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Abstract—The reference point method (RPM) is based on the

so-called augmented max-min aggregation where the worst

individual achievement maximization process is additionally

regularized with the average achievement. In order to avoid

inconsistencies caused by the regularization, we replace it

with the ordered weighted average (OWA) which combines

all the individual achievements allocating the largest weight

to the worst achievement, the second largest weight to the

second worst achievement, and so on. Further following the

concept of the weighted OWA (WOWA) we incorporate the

importance weighting of several achievements into the RPM.

Such a WOWA RPM approach uses importance weights to af-

fect achievement importance by rescaling accordingly its mea-

sure within the distribution of achievements rather than by

straightforward rescaling of achievement values. The recent

progress in optimization methods for ordered averages allows

us to implement the WOWA RPM quite effectively as exten-

sion of the original constraints and criteria with simple linear

inequalities.

Keywords— aggregation methods, multicriteria decision mak-

ing, reference point method, WOWA.

1. Introduction

Consider a decision problem defined as an optimization
problem with m criteria (objective functions). In this pa-
per, without loss of generality, it is assumed that all the
criteria are maximized (that is, for each outcome “more is
better”). Hence, we consider the following multiple criteria
optimization problem:

max { ( f1(x), . . . , fm(x)) : x ∈ Q } , (1)

where x denotes a vector of decision variables to be
selected within the feasible set Q ⊂ Rn, and f(x) =
( f1(x), f2(x), . . . , fm(x)) is a vector function that maps the
feasible set Q into the criterion space Rm. Note that nei-
ther any specific form of the feasible set Q is assumed nor
any special form of criteria fi(x) is required. We refer to
the elements of the criterion space as outcome vectors. An
outcome vector y is attainable if it expresses outcomes of
a feasible solution, i.e., y = f(x) for some x ∈ Q.
Model (1) only specifies that we are interested in maximiza-
tion of all objective functions fi for i ∈ I = {1,2, . . . ,m}.
Thus it allows only to identify (to eliminate) obviously in-
efficient solutions leading to dominated outcome vectors,
while still leaving the entire efficient set to look for a satis-
factory compromise solution. In order to make the multiple

criteria model operational for the decision support process,
one needs assume some solution concept well adjusted to
the decision maker (DM) preferences. This can be achieved
with the so-called quasi-satisficing approach to multiple
criteria decision problems. The best formalization of the
quasi-satisficing approach to multiple criteria optimization
was proposed and developed mainly by Wierzbicki [1] as
the reference point method (RPM). The reference point
method was later extended to permit additional information
from the DM and, eventually, led to efficient implementa-
tions of the so-called aspiration/reservation based decision
support (ARBDS) approach with many successful applica-
tions [2]–[5].
The RPM is an interactive technique. The basic concept
of the interactive scheme is as follows. The DM specifies
requirements in terms of reference levels, i.e., by intro-
ducing reference (target) values for several individual out-
comes. Depending on the specified reference levels, a spe-
cial scalarizing achievement function is built which may be
directly interpreted as expressing utility to be maximized.
Maximization of the scalarizing achievement function gen-
erates an efficient solution to the multiple criteria problem.
The computed efficient solution is presented to the DM as
the current solution in a form that allows comparison with
the previous ones and modification of the reference levels
if necessary.
The scalarizing achievement function can be viewed as two-
stage transformation of the original outcomes. First, the
strictly monotonic partial achievement functions are built
to measure individual performance with respect to given
reference levels. Having all the outcomes transformed into
a uniform scale of individual achievements they are aggre-
gated at the second stage to form a unique scalarization.
The RPM is based on the so-called augmented (or regu-
larized) max-min aggregation. Thus, the worst individual
achievement is essentially maximized but the optimization
process is additionally regularized with the term represent-
ing the average achievement. The max-min aggregation
guarantees fair treatment of all individual achievements by
implementing an approximation to the Rawlsian principle
of justice.
The max-min aggregation is crucial for allowing the RPM
to generate all efficient solutions even for nonconvex (and
particularly discrete) problems. On the other hand, the
regularization is necessary to guarantee that only efficient
solution are generated. The regularization by the average
achievement is easily implementable but it may disturb

