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The Markowitz model of portfolio optimization quantifies the problem in a lucid form
of only two criteria: the mean, representing the expected outcome, and the risk, a scalar
measure of the variability of outcomes. The classical Markowitz model uses the variance
as the risk measure, thus resulting in a quadratic optimization problem. Following Sharpe’s
work on linear approximation to the mean–variance model, many attempts have been made
to linearize the portfolio optimization problem. There were introduced several alternative
risk measures which are computationally attractive as (for discrete random variables) they
result in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have to
meet numerous side constraints and take into account transaction costs. The variety of LP
solvable portfolio optimization models presented in the literature generates a need for their
classification and comparison. It is the main goal of our work. The paper introduces a
systematic overview of the LP solvable models with a wide discussion of their theoretical
properties. This allows us to classify the models with respect to the types of risk or safety
measures they use. The paper also provides the first complete computational comparison
of the discussed models on real-life data.

Keywords: portfolio optimization; mean–risk and mean–safety model; linear programming;
experimental analysis.

1. Introduction

The portfolio optimization problem considered in this paper follows the original Markowitz
formulation which is based on a single period model of investment. At the beginning of
a period, an investor allocates his capital among various securities, thus assigning a non-
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negative weight (share of the capital) to each security. During the investment period, a
security generates a random rate of return. This results in a change of the capital invested
(observed at the end of the period) which is measured by the weighted average of the
individual rates of return.

Let J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variableR j with a given
meanµ j = E{R j }. Further, letx = (x j ) j=1,2,...,n denote a vector of decision variables
x j expressing the weights defining a portfolio. To represent a portfolio, the weights must
satisfy a set of constraints that form a feasible setP. The simplest way of defining a feasible
set is by a requirement that the weights must sum to one and short sales are not allowed,
i.e.

∑n
j=1 x j = 1 andx j � 0 for j = 1, . . . , n. Hereafter, it is assumed thatP is a general

LP feasible set given in a canonical form as a system of linear equations with non-negative
variables.

Each portfoliox defines a corresponding random variableRx = ∑n
j=1 R j x j that

represents the portfolio rate of return. The mean rate of return for portfoliox is given
asµ(x) = E{Rx} = ∑n

j=1 µ j x j . Hence, the mean rate of return is a linear function of
portfolio x.

Following the seminal work by Markowitz (1952), the portfolio optimization problem
is modelled as a mean–risk bicriteria optimization problem whereµ(x) is maximized
and some risk measure�(x) is minimized. In the original Markowitz model the risk is
measured by the standard deviation or variance:σ 2(x) = E{(µ(x) − Rx)

2}. Several
other risk measures have been later considered thus creating the entire family of mean–
risk models (Mitraet al., 2003, and references therein). While the original Markowitz
model forms a quadratic programming problem, following Sharpe (1971a), many attempts
have been made to linearize the portfolio optimization procedure (cf. Speranza, 1993 and
references therein). The LP solvability is very important for applications dealing with
real-life financial decisions where the constructed portfolios have to meet numerous side
constraints, such as minimum transaction lots (Mansini & Speranza, 1999), cardinality
constraints (Jobstet al., 2001), and to take into account transaction costs (Kellereret al.,
2000; Konno & Wijayanayake, 2001; Chiodiet al., 2003; Bonagliaet al., 2002).

Certainly, in order to guarantee that the portfolio takes advantage of diversification,
no risk measure can be a linear function ofx. Nevertheless, a risk measure can be LP
computable in the case of discrete random variables, i.e. in the case of returns defined by
their realizations under the specified scenarios. We will considerT scenariosSt (where
t = 1, . . . , T ) with corresponding probabilitiespt . We will assume that for each random
variable R j its realizationr jt under the scenariot is known. Typically, the realizations
are derived from historical data treatingT historical periods as equally probable scenarios
(pt = 1/T ). The realizations of the portfolio returnRx are given as

yt =
n∑

j=1

r jt x j (1)

and thus they are linear functions of portfoliox. The expected valueµ(x) can be then
expressed as a linear function of the realizationsyt as µ(x) = ∑T

