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Abstract—The portfolio optimization problem is modeled as
a mean-risk bicriteria optimization problem where the expected
return is maximized and some (scalar) risk measure is minimized.
In the original Markowitz model the risk is measured by the
variance while several polyhedral risk measures have been intro-
duced leading to Linear Programming (LP) computable portfolio
optimization models in the case of discrete random variables rep-
resented by their realizations under specified scenarios. Among
them, the second order quantile risk measures, recently, become
popular in finance and banking. The simplest such measure,
now commonly called the Conditional Value at Risk (CVaR) or
Tail VaR, represents the mean shortfall at a specified confidence
level. Recently, the second order quantile risk measures have
been introduced and become popular in finance and banking.
The corresponding portfolio optimization models can be solved
with general purpose LP solvers. However, in the case of more
advanced simulation models employed for scenario generation
one may get several thousands of scenarios. This may lead to
the LP model with huge number of variables and constraints
thus decreasing the computational efficiency of the model since
the number of constraints (matrix rows) is usually proportional
to the number of scenarios. while the number of variables
(matrix columns) is proportional to the total of the number of
scenarios and the number of instruments. We show that the
computational efficiency can be then dramatically improved with
an alternative model taking advantages of the LP duality. In the
introduced models the number of structural constraints (matrix
rows) is proportional to the number of instruments thus not
affecting seriously the simplex method efficiency by the number
of scenarios.

I. INTRODUCTION

FOLLOWING Markowitz [13], the portfolio selection

problem is modeled as a mean-risk bicriteria optimization

problem where the expected return is maximized and some

(scalar) risk measure is minimized. In the original Markowitz

model the risk is measured by the variance but several poly-

hedral risk measures have been introduced leading to Linear

Programming (LP) computable portfolio optimization models

in the case of discrete random variables represented by their

realizations under specified scenarios. The simplest LP com-

putable risk measures are dispersion measures similar to the

variance. Konno and Yamazaki [6] presented the portfolio se-

lection model with the mean absolute deviation (MAD) while

Young [33] introduced the Minimax model. Yitzhaki [32]

introduced the mean-risk model using Gini’s mean (absolute)

difference as the risk measure. The Gini’s mean difference

turn out to be a special aggregation technique of the multiple

criteria LP model [18] based on the pointwise comparison of

the absolute Lorenz curves. The latter leads the quantile short-

fall risk measures directly related to the dual theory of choice

under risk [26], [28], [31] which are more commonly used and

accepted. Recently, the second order quantile risk measures

have been introduced in different ways by many authors [2],

[4], [16], [17], [27]. The measure, usually called the Condi-

tional Value at Risk (CVaR) or Tail VaR, represents the mean

shortfall at a specified confidence level. The CVaR measures

maximization is consistent with the second degree stochastic

dominance [19]. Several empirical analyses confirm its appli-

cability to various financial optimization problems [1], [11].

This paper is focused on computational efficiency of the

portfolio optimization models based on the CVaR or the

Minimax measures. We assume that the instruments returns are

represented by their realizations under T scenarios. The basic

LP model for the CVaR portfolio optimization contains then T
auxiliary variables as well as T corresponding linear inequal-

ities. Actually, the number of structural constraints in the LP

model (matrix rows) is proportional to the number of scenarios

T , while the number of variables (matrix columns) is propor-

tional to the total of the number of scenarios and the number of

instruments T+n. Hence, its dimensionality is proportional to

the number of scenarios T . It does not cause any computational

difficulties for a few hundreds of scenarios as in computational

analysis based on historical data. However, in the case of more

advanced simulation models employed for scenario generation

one may get several thousands of scenarios [25]. This may lead

to the LP model with huge number of auxiliary variables and

constraints thus decreasing the computational efficiency of the

model. Actually, in the case of fifty thousand scenarios and

one hundred instruments the model may require more than an

hour computation time with the state-of-art LP solver (CPLEX

code). To overcome this difficulty some alternative solution

approaches are searched trying to reformulate the optimization

problems as two-stage recourse problems [8] or to employ

nondifferential optimization techniques [9]. We show that the

computational efficiency can be then dramatically improved

with an alternative model formulation taking advantages of the

LP duality. In the introduced model the number of structural

constraints is proportional to the number of instruments n
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while only the number of variables is proportional to the

number of scenarios T thus not affecting so seriously the

simplex method efficiency. Indeed, the computation time is

then below a minute.

The paper is organized as follows. In the next section we

introduce briefly basics of the mean-risk portfolio optimization

with the LP computable risk measures. In Section 3 we

develop and test computationally efficient optimization models

taking advantages of the LP duality.