17



Włodzimierz Ogryczak

the basic max-min model. Actually, the only consequent
regularization of the max-min aggregation is the lex-min or-
der or more practical the ordered weighted averages (OWA)
aggregation with monotonic weights. The latter combines
all the partial achievements allocating the largest weight
to the worst achievement, the second largest weight to the
second worst achievement, the third largest weight to the
third worst achievement, and so on. The recent progress in
optimization methods for ordered averages [6] allows one
to implement the OWA RPM quite effectively. Further fol-
lowing the concept of weighted OWA [7] the importance
weighting of several achievements may be incorporated into
the RPM. Such a weighted OWA (WOWA) enhancement of
the RPM uses importance weights to affect achievement
importance by rescaling accordingly its measure within
the distribution of achievements rather than straightfor-
ward rescaling of achievement values [8]. The paper an-
alyzes both the theoretical and implementation issues of
the WOWA enhanced RPM.

2. Scalarizations of the RPM

While building the scalarizing achievement function the
following properties of the preference model are assumed.
First of all, for any individual outcome yi more is preferred
to less (maximization). To meet this requirement the func-
tion must be strictly increasing with respect to each out-
come. Second, a solution with all individual outcomes yi

satisfying the corresponding reference levels is preferred to
any solution with at least one individual outcome worse
(smaller) than its reference level. That means, the scalariz-
ing achievement function maximization must enforce reach-
ing the reference levels prior to further improving of crite-
ria. Thus, similar to the goal programming approaches, the
reference levels are treated as the targets but following the
quasi-satisficing approach they are interpreted consistently
with basic concepts of efficiency in the sense that the opti-
mization is continued even when the target point has been
reached already.
The generic scalarizing achievement function takes the fol-
lowing form [1]:

S(y) = min
1≤i≤m

{si(yi)}+
ε

m

m

∑
i=1

si(yi) , (2)

where ε is an arbitrary small positive number and si : R→R,
for i = 1,2, . . . ,m, are the partial achievement func-
tions measuring actual achievement of the individual out-
comes yi with respect to the corresponding reference levels.
Let ai denote the partial achievement for the ith outcome
(ai = si(yi)) and a = (a1,a2, . . . ,am) represent the achieve-
ment vector. The scalarizing achievement function (2) is,
essentially, defined by the worst partial (individual) achieve-
ment but additionally regularized with the sum of all par-
tial achievements. The regularization term is introduced
only to guarantee the solution efficiency in the case when

the maximization of the main term (the worst partial
achievement) results in a non-unique optimal solution. Due
to combining two terms with arbitrarily small parameter ε ,
formula (2) is easily implementable and it provides a di-
rect interpretation of the scalarizing achievement function
as expressing utility.
Various functions si provide a wide modeling environment
for measuring partial achievements [5], [9]–[11]. The basic
RPM model is based on a single vector of the reference lev-
els, the aspiration vector ra. For the sake of computational
simplicity, the piecewise linear functions si are usually em-
ployed. In the simplest models, they take a form of two
segment piecewise linear functions:

si(yi) =

{

λ +
i (yi − ra

i ), for yi ≥ ra
i

λ−
i (yi − ra

i ), for yi < ra
i ,

(3)

where λ +
i > λ−

i are positive scaling factors corresponding
to underachievements and overachievements, respectively,
for the ith outcome. It is usually assumed that λ +

i is much
larger than λ−

i . Figure 1 depicts how differentiated scaling
affects the isoline contours of the scalarizing achievement
function.

Fig. 1. Isoline contours for the scalarizing achievement func-
tion (2) with partial achievements (3).

Real-life applications of the RPM methodology usually deal
with more complex partial achievement functions defined
with more than one reference point [5] which enriches the
preference models and simplifies the interactive analysis.
In particular, the models taking advantages of two refer-
ence vectors: vector of aspiration levels ra and vector of
reservation levels rr [3] are used, thus allowing the DM
to specify requirements by introducing acceptable and re-
quired values for several outcomes. The partial achieve-
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ment function si can be interpreted then as a measure of
the DM’s satisfaction with the current value of outcome
the ith criterion. It is a strictly increasing function of out-
come yi with value ai = 1 if yi = ra

i , and ai = 0 for yi = rr
i .