t=1 yt pt . Similarly,
several risk measures can be LP computable with respect to the realizationsyt . The mean
absolute deviation was very early considered in portfolio analysis (Sharpe, 1971b) and
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references therein) while more recently Konno & Yamazaki (1991) presented and analysed
the complete portfolio LP solvable optimization model based on this risk measure—the
so-called MAD model. Yitzhaki (1982) introduced the mean–risk model using Gini’s
mean (absolute) difference as the risk measure (the GMD model). Recently, Young
(1998) analysed the LP solvable portfolio optimization model based on risk defined by
the worst case scenario (the minimax approach), while Ogryczak (2000) introduced the
multiple criteria LP model covering all the above as special aggregation techniques.
During the achievement of this study, some risk measures for portfolio management have
been proposed (Chekhlovet al., 2000), which result in models reducible to LP solvable
problems. This is a further evidence of the high interest shown for the subject dealt with in
our paper and of the constant evolution of this research domain.

The Markowitz model is frequently criticized as not consistent with axiomatic models
of preferences for choice under risk (Rothschild & Stiglitz, 1969). Models consistent with
the preference axioms are based on the relations of stochastic dominance or on expected
utility theory (Whitmore & Findlay, 1978; Bawa, 1982; Levy, 1992). If the rates of return
are normally distributed, then the mean absolute deviation and the Gini mean difference
become proportional to the standard deviationσ(x) (Kruskal & Tanur, 1978, pp. 1216–
1217). Hence, the corresponding LP solvable mean–risk models are then equivalent to
the Markowitz mean–variance model. However, the LP solvable mean–risk models do
not require any specific type of return distributions. Moreover, opposite to the mean–
variance approach, for general random variables some consistency with the stochastic
dominance relations was shown for the Gini mean difference (Yitzhaki, 1982), for the
MAD model (Ogryczak & Ruszczýnski, 1999) and for many other LP solvable models as
well (Ogryczak, 2000). Recently, in Artzneret al. (1999), a class of coherent risk measures
has been defined by means of several axioms. Again, the coherence has been shown for
the MAD model (Ogryczak & Ruszczyński, 2002) and for some other LP computable
measures (Acerbi & Tasche, 2002).

It is often argued that the variability of the rate of return above the mean should
not be penalized since the investors are concerned with an underperformance rather than
the overperformance of a portfolio. This led Markowitz (1959) to propose downside
risk measures such as (downside) semivariance to replace variance as the risk measure.
Consequently, one observes growing popularity of downside risk models for portfolio
selection (Bawa, 1978; Fishburn, 1977; Zagst, 2002). Some authors pointed out that the
MAD model opens up opportunities for more specific modelling of the downside risk
(Feinstein & Thapa, 1993; Speranza, 1993). In fact, most of the LP solvable models may be
viewed as based on some downside risk measures. Moreover, the models may be extended
with some piecewise linear penalty (risk) functions to provide opportunities for more
specific modelling of the downside risk (Carinoet al., 1998; Konno, 1990; Michalowski &
Ogryczak, 2001).

The variety of LP solvable portfolio optimization models presented in the literature
generates a need for their classification and comparison. This is the major goal of this
paper. We provide a systematic overview of the models with a wide discussion of their
theoretical properties such as SSD consistency (Ogryczak & Ruszczyński, 2001) and the
coherence in the sense of Artzneret al. (1999). In particular, we classify the performance
measures of the models in risk measures (to be minimized) and safety measures (to be



190 R. MANSINI ET AL.

maximized). We show that for each risk measure there exists a corresponding well-defined
safety measure and vice versa.

Since theoretical results provide only a limited background for models comparison,
we also present extensive computational results. The literature provides computational
results only for individual models and not all the models were tested in a real-life decision
environment. While the MAD model was quite extensively tested (Konno & Yamazaki,
1991) including its application to portfolios of mortgage-backed securities (Zenios &
Kang, 1993) where distribution of rate of return is known to be not symmetric, the other
LP solvable models seem to get much less recognition from applied studies.

The paper is organized as follows. In the next section we consider the stochastic
dominance and the related shortfall criteria. We show how various LP computable
performance measures can be derived from the shortfall criteria. Section 3 gives a detailed
review and classification of the LP solvable portfolio optimization models we examine.
Section 4 is devoted to the experimental analysis on real-life data from the Milan Stock
Exchange. Extensive in-sample and out-of-sample computational results are provided and
commented on. Finally, some concluding remarks are given.