II. PORTFOLIO OPTIMIZATION AND RISK MEASURES

The portfolio optimization problem considered in this paper

follows the original Markowitz’ formulation and is based on a

single period model of investment. At the beginning of a pe-

riod, an investor allocates the capital among various securities,

thus assigning a nonnegative weight (share of the capital) to

each security. Let J = {1, 2, . . . , n} denote a set of securities

considered for an investment. For each security j ∈ J , its rate
of return is represented by a random variable Rj with a given

mean µj = E{Rj}. Further, let x = (xj)j=1,2,...,n denote a

vector of decision variables xj expressing the weights defining

a portfolio. The weights must satisfy a set of constraints to

represent a portfolio. The simplest way of defining a feasible

set Q is by a requirement that the weights must sum to one

and they are nonnegative (short sales are not allowed), i.e.

Q = {x :

n
∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n} (1)

Hereafter, we perform detailed analysis for the set Q given

with constraints (1). Nevertheless, the presented results can

easily be adapted to a general LP feasible set given as a

system of linear equations and inequalities, thus allowing

one to include short sales, upper bounds on single shares or

portfolio structure restrictions which may be faced by a real-

life investor.

Each portfolio x defines a corresponding random variable

Rx =
∑n

j=1 Rjxj that represents the portfolio rate of re-

turn while the expected value can be computed as µ(x) =
∑n

j=1 µjxj . We consider T scenarios with probabilities pt
(where t = 1, . . . , T ). We assume that for each random

variable Rj its realization rjt under the scenario t is known.
Typically, the realizations are derived from historical data

treating T historical periods as equally probable scenarios

(pt = 1/T ). Although the models we analyze do not take

advantages of this simplification. The realizations of the port-

folio return Rx are given as yt =
∑n

j=1 rjtxj .

The portfolio optimization problem is modeled as a mean-

risk bicriteria optimization problem where the mean µ(x) is

maximized and the risk measure ̺(x) is minimized. In the

original Markowitz model, the standard deviation was used as

the risk measure. Several other risk measures have been later

considered thus creating the entire family of mean-risk models

(c.f., [10], [11]). These risk measures, similar to the standard

deviation, are not affected by any shift of the outcome scale

and are equal to 0 in the case of a risk-free portfolio while

taking positive values for any risky portfolio. Unfortunately,

such risk measures are not consistent with the stochastic

dominance order [15] or other axiomatic models of risk-averse

preferences [29] and coherent risk measurement [2].

In stochastic dominance, uncertain returns (modeled as

random variables) are compared by pointwise comparison of

some performance functions constructed from their distribu-

tion functions. The first performance function F
(1)
x is de-

fined as the right-continuous cumulative distribution function:

F
(1)
x (η) = Fx(η) = P{Rx ≤ η} and it defines the first degree

stochastic dominance (FSD). The second function is derived

from the first as F
(2)
x (η) =

∫ η

−∞
Fx(ξ) dξ and it defines

the second degree stochastic dominance (SSD). We say that

portfolio x
′ dominates x′′ under the SSD (Rx

′ ≻
SSD

Rx
′′ ), if

F
(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η, with at least one strict inequality.

A feasible portfolio x
0 ∈ Q is called SSD efficient if there

is no x ∈ Q such that Rx ≻
SSD

R
x
0 . Stochastic dominance

relates the notion of risk to a possible failure of achieving

some targets. As shown by Ogryczak and Ruszczyński [19],

function F
(2)
x , used to define the SSD relation, can also be

presented as follows: F
(2)
x (η) = E{max{η − Rx, 0}} and

thereby its values are LP computable for returns represented

by their realizations yt.
An alternative characterization of the SSD relation can be

achieved with the so-called Absolute Lorenz Curves (ALC)

[16], [30] which represent the second quantile functions de-

fined as F
(−2)
x (0) = 0 and

F (−2)
x

(p) =

∫ p

0

F (−1)
x

(α)dα (2)

where F
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-

continuous inverse of the cumulative distribution function Fx.

The pointwise comparison of ALCs is equivalent to the SSD

relation [20] in the sense that Rx
′ �

SSD
Rx

′′ if and only if

F
(−2)
x
′ (β) ≥ F

(−2)
x
′′ (β) for all 0 < β ≤ 1. Moreover,

F
(−2)
x (β) = max

η∈R

[

βη − F (2)
x

(η)
]

= max
η∈R

[βη −E{max{η −Rx, 0}}]
(3)

where η is a real variable taking the value of β-quantile Qβ(x)
at the optimum. For a discrete random variable represented by

its realizations yt problem (3) becomes an LP.