Thus the partial achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfaction.
Various functions can be built meeting those requirements.
We use the piece-wise linear partial achievement function
introduced in an implementation of the ARBDS system for
the multiple criteria transshipment problems with facility
location [12]:

si(yi) =



































γ
yi − rr

i

ra
i − rr

i

, yi ≤ rr
i

yi − rr
i

ra
i − rr

i

, rr
i < yi < ra

i

α
yi − ra

i

ra
i − rr

i

+ 1, yi ≥ ra
i ,

(4)

where α and γ are arbitrarily defined parameters satisfying
0 < α < 1 < γ . Parameter α represents additional increase
of the DM’s satisfaction over level 1 when a criterion gen-
erates outcomes better than the corresponding aspiration
level. On the other hand, parameter γ > 1 represents dis-
satisfaction connected with outcomes worse than the reser-
vation level.
For outcomes between the reservation and the aspiration
levels, the partial achievement function si can be interpreted
as a membership function µi for a fuzzy target. However,
such a membership function remains constant with value 1
for all outcomes greater than the corresponding aspiration
level, and with value 0 for all outcomes below the reserva-
tion level (Fig. 2). Hence, the fuzzy membership function

Fig. 2. Partial achievement function (4).

is neither strictly monotonic nor concave thus not repre-
senting typical utility for a maximized outcome. The par-
tial achievement function (4) can be viewed as an extension
of the fuzzy membership function to a strictly monotonic
and concave utility. One may also notice that the aggre-
gation scheme used to build the scalarizing achievement
function (2) from the partial ones may also be interpreted
as some fuzzy aggregation operator [5]. In other words,
maximization of the scalarizing achievement function (2)

is consistent with the fuzzy methodology in the case of not
attainable aspiration levels and satisfiable all reservation
levels while modeling a reasonable utility for any values of
aspiration and reservation levels.

3. Ordered Weighted Averages
Refinement of the RPM

The crucial properties of the RPM are related to the max-
min aggregation of partial achievements while the regu-
larization is only introduced to guarantee the aggregation
monotonicity. Unfortunately, the distribution of achieve-
ments may make the max-min criterion partially passive
when one specific achievement is relatively very small for
all the solutions. Maximization of the worst achievement
may then leave all other achievements unoptimized. Nev-
ertheless, the selection is then made according to linear
aggregation of the regularization term instead of the max-
min aggregation, thus destroying the preference model of
the RPM. This can be illustrated with an example of a sim-
ple discrete problem of 7 alternative feasible solutions to
be selected according to 6 criteria.
Table 1 presents six partial achievements for all the so-
lutions where the partial achievements have been defined
according to the aspiration/reservation model (4) thus allo-
cating 1 to outcomes reaching the corresponding aspiration
level. All the solutions are efficient. Solution S1 to S5
oversteps the aspiration levels (achievement values 1.2) for
four of the first five criteria while failing to reach one of
them and the aspiration level for the sixth criterion as well
(achievement values 0.3). Solution S6 meets the aspira-
tion levels (achievement values 1.0) for the first five crite-
ria while failing to reach only the aspiration level for the
sixth criterion (achievement values 0.3). All the solutions
generate the same worst achievement value 0.3 and the fi-
nal selection of the RPM depends on the total achievement
(regularization term). Actually, one of solutions S1 to S5
will be selected as better than S6.