2. Shortfall criteria and performance measures

2.1 Shortfall criteria and stochastic dominance

The notion of risk is related to a possible failure of achieving some targets. It was
formalized as the so-called safety-first strategies (Roy, 1952; Bawa, 1978) and later led
to the concept of below-target risk measures (Fishburn, 1977; Zagst, 2002) or shortfall
criteria. The simplest shortfall criterion for the specific target valueτ is themean below-
target deviation

δ̄τ (x) = E{max{τ − Rx, 0}}. (2)

In the case of returns represented by their realizations, the mean below-target deviation is a
convex piecewise linear function of realizationsyt given as

∑T
t=1 max{τ − yt , 0}pt . Hence,

due to (1), the mean below-target deviation is also a convex piecewise linear function of
the portfoliox itself and it is LP computable as

δ̄τ (x) = min
T∑

t=1

d−
t pt subject to d−

t � τ − yt , d−
t � 0 for t = 1, . . . , T .

The concept of mean below-target deviation is related to the second-degree stochastic
dominance relation (Whitmore & Findlay, 1978) which is based on an axiomatic model
of risk-averse preferences (Rothschild & Stiglitz, 1969; Levy, 1992). In stochastic
dominance, uncertain returns (random variables) are compared by pointwise comparison
of functions constructed from their distribution functions. The first functionF (1)

x is given
as the right-continuous cumulative distribution function of the rate of returnF (1)

x (η) =
Fx(η) = P{Rx � η} and it defines the weak relation of thefirst-degree stochastic
dominance (FSD) as follows:

Rx′ �F SD Rx′′ ⇔ Fx′(η) � Fx′′(η) for all η.
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The second function is derived from the first as

F (2)
x (η) =

∫ η

−∞
Fx(ξ) dξ for real numbersη,

and defines the (weak) relation ofsecond degree stochastic dominance (SSD)

Rx′ �SSD Rx′′ ⇔ F (2)

x′ (η) � F (2)

x′′ (η) for all η.

Wesay that portfoliox′ dominates x′′ under the SSD (Rx′ �SSD Rx′′ ), if F (2)

x′ (η) � F (2)

x′′ (η)

for all η, with at least one strict inequality. A feasible portfoliox0 ∈ P is calledSSD
efficient if there is nox ∈ P such thatRx �SSD Rx0. If Rx′ �SSD Rx′′ , thenRx′ is preferred
to Rx′′ within all risk-averse preference models where larger outcomes are preferred.

Note that the SSD relation covers increasing and concave utility functions, while the
first stochastic dominance is less specific as it covers all increasing utility functions (Levy,
1992), thus neglecting a risk-averse attitude. It is therefore a matter of primary importance
that a model for portfolio optimization be consistent with the SSD relation, in the sense
that Rx′ �SSD Rx′′ implies that the performance measure inx′ takes a value not worse than
(lower than or equal to, in the case of a risk measure) inx′′. The consistency with the SSD
relation implies that an optimal portfolio is SSD efficient.

Function F (2)
x , used to define the SSD relation, can also be presented as follows

(Ogryczak & Ruszczýnski, 1999):

F (2)
x (η) = P{Rx � η}E{η − Rx|Rx � η} = E{max{η − Rx, 0}} = δ̄η(x). (3)

Hence, the SSD relation can be seen as a dominance for mean below-target deviations from
all possible targets. We call them hereafter the basic SSD shortfall criteria.

The mean below-target deviation from a specific target (2) represents only a single basic
SSD shortfall criterion. One may consider several, saym, targetsτ1 > τ2 > · · · > τm and
use the weighted sum of the shortfall criteria as a risk measure

m∑
k=1

wk δ̄τk (x) =
m∑

k=1

wkE{max{τk − Rx, 0}} = E

{
m∑

k=1

wk max{τk − Rx, 0}
}

(4)

wherewk (for k = 1, . . . , m) are positive weights which maintain LP computability of the
measure (when minimized). Actually, the measure (4) can be interpreted as a single mean
below-target deviation applied with a penalty function:E{u(max{τ1 − Rx, 0})} whereu is
an increasing and convex piecewise linear penalty function with breakpointsbk = τ1 − τk

and slopessk = w1 + · · · + wk , k = 1, . . . , m. Such a piecewise linear penalty function is
used in the Russel–Yasuda–Kasai financial planning model (Carinoet al., 1998) to define
the corresponding risk measure.