For any real tolerance level 0 < β ≤ 1, the normalized

value of the ALC defined as

Mβ(x) = F (−2)
x

(β)/β (4)

is called the Conditional Value-at-Risk (CVaR) or Tail VaR or

Average VaR. The CVaR measure is an increasing function of

the tolerance level β, with M1(x) = µ(x). For any 0 < β < 1,
the CVaR measure is SSD consistent [20] and coherent [24].

Opposite to deviation type risk measures, for coherent mea-

sures larger values are preferred and therefore the measures

are sometimes called safety measures [11]. Due to (3), for a

discrete random variable represented by its realizations yt the
CVaR measures are LP computable. It is important to notice

that although the quantile risk measures (VaR and CVaR)
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were introduced in banking as extreme risk measures for

very small tolerance levels (like β = 0.05), for the portfolio

optimization good results have been provided by rather larger

tolerance levels [11]. For β approaching 0, the CVaR measure

tends to the Minimax measure M(x) = mint=1,...,T yt =
mint=1,...,T

∑n

j=1 rjtxj introduced to portfolio optimization

by Young [33].

The commonly accepted approach to implementation of the

Markowitz-type mean-risk model is based on the use of a

specified lower bound µ0 on expected returns while optimizing

the risk measure. This bounding approach provides a clear

understanding of investor preferences and a clear definition of

optimal solution portfolio to be sought. For coherent and SSD

consistent risk measures we consider the approach results in

the following maximization problem:

max{ ̺(x) : µ(x) ≥ µ0, x ∈ Q} (5)

where ̺(x) = Mβ(x) or ̺(x) = M(x) respectively
We demonstrate that such portfolio optimization models can

be effectively solved for large numbers of scenarios while

taking advantages of appropriate dual LP formulations.

III. COMPUTATIONAL LP MODELS

Let us consider portfolio optimization problem with security

returns given by discrete random variables with realization rjt
thus leading to LP portfolio optimization model (5) for the risk

measures we consider.

Following (3) and (4), the CVaR portfolio optimization

model can be formulated as the following LP problem:

max η −
1

β

T
∑

t=1

ptdt

s.t.

n
∑

j=1

µjxj ≥ µ0

n
∑

j=1

xj = 1

xj ≥ 0, j = 1, . . . , n

dt − η +

n
∑

j=1

rjtxj ≥ 0, dt ≥ 0, t = 1, . . . , T

(6)

where η is unbounded variable. Except from the core portfolio

constraints (1) and the expected return bound, the model (6)

contains T nonnegative variables dt plus single η variable and

T corresponding linear inequalities. Hence, its dimensionality

is proportional to the number of scenarios T . Exactly, the
LP model (6) contains T + n + 1 variables and T + 2
constraints. It does not cause any computational difficulties

for a few hundreds of scenarios as in several computational

analysis based on historical data [12]. However, in the case

of more advanced simulation models employed for scenario

generation one may get several thousands of scenarios. This

may lead to the LP model (6) with huge number of variables

and constraints thus decreasing the computational efficiency

of the model. If the core portfolio constraints contain only

linear relations, like (1), then the computational efficiency can

easily be achieved by taking advantages of an alternative LP

formulation.

Note that, due to the finite distribution of returns, the CVaR

measure is well defined by the following optimization

Mβ(x) = min
ut

{

T
∑

t=1

(

n
∑

j=1

rjtxj)ut :

T
∑

t=1

ut = 1,

0 ≤ ut ≤
pt
β

t = 1, . . . , T }

(7)

that implements directly the ALC formula (2). The entire

CVaR portfolio optimization problem may be respectively

expressed as

max
x∈Q

Mβ(x) = max
x∈Q

min
u∈U

T
∑

t=1

(
n
∑

j=1

rjtxj)ut (8)

where

U = {(u1, . . . , uT ) :

T
∑

t=1

ut = 1,

0 ≤ ut ≤
pt
β

t = 1, . . . , T }.

The inner optimization problem represents (7). It is an LP for a

given vector x. However, within the entire portfolio optimiza-

tion problem (8) the objective function
∑T

t=1(
∑n

j=1 rjtxj)ut

becomes nonlinear for x being a vector of variables. This diffi-

culty can be overcome by an equivalent dual LP formulation of

problem (7). Indeed, introducing dual variable η corresponding

to the equation
∑T

t=1 ut = 1 and variables dt corresponding

to upper bounds on ut one gets the LP dual

Mβ(x) = max
q,dt

{η −
1

β

T
∑

t=1

ptdt :

n
∑

j=1

rjtxj ≥ η − dt, dt ≥ 0 ∀ t}.