Table 1
Sample achievements with passive max-min criterion

Solutions a1 a2 a3 a4 a5 a6 min ∑

S1 0.3 1.2 1.2 1.2 1.2 0.3 0.3 5.4

S2 1.2 0.3 1.2 1.2 1.2 0.3 0.3 5.4

S3 1.2 1.2 0.3 1.2 1.2 0.3 0.3 5.4

S4 1.2 1.2 1.2 0.3 1.2 0.3 0.3 5.4

S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 5.4

S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 5.3

S7 0.3 0.3 0.3 1.0 0.6 1.0 0.3 3.5

In order to avoid inconsistencies caused by the regulariza-
tion, the max-min solution may be regularized according
to the ordered averaging rules [13]. This is mathematically
formalized as follows. Within the space of achievement
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vectors we introduce map Θ = (θ1,θ2, . . . ,θm) which orders
the coordinates of achievements vectors in a nondecreas-
ing order, i.e., Θ(a1,a2, . . . ,am) = (θ1(a),θ2(a), . . . ,θm(a))
iff there exists a permutation τ such that θi(a) = aτ(i) for
all i and θ1(a) ≤ θ2(a) ≤ . . . ≤ θm(a). The standard max-
min aggregation depends on maximization of θ1(a) and it
ignores values of θi(a) for i ≥ 2. In order to take into ac-
count all the achievement values, one needs to maximize
the weighted combination of the ordered achievements thus
representing the so-called ordered weighted averaging ag-
gregation [13]. Note that the weights are then assigned
to the specific positions within the ordered achievements
rather than to the partial achievements themselves. With
the OWA aggregation one gets the following RPM model:

max

m

∑
i=1

wiθi(a) , (5)

where w1 > w2 > .. . > wm > 0 are positive and strictly
decreasing weights. Actually, they should be significantly
decreasing to represent regularization of the max-min or-
der. When differences among weights tend to infinity, the
OWA aggregation approximates the leximin ranking of the
ordered outcome vectors [14]. Note that the standard RPM
model with the scalarizing achievement function (2) can be
expressed as the following OWA model [15]:

max

(

(1 +
ε

m
)θ1(a)+

ε

m

m

∑
i=2

θi(a)

)

.

Hence, the standard RPM model exactly represents the
OWA aggregation (5) with strictly decreasing weights in
the case of m = 2 (w2 = ε/2 < w1 = 1+ε/2). For m > 2 it
abandons the differences in weighting of the largest achieve-
ment, the second largest one, etc., (w2 = . . . = wm = ε/m).
The OWA RPM model 5 allows one to distinguish all
the weights by introducing increasing series (e.g., geo-
metric ones). One may notice in Table 2 that application
of decreasing weights w = (0.5,0.25,0.15,0.05,0.03,0.02)
within the OWA RPM enable selection of solution S6 from
Table 1.

Table 2
Ordered achievements values

Solutions θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 0.3 0.3 1.2 1.2 1.2 1.2 0.525

S2 0.3 0.3 1.2 1.2 1.2 1.2 0.525

S3 0.3 0.3 1.2 1.2 1.2 1.2 0.525

S4 0.3 0.3 1.2 1.2 1.2 1.2 0.525

S5 0.3 0.3 1.2 1.2 1.2 1.2 0.525

S6 0.3 1.0 1.0 1.0 1.0 1.0 0.650

S7 0.3 0.3 0.3 0.6 1.0 1.0 0.305

w 0.5 0.25 0.15 0.05 0.03 0.02

An important advantage of the RPM depends on its easy
implementation as an expansion of the original multiple

criteria model. Actually, even complicated partial achieve-
ment functions of the form (4) are strictly increasing
and concave, thus allowing for implementation of the en-
tire RPM model (2) by an location problem (LP) expan-
sion [12].
The OWA aggregation is obviously a piecewise linear func-
tion since it remains linear within every area of the fixed
order of arguments. The ordered achievements used in
the OWA aggregation are, in general, hard to implement
due to the pointwise ordering. Its optimization can be im-
plemented by expressing in terms of the cumulated ordered
achievements θ̄k(a) = ∑k

i=1
θi(a) expressing, respectively:

the worst (smallest) achievement, the total of the two worst
achievements, the total of the three worst achievements, etc.
Indeed,

m

∑
i=1

wiθi(a) =
m

∑
i=1

w′
iθ̄i(a) ,

where w′
i = wi −wi+1 for i = 1, . . . ,m− 1, and w′

m = wm.
This simplifies dramatically the optimization problem since
quantities θ̄k(a) can be optimized without use of any integer
variables [6]. First, let us notice that for any given vector a,
the cumulated ordered value θ̄k(a) can be found as the
optimal value of the following LP problem:

θ̄k(a) = min
uik

{
m

∑
i=1

aiuik :

m

∑
i=1

uik = k,0 ≤ uik ≤ 1 ∀i } .
(6)

The above problem is an LP for a given outcome vector a

while it becomes nonlinear for a being a vector of variables.
This difficulty can be overcome by taking advantage of the
LP dual to (6). Introducing dual variable tk corresponding
to the equation ∑m

i=1
uik = k and variables dik corresponding

to upper bounds on uik one gets the following LP dual of
problem (6):

θ̄k(a) = max
tk ,dik

{ktk −
m

∑
i=1

dik :

ai ≥ tk −dik, dik ≥ 0 ∀ i } .

(7)

Due the duality theory, for any given vector a the cumu-
lated ordered coefficient θ̄k(a) can be found as the optimal
value of the above LP problem. It follows from (7) that
θ̄k(a) = max {ktk −∑m

i=1
(tk − ai)+}, where (.)+ denotes

the nonnegative part of a number and tk is an auxiliary (un-
bounded) variable. The latter, with the necessary adaptation
to the minimized outcomes in location problems, is equiv-
alent to the computational formulation of the k–centrum
model introduced by [16]. Hence, formula (7) provides an
alternative proof of that formulation.
Taking advantages of the LP expression (7) for θ̄i the entire
OWA aggregation of the partial achievement functions (5)
can be expressed in terms of LP. Moreover, in the case of
concave piecewise linear partial achievement functions (as
typically used in the RPM approaches), the resulting for-
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mulation extends the original constraints and criteria with
linear inequalities. In particular, for strictly increasing and
concave partial achievement functions (4), it can be ex-
pressed in the form:

max

m

∑
k=1

w′
kzk

s.t.

zk = ktk −
m

∑
i=1

dik ∀ k

x ∈ Q, yi = fi(x) ∀ i

ai ≥ tk −dik, dik ≥ 0 ∀ i,k

ai ≤ γ(yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ (yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ α(yi − ra
i )/(ra

i − rr
i )+ 1 ∀ i .

(8)

4. Weighted OWA Enhancement

Typical RPM model allows weighting of several achieve-
ments only by straightforward rescaling of the achieve-
ment values [8]. The OWA RPM model enables one to
introduce importance weights to affect achievement im-
portance by rescaling accordingly its measure within the
distribution of achievements as defined in the so-called
weighted OWA aggregation [7], [17]. Let w = (w1, . . . ,wm)
and p = (p1, . . . , pm) be weighting vectors of dimension m

such that wi ≥ 0 and pi ≥ 0 for i = 1,2, . . . ,m as well as
∑m

i=1
pi = 1 (typically it is also assumed ∑m

i=1
wi = 1 but

it is not necessary in our applications). The corresponding
weighted OWA aggregation of outcomes a = (a1, . . . ,am)
is defined as follows [7]:

Aw,p(a) =
m

∑
i=1

ωiθi(a) , (9)

where the weights ωi are defined as

ωi = w∗(∑
k≤i

pτ(k))−w∗(∑
k<i

pτ(k)) , (10)

with w∗ a monotone increasing function that interpolates
points ( i

m
,∑k≤i wk) together with the point (0.0) and τ rep-

resenting the ordering permutation for a (i.e., aτ(i) = θi(a)).
Moreover, function w∗ is required to be a straight line
when the point can be interpolated in this way, thus allow-
ing the WOWA to cover the standard weighted mean with
weights pi as a special case of equal preference weights
(wi = 1/m for i = 1,2, . . . ,m).