When an investment situation involves minimal acceptable returns, then the below-
target deviation and its extensions, as presented in the previous section, are considered to be
good risk measures (Fishburn, 1977). However, they are in general not risk relevant as for
some targets they may not prevent concentration of risks from remaining undetected. When
the mean portfolio return is used to define target achievements, then the corresponding
risk measure should relate to shortfalls with respect to the meanµ(x) rather than to
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any fixed targetτ . We will call such below-mean characteristics downside measures or
semideviations (if applicable). In the following sections we show how various possible
downside performance measures can be derived from the basic SSD shortfall criteria and
that some are consistent with the stochastic dominance relations and are coherent in the
sense of Artzneret al. (1999). Some of the performance measures are risk measures (to
be minimized) and some are safety measures (to be maximized). We show that there are
complementary pairs of risk and safety measures. That means, for each risk measure there
exists a corresponding safety measure and vice versa. We also show how these measures
become LP computable in the case of returns defined by discrete random variables.

2.2 MAD and downside versions

Let us simply use the mean portfolio returnµ(x) in the shortfall criterion (2) instead of a
fixed targetτ . This results in the risk measure known as thedownside mean semideviation
from the mean:

δ̄(x) = E{max{µ(x) − Rx, 0}} = F (2)
x (µ(x)). (5)

The downside mean semideviation is always equal to the upside oneδ̄(x) = E{max{µ(x)−
Rx, 0}} = E{max{Rx − µ(x), 0}}, therefore we refer to it hereafter as the mean
semideviation. Note that the mean semideviation represents both downside as well as
upside mean deviations (Kenyonet al., 1999; Ogryczak & Ruszczýnski, 1999). Actually,
the mean semideviation is a half of the mean absolute deviation from the mean, i.e.
δ(x) = E{|Rx − µ(x)|} = 2δ̄(x). Hence, the corresponding mean–risk model is
equivalent to the MAD model (Speranza, 1993). For a discrete random variable represented
by its realizations, the mean semideviation (5) is a convex piecewise linear function
of realizationsyt , given as

∑T
t=1 max{µ(x) − yt , 0}pt . Hence, due to (1), the mean

semideviation is also a convex piecewise linear function of the portfoliox itself and it
is LP computable as

δ̄(x) = min
T∑

t=1

d−
t pt subject to d−

t � µ(x) − yt , d−
t � 0 for t = 1, . . . , T .

Due to the use of distribution-dependent target valueµ(x), the mean semideviation
cannot be directly considered as a basic SSD shortfall criterion. However, as shown by
Ogryczak & Ruszczýnski (1999), the mean semideviation is closely related to the graph
of F (2)

x . The functionF (2)
x is continuous, convex, non-negative and nondecreasing. The

graphF (2)
x (η), referred to as the Outcome–Risk (O–R) diagram, has two asymptotes which

intersect at the point(µ(x), 0) (Fig. 1). Exactly, theη-axis is the left asymptote and the
ascent lineη − µ(x) is the right asymptote. In the case of a risk-free return (Rx = µ(x)),
the graph ofF (2)

x (η) coincides with the asymptotes, whereas any uncertain return with
the same expected valueµ(x) yields a graph above (precisely, not below) the asymptotes.
Thus, the space between the curve(η, F (2)

x (η)) and its asymptotes represents the dispersion
(and thereby the riskiness) ofRx in comparison to the deterministic returnµ(x). Therefore,
it is called the dispersion space. The mean semideviation turns out to be the largest vertical
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FIG. 1. The O–R diagram and the mean semideviation.

diameter of the dispersion space while the variance represents its doubled area (Ogryczak
& Ruszczýnski, 1999).

Every shortfall risk measure or, more precisely, every pair of a target valueτ and
the corresponding downside deviation defines also the quantity of mean below-target
underachievement

τ − δ̄τ (x) = E{τ − max{τ − Rx, 0}} = E{min{Rx, τ }}.
The latter portfolio performance measure can be considered a safety measure as the larger
values are preferred. In the case of a fixed targetτ one getsτ − δ̄τ (x′) � τ − δ̄τ (x′′)
iff δ̄τ (x′) � δ̄τ (x′′). Hence, the minimization of the mean below-target deviation (risk
measure) and the maximization of the corresponding mean below-target underachievement
(safety measure) are equivalent. The latest property is no longer valid whenµ(x) is used
as the target. One may introduce the safety measure ofmean downside underachievement