(9)

This leads us to the standard LP model (6) for the CVaR

portfolio optimization.

An alternative CVaR optimization model can be built by

taking advantages of the minimax theorem. Since both sets Q
and U are convex polyhedra, formula (8) can be rewritten into

a dual form

max
x∈Q

min
u∈U

T
∑

t=1

(
n
∑

j=1

rjtxj)ut

= min
u∈U

max
x∈Q

T
∑

t=1

(

n
∑

j=1

rjtxj)ut

= min
u∈U

D(u)

(10)
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with the inner optimization problem

D(u) = max
xj

{

T
∑

t=1

ut

n
∑

j=1

rjtxj :

n
∑

j=1

µjxj ≥ µ0,

n
∑

j=1

xj = 1,

xj ≥ 0, j = 1, . . . , n}

= max
xj

{

n
∑

j=1

(

T
∑

t=1

rjtut)xj :

n
∑

j=1

µjxj ≥ µ0,
n
∑

j=1

xj = 1,

xj ≥ 0, j = 1, . . . , n}.

(11)

Again, we may take advantages of the LP dual to the inner

problem. Indeed, introducing dual variable q corresponding to

the equation
∑n

j=1 xj = 1 and variable u0 corresponding to

the inequality
∑n

j=1 µjxj ≥ µ0 we get the LP dual

D(u) = min
q,u0

{q − µ0u0 :

q − µju0 −

T
∑

t=1

rjtut ≥ 0 j = 1, . . . , n}.

Hence, an alternative model for the CVaR portfolio optimiza-

tion (10) can be expressed as the following LP:

min q − µ0u0

s.t. q − µju0 −

T
∑

t=1

rjtut ≥ 0, j = 1, . . . , n

T
∑

t=1

ut = 1

0 ≤ ut ≤
pt
β
, t = 1, . . . , T

(12)

LP model (12) contains T + 1 variables ut, but the T
constraints corresponding to variables dt from (6) take the

form of simple upper bounds on ut (for t = 1, . . . , T )
thus not affecting the problem complexity. The number of

constraints in (12) is proportional to the total of portfolio

size n, thus it is independent from the number of scenarios.

Exactly, there are T + 1 variables and n+ 1 constraints. This

guarantees a high computational efficiency of the model even

for very large number of scenarios. Similarly, other portfolio

structure requirements are modeled with rather small number

of constraints thus generating small number of additional

variables in the model. Actually, the model (12) is the LP

dual to the model (6), thus similar to that introduced in [23].

Obviously, the optimal portfolio shares xj are not directly

represented within the solution vector of problem (12) but they

are easily available as the dual variables (shadow prices) for

inequalities q − µju0 −
∑T

t=1 rjtut ≥ 0.

The Minimax portfolio optimization model can be written

as the following LP problem:

max η

s.t.

n
∑

j=1

µjxj ≥ µ0,

n
∑

j=1

xj = 1

xj ≥ 0, j = 1, . . . , n

−η +

n
∑

j=1

rjtxj ≥ 0, t = 1, . . . , T

(13)

which is simpler than the standard CVaR optimization model

(6). Except from the portfolio weights xj , the model contains

only one additional variable η. Nevertheless, it still contains T
linear inequalities in addition to the core constraints. Hence,

its dimensionality is (T + 2)× (n+ 1).

The Minimax portfolio optimization model representing a

limiting case of the CVaR model for β tending to 0. Actually,

for any β ≤ mint=1,...,T pt we gets Mβ(x) = M(x) thus

allowing to represent the Minimax portfolio optimization by

the CVaR optimization model (6) and to take advantages of its

dual form (12). Due to β ≤ pt for all t = 1, . . . , T , the upper

bounds on variables ut becomes redundant and we get the

following dual form of the Minimax portfolio optimization:

min q − µ0u0

s.t. q − µju0 −

T
∑

t=1

rjtut ≥ 0, j = 1, . . . , n

T
∑

t=1

ut = 1

ut ≥ 0, t = 1, . . . , T

(14)

The model dimensionality is only (n + 1) × (T + 2) thus

guaranteeing a high computational efficiency even for very

large number of scenarios.

The Mean Absolute Deviation (MAD) risk measure is

directly given by the value of the second order cdf F
(2)
x at

the mean δ̄(x) = E{max{µ(x)−Rx, 0}} = F
(2)
x (µ(x)) [19].