Example 1: Consider achievements vectors a′ = (1,2) and
a′′ = (2,1). While introducing preferential weights w =
(0.9,0.1) one may calculate the OWA averages: Aw(y′) =
Aw(y′′) = 0.9 · 1 + 0.1 · 2 = 1.1. Further, let us introduce
importance weights p = (0.75,0.25) which means that re-
sults under the first achievement are 3 times more important

then those related to the second criterion. To take into ac-
count the importance weights in the WOWA aggregation (9)
we introduce piecewise linear function

w∗(ξ )=

{

0.9ξ/0.5 for 0 ≤ ξ ≤ 0.5

0.9 + 0.1(ξ −0.5)/0.5 for 0.5 < ξ ≤ 1.0

and calculate weights ωi according to formula (10) as w∗

increments corresponding to importance weights of the or-
dered outcomes, as illustrated in Fig. 3. In particular, one
gets ω1 = w∗(p1) = 0.95 and ω2 = 1−w∗(p1) = 0.05 for
vector a′ while ω1 = w∗(p2) = 0.45 and ω2 = 1−w∗(p2) =
0.55 for vector a′′. Finally, Aw,p(a′) = 0.95 ·1 + 0.05 ·2 =
1.05 and Aw,p(a

′′) = 0.45 · 1 + 0.55 · 2 = 1.55. Note that
one may alternatively compute the WOWA values by using
the importance weights to replicate corresponding achieve-
ments and calculate then OWA aggregations. In the case
of our importance weights p we need to consider three
copies of achievement a1 and one copy of achievement a2

Fig. 3. Definition of weights ωi for Example 1: (a) vector
a′ = (1,2); (b) vector a′′ = (2,1).

21



Włodzimierz Ogryczak

thus generating vectors ã′ = (1,1,1,2) and ã′′ = (2,2,2,1)
of four equally important achievements. Original preferen-
tial weights must be then applied respectively to the average
of the two smallest outcomes and the average of two largest
outcomes. Indeed, we get Aw,p(a

′) = 0.9 · 1 + 0.1 · 1.5 =
1.05 and Aw,p(a′′) = 0.9 · 1.5 + 0.1 · 2 = 1.55. We will
further formalize this approach and take its advantages to
build LP computational models. �

The WOWA may be expressed with more direct formula
where preferential (OWA) weights wi are applied to aver-
ages of the corresponding portions of ordered achievements
(quantile intervals) according to the distribution defined by
importance weights pi [18], [19]:

Aw,p(a) =
m

∑
i=1

wim

∫ i
m

i−1

m

F
(−1)
a (ξ ) dξ , (11)

where F
(−1)
a is the stepwise function F

(−1)
a (ξ ) = θi(a)

for i−1/m < ξ ≤ i/m. It can also be mathematically for-

Fig. 4. Formula (11) applied to calculations in Example 1:
(a) vector a′ = (1,2); (b) vector a′′ = (2,1).

malized as follows. First, we introduce the right-continuous
cumulative distribution function (cdf):

Fa(d) =
m

∑
i=1

piδi(d) , (12)

where δi(d) = 1 if ai ≤ d and 0 otherwise. Next, we in-

troduce the quantile function F
(−1)
a as the left-continuous

inverse of the cumulative distribution function Fa,
ie., F

(−1)
a (ξ ) = inf {η : Fa(η) ≥ ξ}for 0 < ξ ≤ 1. Figure 4

illustrates application of formula (11) for computation of
the WOWA aggregations in Example 1.

Let us recall the RPM applied to the example of seven
alternatives as given in Table 1. For instance applying im-
portance weighting p = ( 4

12
, 3

12
, 2

12
, 1

12
, 1

12
, 1

12
) to solution

achievements from Table 1 and using them together with
the OWA weights w from Table 2 one get the WOWA ag-
gregations from Table 3. The corresponding RPM method
selects than solution S6, similarly to the case of equal
importance weights. On the other hand, when increas-
ing the importance of the last outcome achievements with
p = ( 1

12
, 1

12
, 1

12
, 1

12
, 1

12
, 7

12
) one get the WOWA values from

Table 4.

Formula (11) defines the WOWA value applying prefer-
ential weights wi to importance weighted averages within
quantile intervals. It may be reformulated with the tail av-
erages:

Aw,p(a) =
m

∑
k=1

w′
kmL

(

a,p,
k

m

)

, (13)

where L(y,p,ξ ) is defined by left-tail integrating of F
(−1)
y ,

i.e.,

L(y,p,ξ ) =

∫ ξ

0

F
(−1)
y (α)dα (14)

and weights w′
k = wk − wk+1 for k = 1, . . . ,m − 1 and

w′
m = wm.