µ(x) − δ̄(x) = E{µ(x) − max{µ(x) − Rx, 0}} = E{min{Rx, µ(x)}} (6)

but the minimization of the mean semideviation is, in general, not equivalent to the
maximization of the mean downside underachievement. Note that, as shown in Ogryczak
& Ruszczýnski (1999),Rx′ �SSD Rx′′ implies the inequalityµ(x′)− δ̄(x′) � µ(x′′)− δ̄(x′′)
while the corresponding inequality on the mean semideviationsδ̄(x′) � δ̄(x′′) may not be
valid. Thus, the mean downside underachievement is consistent with the SSD relation,
while the consistency is not guaranteed for the mean semideviation. In Artzneret al.
(1999), a class of coherent risk measures has been defined by means of several axioms.
In our terms, these measures correspond to composite objectives of formf (x) = −µ(x)+
�(x) (note the opposite scalarization via the sign change). The axioms are: translation
invariance, positive homogeneity, subadditivity, monotonicity (Rx′ � Rx′′ ⇒ f (x′) �
f (x′′)), and relevance (Rx � 0, Rx 	= 0 ⇒ f (x) < 0). As pointed out in Ogryczak
& Ruszczýnski (2002, Remark 1),̄δ(x) is seminorm inL1, is convex and positively
homogeneous. Therefore, the composite objective−µ(x)+ δ̄(x) does satisfy the first three
axioms. Moreover, owing to the consistency with stochastic dominance, it also satisfies
monotonicity and relevance, becauseRx′ � Rx′′ ⇒ Rx′ �SSD Rx′′ . Theorems 3 and 4 (see
Appendix) generalize this assertion making it applicable to the various LP computable
measures we consider.
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For better modelling of the downside risk, one may consider a risk measure defined
by the mean semideviation applied with a piecewise linear penalty function (Konno,
1990) to penalize larger downside deviations. It turns out, however, that for maintaining
both the LP computability and SSD consistency (Michalowski & Ogryczak, 2001), the
breakpoints (or additional target values) must be located at the corresponding mean
downside underachievements (6). Namely, when usingm distribution-dependent targets
µ1(x) = µ(x), µ2(x), . . . , µm(x) and the corresponding mean semideviationsδ̄1(x) =
δ̄(x), δ̄2(x), . . . , δ̄m(x) defined recursively according to the formulae:

δ̄k(x) = E{max{µk(x) − Rx, 0}} = E{max{µ(x) −
k−1∑
i=1

δ̄i (x) − Rx, 0}}, (7)

µk+1(x) = µk(x) − δ̄k(x) = µ(x) −
k∑

i=1

δ̄i (x) = E{min{Rx, µk(x)}},

one may combine the semideviations by the weighted sum to the measure

δ̄(m)
w (x) =

m∑
k=1

wk δ̄k(x), 1 = w1 � w2 � · · · � wm � 0, (8)

as in them-MAD model (Michalowski & Ogryczak, 2001). Actually, the measure can be
interpreted as a single mean semideviation (from the mean) applied with a penalty function:
δ̄
(m)
w (x) = E{u(max{µ(x) − Rx, 0})} whereu is an increasing and convex piecewise linear

penalty function with breakpointsbk = µ(x) − µk(x) and slopessk = w1 + · · · + wk ,
k = 1, . . . , m. Therefore, we will refer to the measureδ̄(m)

w (x) as to themean penalized
semideviation.

Note that the mean semideviationsδ̄k(x) defined by the recursive formula (7), in
general, may be not convex functions of portfoliox. Nevertheless, the mean penalized
semideviation (8) is a convex piecewise linear function of portfoliox with returns
represented by its realizations (1). This follows from the properties of the cumulative
deviation functionδ̄(k)(x) = ∑k

i=1 δ̄i (x) and the restriction used in (8). In the case of
returns represented by their realizations (1),δ̄(1)(x) = δ̄1(x) = δ̄(x) is a convex piecewise
linear function ofx. Due to (7), the following recursive formula is valid:

δ̄(k)(x) = δ̄k(x) + δ̄(k−1)(x) = E{max{µ(x) − Rx, δ̄
(k−1)(x)}}

=
T∑

t=1

max{µ(x) − yt , δ̄
(k−1)(x)}pt

which justifiesδ̄(k)(x) as a convex piecewise linear function of portfoliox, for anyk � 1.
Further, the mean penalized semideviation (8) can be expressed as the linear combination
of the cumulated deviations:

δ̄(m)
w (x) = wm δ̄(m)(x) +

m−1∑
k=1

(wk − wk+1)δ̄
(k)(x),

where all the coefficients are non-negative. Hence, in the case of returns represented by
their realizations, the mean penalized semideviation is a convex piecewise linear function
of x.
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As defined by a convex piecewise linear function, the penalized mean semideviation is
LP computable. Exactly, it can be computed from the following LP problem:

δ̄(m)
w (x) = min

m∑
k=1

wk zk s.t. zk =
T∑

t=1

d−
kt pt for k = 1, . . . , m,

d−
kt � µ(x) − yt −

k−1∑
i=1

zi , d−
kt � 0 for t = 1, . . . , T ; k = 1, . . . , m.

The mean penalized semideviation (8) defines the corresponding safety measure
µ(x)− δ̄

(m)
w (x) which may be expressed directly as theweighted sum of the mean downside

underachievements µk(x):

µ(x) − δ̄(m)
w (x) = (w1 − w2)µ2(x) + (w2 − w3)µ3(x) + . . .

+ (wm−1 − wm)µm(x) + wmµm+1(x) (9)

where the coefficients are non-negative and sum to 1. This safety measure was shown
by Michalowski & Ogryczak (2001) to be SSD consistent in the sense thatRx′ �SSD

Rx′′ implies µ(x′) − δ̄
(m)
w (x′) � µ(x′′) − δ̄

(m)
w (x′′). Moreover, due to Theorem 3, the

corresponding safety measure (its negative) is coherent in the sense of Artzneret al. (1999).

2.3 Minimax and the worst conditional expectation

For adiscrete random variable represented by its realizationsyt , theworst realization

M(x) = min
t=1,...,T

yt (10)

is an appealing safety measure, while themaximum (downside) semideviation

∆(x) = µ(x) − M(x) = max
t=1,...,T

(µ(x) − yt ) (11)

represents the corresponding risk measure. The latter may be interpreted as the maximal
drawdown (Chekhlovet al., 2000). It is also a well defined measure in the O–R diagram
(Fig. 1) as it represents the maximum horizontal diameter of the dispersion space.
According to (11), the maximum semideviation is a convex piecewise linear function of
realizationsyt and, due to (1), it is also a convex piecewise linear function of the portfolio
x itself. Similar to the mean semideviation, it is LP computable as

∆(x) = min d−
t subject to d−

t � µ(x) − yt , d−
t � 0 for t = 1, . . . , T .

The measureM(x) is known to be SSD consistent and it was applied to portfolio
optimization by Young (1998). By the use of Theorem 4, one easily gets that−M(x) is
a coherent risk measure in the sense of Artzneret al. (1999). A natural generalization of
the measureM(x) is the worst conditional expectation defined as the mean of the specified
size (quantile) of worst realizations. For the simplest case of equally probable scenarios
(pt = 1/T ), one may define the worst conditional expectationM k

T
(x) as the mean return
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under thek worst scenarios. In general, theworst conditional expectation and theworst
conditional semideviation for any (real) tolerance level 0< β � 1 are defined as

Mβ(x) = 1

β

∫ β

0
F (−1)

x (α) dα for 0 < β � 1 (12)

and

∆β(x) = µ(x) − Mβ(x) for 0 < β � 1, (13)

respectively, whereF (−1)
x (p) = inf {η : Fx(η) � p} is the left-continuous inverse of the

cumulative distribution functionFx. Forany 0< β � 1, the conditional worst realization
Mβ(x) is an SSD consistent measure. Actually, the conditional worst expectations provide
an alternative characterization of the SSD relation (Ogryczak & Ruszczyński, 2002) in the
sense of the following equivalence:

Rx′ �SSD Rx′′ ⇔ Mβ(x′) � Mβ(x′′) for all 0 < β � 1. (14)

Note thatM1(x) = µ(x) andMβ(x) tends toM(x) for β approaching 0. By the theory
of convex conjugent (dual) functions (Rockafellar, 1970), the worst conditional expectation
may be defined by the optimization (Ogryczak & Ruszczyński, 2002)

Mβ(x) = max
η∈R

[
η − 1

β
F (2)

x (η)

]
= max

η∈R

[
η − 1

β
E{max{η − Rx, 0}}

]
, (15)

whereη is a real variable taking the value ofβ-quantileQβ(x) at the optimum. Formula

(15) may be also interpreted asMβ(x) = max{η − 1
β
ξ : ξ � F (2)

x (η)}. Hence, the worst
conditional expectations and the corresponding worst conditional semideviations express
the results of the O–R diagram analysis according to a slant direction defined by the slope
β (Fig. 2).