Therefore, its leads to an LP portfolio optimization model very

similar to that for the CVaR optimization (6). Indeed, we get:

max −

T
∑

t=1

ptdt

s.t.

n
∑

j=1

µjxj ≥ µ0,

n
∑

j=1

xj = 1

dt ≥

n
∑

j=1

(µj − rjt)xj , dt ≥ 0, t = 1, . . . , T

xj ≥ 0, j = 1, . . . , n

(15)

with T+n variables and T+2 constraints. The LP dual model
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TABLE I
COMPUTATIONAL TIMES (IN SECONDS) FOR THE STANDARD MEAN-RISK MODELS

Scenarios Securities CVaR (6) Minimax MAD
(T ) (n) β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 (13) (15)

5 000 76 2.5 2.6 3.7 5.2 6.7 7.6 0.5 19.0
7 000 76 4.1 4.4 6.9 9.3 11.8 14.8 0.9 9.3
10 000 76 6.5 8.3 13.9 18.4 24.2 29.8 1.3 18.4
50 000 50 3275.4 4876.6 – – – – 7.8 –
50 000 100 – – – – – – 24.1 –

TABLE II
COMPUTATIONAL TIMES (IN SECONDS) FOR THE DUAL MEAN-RISK MODELS

Scenarios Securities CVaR (12) Minimax MAD
(T ) (n) β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 (14) (16)

5 000 76 0.9 0.9 1.1 1.3 1.4 1.6 0.5 2.1
7 000 76 1.2 1.4 1.8 2.0 2.2 2.3 0.7 3.1
10 000 76 2.0 2.3 2.9 3.4 3.9 4.0 1.0 10.8
50 000 50 14.9 19.4 24.0 26.8 28.2 27.9 3.9 25.8
50 000 100 40.0 54.6 68.7 77.7 78.2 78.8 8.2 76.7

takes then the form:

min q − µ0u0

s.t. q ≥ µju0 −

T
∑

t=1

(µj − rjt)ut, j = 1, . . . , n

0 ≤ ut ≤ pt, t = 1, . . . , T

(16)

with dimensionality n × (T + 2). Hence, there is again

guaranteed the high computational efficiency even for very

large number of scenarios.

We have run two groups of computational tests. The medium

scale tests of 5 000, 7 000 and 10 000 scenarios and 76

securities were generated following the FTSE 100 related data

[5]. The large scale tests instances developed by Lim et al.

[9] were generated from a multivariate normal distribution for

50 or 100 securities with the number of scenarios 50 000

just providing an adequate approximation to the underlying

unknown continuous price distribution. When applying the

lower bound on the required expected return, its value µ0

was defined as the expected return of the portfolio with equal

weights (market value). All computations were performed on

a PC with the Pentium 4 2.6GHz processor and 3GB RAM

employing the simplex code of the CPLEX 9.1 package.

In Tables I and II there are presented computation times for

all the above primal and dual models. All results are presented

as the averages of 10 different test instances of the same size.

For the medium scale test problems the solution times of the

dual CVaR models (12) ranging from 0.9 to 4.0 seconds are not

much shorter than those for the primal models ranging from

2.5 to 29.8 seconds, respectively. However, an attempt to solve

the primal CVaR model (6) of the large scale test problems was

successful only for β = 0.05 and β = 0.1 and the times were

dramatically longer than those for the dual model. For other

values of β the timeout of 6000 seconds occurred (marked

with ’–’). For 100 securities the primal model was not solvable

within the given time limit, while the dual models could be

successfully solved in 40.0 to 78.8 seconds.

The Minimax models are computationally very easy. Run-

ning the computational tests we were able to solve the medium

scale test instances of the dual model (14) in times below 1

second and the large scale test instances in up to 8.2 seconds

on average. In fact, even the primal model could be solved in

reasonable time between 0.5 and 24 seconds, for medium and

large scale test instances, respectively.

The MAD models are computationally similar to the CVaR

models. Indeed, only medium scale test instances of the primal

model (15) could be solved within the given time limit. Much

shorter computing times could be achieved for the dual MAD

model (16) – not more than 10.8 seconds for the medium scale

and 76.7 seconds for the large scale test instances.

To see how the value of the required expected return affects

the solution times we have performed additional tests for the

reformulated CVaR (with β = 0.1) and Minimax models

with increased value µ0. The increased value was set in the

middle between the expected return of the market value and

the maximum possible return for single security portfolio.