Graphs of functions L(a,p,ξ ) (with respect to ξ ) take the
form of convex piecewise linear curves, the so-called ab-
solute Lorenz curves [20] connected to the relation of the
second order stochastic dominance (SSD). Therefore, for-
mula (13) relates the WOWA average to the SSD consistent
risk measures based on the tail means provided that the im-
portance weights are treated as scenario probabilities.

According to (14), values of function L(a,p,ξ ) for any
0 ≤ ξ ≤ 1 can be given by optimization:

L(a,p,ξ ) = min
si

{ m

∑
i=1

aisi :

m

∑
i=1

si = ξ , 0 ≤ si ≤ pi ∀ i
}

.
(15)

Introducing dual variable t corresponding to the equa-
tion ∑m

i=1
si = ξ and variables di corresponding to upper
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Table 3
WOWA RPM selection with importance weights p = ( 4

12
, 3

12
, 2

12
, 1

12
, 1

12
, 1

12
)

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)

S1 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.4575

S2 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.525

S3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.6375

S4 0.3 0.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.75

S5 0.3 0.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.75

S6 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.825

S7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 1.0 1.0 0.3185

Table 4
WOWA RPM selection with importance weights p = ( 1

12
, 1

12
, 1

12
, 1

12
, 1

12
, 7

12
)

w 0.5 0.25 0.15 0.05 0.03 0.02 Aw,p(a)

S1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 0.345

S2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 0.345

S3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 0.345

S4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 0.345

S5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.2 1.2 0.345

S6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.0 1.0 1.0 1.0 1.0 0.3525

S7 0.3 0.3 0.3 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5125

bounds on si one gets the following LP dual expression
of L(a,p,ξ ):

L(a,p,ξ ) = max
t,di

{

ξ t −
m

∑
i=1

pidi :

t −di ≤ ai, di ≥ 0 ∀ i
}

.

(16)

Following (13) and (16) taking into account piecewise
linear partial achievement functions (4) one gets finally
the following model for the WOWA reference point method
with piecewise linear partial achievement functions (4):

max

m

∑
k=1

w′
kzk

s.t.

zk = ktk −m
m

∑
i=1

pidik ∀ k

x ∈ Q, yi = fi(x) ∀ i

ai ≥ tk −dik, dik ≥ 0 ∀ i,k

ai ≤ γ(yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ (yi − rr
i )/(ra

i − rr
i ) ∀ i

ai ≤ α(yi − ra
i )/(ra

i − rr
i )+ 1 ∀ i .

(17)

5. Illustrative Example

In order to illustrate the WOWA RPM performances let
us analyze the multicriteria problem of information sys-

tem selection. We consider a billing system selection for
a telecommunication company. The decision is based on
6 criteria related to the system reliability, processing ef-
ficiency, investment costs, installation time, operational
costs, and warranty period. All these attributes may be
viewed as criteria, either maximized or minimized.
Table 5 presents all the criteria with their measures units
and optimization directions. There are also set the aspira-
tion and reservation levels for each criterion as well as the
importance weights (not normalized) for several achieve-
ments. Five candidate billing systems have been accepted
for the final selection procedure. All they meet the minimal
requirements defined by the reservation levels.
Table 6 shows for all the systems (columns) their criteria
values yi and the corresponding partial achievement val-
ues ai. The latter are computed according to the piece-wise
linear formula (4) with α = 0.1.
Table 7 presents for all the systems (columns) their par-
tial achievement values ordered from the worst to the best
taking into account replications according to the impor-
tance weights allowing for easy WOWA aggregation com-
putations following formula (11). One may notice that
except of system D all the other systems have the same
worst achievement value mini ai = 0.33. Selection among
systems A, B, C and E depends only on the regulariza-
tion of achievements aggregation used in the RPM ap-
proach. The WOWA RPM method taking into account the
importance weights together with the preferential weights
w = (0.6, 0.2, 0.1, 0.05, 0.03, 0.02) points out system C
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Table 5
Criteria and their reference levels for the sample billing system selection

