number of Number of preferential weights (n)

scenarios (m) 3 5 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

20 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.3

50 0.0 0.0 0.0 0.0 0.3 0.2 0.4 0.6 1.1 1.6

100 0.0 0.0 0.1 0.3 1.0 1.5 1.5 2.1 3.7 5.1

150 0.0 0.1 0.2 0.5 3.7 4.5 3.8 4.6 7.7 11.0

200 0.1 0.1 0.3 1.2 8.0 11.6 7.1 8.7 13.8 23.7

300 0.1 0.3 0.7 3.5 19.6 29.1 12.2 16.9 31.0 41.2

400 0.2 0.4 1.6 6.5 36.6 48.6 16.4 28.4 45.8 82.2

Table 3 presents solution times for different numbers of the
preferential weights. The number of securities equals 50.
It can be noticed that increasing the number of preferen-
tial weights and thus the number of breakpoints in the in-
terpolation function induce moderate increase in the com-
putational complexity. On the other hand, the computa-
tional efficiency can be significantly improved by reduc-
ing the number of preferential weights to a few which can
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be reasonable in non-automated decision making support
systems.

6. Concluding Remarks

The WOWA aggregation [12] represents a universal tool
allowing one to combinine outcomes under several scenar-
ios to form overall objective functions taking into account
both the risk aversion preferences depicted with the pref-
erential weights allocated to ordered outcomes as well as
the scenarios importance expressed with weights allocated
to several scenarios. The ordering operator used to de-
fine the WOWA aggregation is, in general, hard to imple-
ment within optimization problems. We have shown that
the risk averse WOWA aggregations are characterized by
the increasing weights and their optimization can be mod-
eled by introducing auxiliary linear constraints. Hence,
an LP decision under risk problem with the risk averse
WOWA aggregation of outcomes under several scenarios
can be formed as a standard linear program. Moreover,
it can be further simplified by taking advantages of the
LP duality.
Our computational experiments show that the LP formula-
tion enables to solve effectively medium size WOWA prob-
lems. Actually, the number of few hundred scenarios effi-
ciently covered by the dual LP model in less a minute for
problems with limited number of structural variables seems
to be quite enough for most applications to decisions under
risk. The problems have been solved directly by a gen-
eral purpose LP code. Taking advantages of the constraints
structure specificity may remarkably extend the solution ca-
pabilities. In particular, the simplex SON algorithm [29]
may be used for exploiting the LP embedded network struc-
ture in the dual form of the model. This seems to be a very
promising direction for further research.
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