The computational times are generally comparable with those

for the market value constraints. Actually, for the medium

scale problems (10 000 scenarios) the CVaR optimization time

has remained unchanged (2.3 seconds) while the Minimax

optimization time has only raised from 1.0 to 1.1 seconds

and for the MAD model optimization it has raised from 10.8

to 13.9. For the large scale problems (50 000 scenarios) we

have noticed even a drop in computation times for the CVaR

model (reduction from 54.6 to 49.9 seconds) and similar

reduction (from 76.7 to 55.4 seconds) has occured for the

MAD model optimization while the Minimax optimization

time has increased from 8.2 to 10.5 seconds.

IV. GINI’S MEAN DIFFERENCE AND RELATED MODELS

Yitzhaki [32] introduced the portfolio optimization model

using Gini’s mean difference (GMD) as risk measure. The

GMD is given as Γ(x) = 1
2

∫ ∫

|η−ξ|dFx(η)dFx(ξ) although
several alternative formulae exist. For a discrete random vari-
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able represented by its realizations yt, the measure

Γ(x) =

T
∑

t′=1

∑

t′′ 6=t′−1

max{yt′ − yt′′ , 0}pt′pt′′

is LP computable (when minimized) leading to the following

portfolio optimization model:

max −

T
∑

t=1

∑

t′ 6=t

ptpt′dtt′

s.t.

n
∑

j=1

µjxj ≥ µ0,

n
∑

j=1

xj = 1

dtt′ ≥

n
∑

j=1

rjtxj −

n
∑

j=1

rjt′xj

dtt′ ≥ 0, t 6= t′ = 1, . . . , T
xj ≥ 0, j = 1, . . . , n

(17)

which contains T (T − 1) nonnegative variables dtt′ and

T (T − 1) inequalities to define them. This generates a huge

LP problem even for the historical data case where the number

of scenarios is 100 or 200. Krzemienowski and Ogryczak [7]

have shown with the earlier experiments that the CPU time of

7 seconds on average for T = 52 has increased to above

30 sec. with T = 104 and even more than 180 sec. for

T = 156. However, similar to the CVaR models, variables

dtt′ are associated with the singleton coefficient columns.

Hence, while solving the dual instead of the original primal,

the corresponding dual constraints take the form of simple

upper bounds (SUB) which are handled implicitly outside the

LP matrix. For the simplest form of the feasible set (1) the

dual GMD model takes the following form:

min q − µ0u0

q ≥ µju0 +

T
∑

t=1

∑

t′ 6=t

(rjt − rjt′ )utt′ , j = 1, . . . , n

0 ≤ utt′ ≤ ptpt′ , t, t′ = 1, . . . , T ; t 6= t′

(18)

where original portfolio variables xj are dual prices to the

inequalities. The dual model contains T (T − 1) variables utt′

but the number of constraints (excluding the SUB structure)

n + 1 is proportional to the number of securities. The above

dual formulation can be further simplified by introducing

variables:

ūtt′ = utt′ − ut′t, t, t′ = 1, . . . , T ; t < t′ (19)

which allows us to reduce the number of variables to T (T −
1)/2 by replacing (18) with the following:

min q − µ0u0

q ≥ µju0 +
T
∑

t=1

∑

t′>t

(rjt − rjt′ )ūtt′ , j = 1, . . . , n

−ptpt′ ≤ ūtt′ ≤ ptpt′ , t < t′ = 1, . . . , T

(20)

Such a dual approach may dramatically improve the LP model

efficiency in the case of larger number of scenarios. Actually,

as shown with the earlier experiments of [7], the above dual

formulations let us to reduce the optimization time below 10

seconds for T = 104 and T = 156. Nevertheless, the case of

really large number of scenarios still may cause computational

difficulties, due to huge number of variables (T (T − 1)/2).
This may require some column generation techniques [3] or

nondifferentiable optimization algorithms [9].

As shown by Yitzhaki [32] for the SSD consistency of

the GMD model one needs to maximize the complementary

measure

µΓ(x) = µ(x) − Γ(x) = E{Rx ∧Rx} (21)

where the cumulative distribution function of Rx ∧ Rx for

any η ∈ R is given as Fx(η)(2 − Fx(η)). Hence, (21) is the
expectation of the minimum of two independent identically

distributed random variables (i.i.d.r.v.) Rx thus representing

the mean worse return. This provides us with another LP

model although it is not more compact than that of (17) and

its dual (18). Alternatively, the GMD may be expressed with

integral of the absolute Lorenz curve as

Γ(x) = 2

∫ 1

0

(αµ(x) − F (−2)
x

(α))dα

= 2

∫ 1

0

α(µ(x) −Mα(x))dα

and respectively

µΓ(x) = 2

∫ 1

0

F (−2)
x

(α)dα = 2

∫ 1

0

αMα(x)dα (22)

thus combining all the CVaR measures. In order to enrich the

modeling capabilities, one may treat differently some more or

less extreme events. In order to model downside risk aversion,

instead of the Gini’s mean difference, the tail Gini’s measure

introduced by Ogryczak and Ruszczyński [21], [20] can be

used:

µΓβ
(x) = µ(x) −

2

β2

β
∫

0

(µ(x)α − F (−2)
x

(α))dα

=
2

β2

β
∫

0

F (−2)
x

(α)dα

(23)

In the simplest case of equally probable T scenarios with

pt = 1/T (historical data for T periods), the tail Gini’s

measure for β = K/T may be expressed as the weighted com-

bination of CVaRs Mβk
(x) with tolerance levels βk = k/T

for k = 1, 2, . . . ,K and properly defined weights [21]. In a

general case, we may resort to an approximation based on

some reasonably chosen grid βk, k = 1, . . . ,m and weights

wk expressing the corresponding trapezoidal approximation of

the integral in the formula (23). Exactly, for any 0 < β ≤ 1,
while using the grid of m tolerance levels 0 < β1 < . . . <
βk < . . . < βm = β one may define weights:

wk =
(βk+1 − βk−1)βk

β2
, k = 1, . . . ,m− 1

wm =
β − βm−1

β

(24)
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where β0 = 0. This leads us to the Weighted CVaR (WCVaR)

measure [12] defined as

M (m)
w

(x) =

m
∑

k=1

wkMβk
(x)

m
∑

k=1

wk = 1, wk > 0, k = 1, . . . ,m

(25)

We emphasize that despite being only an approximation

to (23), any WCVaR measure itself is a well defined LP

computable measure with guaranteed SSD consistency and

coherency, as a combination of the CVaR measures. Hence,

it needs not to be built on a very dense grid to provide proper

modeling of risk averse preferences. While analyzed on the

real-life data from the Milan Stock Exchange the weighted

CVaR models have usually performed better than the GMD

itself, the Minimax or the extremal CVaR models [12].

Here we analyze only computational efficiency of the LP

models representing the WCVaR portfolio optimization. For

returns represented by their realizations we get the following

LP optimization problem:

max

m
∑

k=1

wkηk −

m
∑

k=1

wk

βk

T
∑

t=1

ptdtk

s.t.

n
∑

j=1

µjxj ≥ µ0,

n
∑

j=1

xj = 1

xj ≥ 0, j = 1, . . . , n

dtk ≥ ηk −

n
∑

j=1

rjtxj

dtk ≥ 0, t = 1, . . . , T ; k = 1, . . . ,m

(26)

where ηk (for k = 1, . . . ,m) are unbounded variables taking

the values of the corresponding βk-quantiles (in the optimal

solution). The problem dimensionality is proportional to the

number of scenarios T and to the number of tolerance levels

m. Exactly, the LP model contains m× T + n variables and

m × T + 2 constraints. The LP problem structure is similar

to that of reperesenting the so-called WOWA optimization in

fuzzy approaches [22]. It does not cause any computational

difficulties for a few hundreds scenarios and a few tolerance

levels, as in a simple computational analysis based on his-

torical data [12]. However, in the case of more advanced

simulation models employed for scenario generation one may

get several thousands scenarios. This may lead to the LP

model (26) with huge number of variables and constraints thus

decreasing the computational efficiency of the model. If the

core portfolio constraints contain only linear relations, like

(1), then the computational efficiency can easily be achieved

by taking advantages of the LP dual to model (26). The LP

dual model takes the following form:

min q − µ0u0

s.t. q − µju0 −

T
∑

t=1

rjt

m
∑

k=1

utk ≥ 0, j = 1, . . . , n

T
∑

t=1

utk = wk

0 ≤ utk ≤
ptwk

βk

, t = 1, . . . , T ; k = 1, . . . ,m

(27)

that contains m× T variables utk, but the m× T constraints

corresponding to variables dtk from (26) take the form of

simple upper bounds on utk thus not affecting the problem

complexity. Hence, again the number of constraints in (27) is

proportional to the total of portfolio size n and the number of

tolerance levels m, thus it is independent from the number of

scenarios. Exactly, there are m× T + 2 variables and m+ n
constraints thus guaranteeing a high computational efficiency

of for very large number of scenarios.