Criteria
f1 f2 f3 f4 f5 f6

relia- effi- invest. install. oprnl. warranty
bility ciency cost time cost period

Units 1–10 CAPS mln PLN months mln PLN years
Optimization max max min min min max

Reservation 8 50 2 12 1.25 0.5
Aspiration 10 200 0 6 0.5 2

Importance
weights 0.3 0.3 0.1 0.1 0.3 0.1

Table 6
Criteria values yi and individual achievements ai for five billing systems

i
System A System B System C System D System E

yi ai yi ai yi ai yi ai yi ai

1 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00

2 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67

3 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75

4 8 0.67 3 1.05 8 0.67 8 0.67 5 1.02

5 1 0.33 1 0.33 0.6 0.87 0.2 1.04 1 0.33

6 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67

minai 0.33 0.33 0.33 0.27 0.33

∑ai 4.50 4.06 4.27 4.38 4.44

as the best one. These selection cannot be done if using
the classical RPM with regularization based on the av-
erage achievements. Actually, the standard RPM (2) will

Table 7
WOWA RPM selection for five billing systems

w A B C D E

0.6 0.33 0.33 0.33 0.27 0.33
0.33 0.33 0.60 0.27 0.33

0.2 0.33 0.33 0.67 0.27 0.33
0.50 0.33 0.80 0.50 0.67

0.1 0.67 0.33 0.80 0.50 0.67
1.00 0.33 0.80 0.50 0.67

0.05 1.00 0.50 0.87 0.67 0.67
1.00 0.50 0.87 0.90 0.75

0.03 1.00 0.50 0.87 1.00 1.00
1.00 0.85 1.00 1.04 1.00

0.02 1.00 1.00 1.00 1.04 1.00
1.00 1.05 1.00 1.04 1.02

Aw,p 0.47 0.37 0.56 0.37 0.45

select system A as better than all the others. Certainly,
the WOWA RPM selection will change dramatically when
decreasing importance of criterion f5 and increasing im-
portance of f6.

6. Conclusions

The reference point method is a very convenient technique
for interactive analysis of the multiple criteria optimiza-
tion problems. It provides the DM with a tool for an open
analysis of the efficient frontier. The interactive analysis
is navigated with the commonly accepted control param-
eters expressing reference levels for the individual objec-
tive functions. The partial achievement functions quantify
the DM satisfaction from the individual outcomes with re-
spect to the given reference levels. The final scalarizing
function is built as the augmented max-min aggregation of
partial achievements which means that the worst individual
achievement is essentially maximized but the optimization
process is additionally regularized with the term represent-
ing the average achievement. The regularization by the
average achievement is easily implementable but it may
disturb the basic max-min aggregation. In order to avoid
inconsistencies caused by the regularization, the max-min
solution may be regularized by taking into account also the
second worst achievement, the third worse and so on, thus
resulting in much better modeling of the reference levels
concept [21].
The OWA aggregation with monotonic weights combines
all the partial achievements allocating the largest weight
to the worst achievement, the second largest weight to the
second worst achievement, the third largest weight to the
third worst achievement, and so on. It approximates nu-
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cleolar RPM introducing explicit scalarizing achievement
function to be interpreted as utility. Further following the
concept of weighted OWA [7] the importance weighting of
several achievements may be incorporated into the RPM.
Such a WOWA enhancement of the RPM uses importance
weights to affect achievement importance by rescaling ac-
cordingly its measure within the distribution of achieve-
ments rather than straightforward rescaling of achieve-
ment values [8]. The ordered regularizations are more
complicated in implementation due to the requirement of
pointwise ordering of partial achievements. However, the
recent progress in optimization methods for ordered aver-
ages [6] allows one to implement the OWA RPM quite
effectively by taking advantages of piecewise linear ex-
pression of the cumulated ordered achievements. Similar,
model can be achieved for the WOWA RPM. Actually, in
the case of concave piecewise linear partial achievement
functions (typically used in the RPM), the resulting for-
mulation extends the original constraints and criteria with
simple linear inequalities thus allowing for a quite efficient
implementation.
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