TABLE III
COMPUTATIONAL TIMES (IN SECONDS) FOR THE DUAL WCVAR MODELS

Scenarios Securities Model (27)
(T ) (n) m = 3 m = 5
5 000 76 6.2 13.8
7 000 76 10.0 22.8

10 000 76 16.2 37.7
50 000 50 121.8 281.0
50 000 100 335.3 731.7

We have tested computational efficiency of the dual model

(27) using the same randomly generated test instances as for

testing of the CVaR and other basic models in Section III.

Table III presents average computation times of the dual

models for m = 3 with tolerance levels β1 = 0.1, β2 = 0.25,
β3 = 0.5 and weights w1 = 0.1, w2 = 0.4 and w3 = 0.5, thus
representing the parameters leading to good results on real

life data [12], as well as for m = 5 with uniformly distributed

tolerance levels β1 = 0.1, β2 = 0.2, β3 = 0.3, β4 = 0.4,
β5 = 0.5 and weights (24).

V. CONCLUDING REMARKS

The classical Markowitz model uses the variance as the

risk measure, thus resulting in a quadratic optimization prob-

lem. There were introduced several alternative risk measures

which are computationally attractive as (for discrete random

variables) they result in solving linear programming (LP)

problems. The LP solvability is very important for applications

to real-life financial decisions where the constructed portfolios

have to meet numerous side constraints and take into account

transaction costs. A gamut of LP computable risk measures has

been presented in the portfolio optimization literature although

most of them are related to the absolute Lorenz curve and

thereby the CVaR measures. We have shown that all the risk

measures used in the LP solvable portfolio optimization mod-

els can be derived from the SSD shortfall criteria. This allows

us to guarantee their SSD consistency for any distribution of

outcomes.
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The corresponding portfolio optimization models can be

solved with general purpose LP solvers. However, in the case

of more advanced simulation models employed for scenario

generation one may get several thousands of scenarios. This

may lead to the LP model with huge number of variables

and constraints thus decreasing the computational efficiency

of the models. For the CVaR model, the number of constraints

(matrix rows) is proportional to the number of scenarios. while

the number of variables (matrix columns) is proportional to

the total of the number of scenarios and the number of instru-

ments. We have shown that the computational efficiency can be

then dramatically improved with an alternative model taking

advantages of the LP duality. In the introduced model the

number of structural constraints (matrix rows) is proportional

to the number of instruments thus not affecting seriously the

simplex method efficiency by the number of scenarios. In

particular, for the case of 50 000 scenarios, it has resulted

in computation times below 30 seconds for 50 securities or

below a minute for 100 instruments. Similar computational

times have also been achieved for the reformulated Minimax

model.

Similar reformulation can be developed for other LP com-

putable portfolio optimization models as many of them are

related to the Absolute Lorenz Curve [18], [10]. In particular,

this applies to the classical LP portfolio optimization models

based on the mean absolute deviation as well as to the

Gini’s mean difference. The standard LP models for the Gini’s

mean difference [32] and its downside version [7] require

T 2 auxiliary constraints which makes them hard already for

medium numbers of scenarios, like a few hundred scenarios

given by historical data. The models taking advantages of

the LP duality allow one to limit the number of structural

constraints making it proportional to the number of scenarios

T thus increasing dramatically computational performances

for medium numbers of scenario although still remaining hard

for very large numbers of scenarios.
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[14] Miller, N and A Ruszczyński (2008). Risk-adjusted probability measures
in portfolio optimization with coherent measures of risk. European

Journal of Operational Research, 191, 193–206.
[15] Müller, A and D Stoyan (2002), Comparison Methods for Stochastic

Models and Risks, Wiley, Chichester.
[16] Ogryczak, W (1999), Stochastic dominance relation and linear risk

measures, in A M J Skulimowski, ed.: Financial Modelling – Proc.

23rd Meeting EURO WG Financial Modelling, Cracow, 1998, Progress
& Business Publisher, Cracow, 191–212.

[17] Ogryczak, W (2000), Risk measurement: Mean absolute deviation versus
Ginis mean difference, in W G Wanka, ed.: Decision Theory and

Optimization in Theory and Practice – Proc. 9th Workshop GOR WG,

Chemnitz, 1999, Shaker Verlag, Aachen, 33–51.
[18] Ogryczak, W (2000), Multiple criteria linear programming model for

portfolio selection, Annals of Operations Research 97, 143–162.
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[21] Ogryczak, W and A Ruszczyński (2002), Dual Stochastic dominance

and quantile risk measures, International Transactions in Operational

Research 9, 661–680.
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