For adiscrete random variable represented by its realizationsyt , problem (15) becomes
an LP:

Mβ(x) = max

[
η − 1

β

T∑
t=1

d−
t pt

]
s.t. d−

t � η − yt , d−
t � 0 for t = 1, . . . , T,

(16)

whereη is an auxiliary (unbounded) variable. The worst conditional semideviations are
then available as the corresponding differences from the mean∆β(x) = µ(x) − Mβ(x).
Alternatively, by using (15) one gets

∆β(x) = µ(x) − Mβ(x) = min
η∈R

E

{
Rx − η + 1

β
max{η − Rx, 0}

}

= min
η∈R

E

{
max{Rx − η, 0} + 1 − β

β
max{η − Rx, 0}

}
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FIG. 2. Quantile safety measures in the O–R diagram.

which allows one to compute the worst conditional semideviation directly from the
following LP:

∆β(x) = min
T∑

t=1

(
d+

t + 1 − β

β
d−

t

)
pt s.t.

d−
t − d+

t = η − yt , d+
t , d−

t � 0 for t = 1, . . . , T . (17)

Thus, the worst conditional semideviation is a convex piecewise linear function of
realizationsyt and, due to (1), it is also a convex piecewise linear function of the portfolio
x itself. It follows from Theorem 3 that−Mβ(x) is coherent in the sense of Artzneret al.
(1999).

Note that forβ = 0·5 one has 1−β = β. Hence,∆0·5(x) represents the mean absolute
deviation from the median, the risk measure suggested by Sharpe (1971b). The LP problem
for computing this measure takes the form

∆0·5(x) = min
T∑

t=1

(d+
t + d−

t )pt s.t. d−
t − d+

t = η − yt ,

d+
t , d−

t � 0 for t = 1, . . . , T .

The worst conditional expectation is closely related to the measure called Conditional
Concentration (Shalit & Yitzhaki, 1994), Expected Shortfall (Embrechtset al., 1997) or
Conditional Value-at-Risk (CVaR) (Rockafellar & Uryasev, 2000) which may be expressed
as CVaRβ(x) = E{Rx|Rx � Qβ(x)}. Exactly, Mβ(x) = CVaRβ(x) in the case of
continuous distributions of returns, while they can take different values for discrete
distributions (Ogryczak & Ruszczyński, 2002). Nevertheless, recently considered models
for portfolio optimization (Rockafellar & Uryasev, 2000) use the LP formula for the
worst conditional expectation as a computational approximation to CVaR for continuous
distributions. Therefore, the models using the worst conditional expectation or the worst
conditional semideviation as a performance measure we will refer to as the CVaR models.
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2.4 Gini mean difference

Yitzhaki (1982) introduced the mean–risk model using Gini’s mean (absolute) difference
as the risk measure. For a discrete random variable represented by its realizationsyt , the
Gini mean difference

Γ (x) = 1

2

T∑
t ′=1

T∑
t ′′=1

|yt ′ − yt ′′ |pt ′ pt ′′ (18)

is obviously a convex piecewise linear function of realizationsyt and, due to (1), it is also
a convex piecewise linear function of the portfoliox. This allows one to compute the Gini
mean difference directly from the following LP:

Γ (x) = min
T∑

t ′=1

∑
t ′′ 	=t ′

dt ′t ′′ pt ′ pt ′′ s.t. dt ′t ′′ � yt ′ − yt ′′ ,

dt ′t ′′ � 0 for t ′, t ′′ = 1, . . . , T ; t ′′ 	= t ′.

In the case of equally probableT scenarios withpt = 1/T , the Gini mean difference
may be expressed as the weighted average of the worst conditional semideviations∆ k

T
(x)

for k = 1, . . . , T (Ogryczak, 2000). Exactly, using weightswk = (2k)/T 2 for k =
1, 2, . . . , T − 1 andwT = 1/T = 1 − ∑T −1

k=1 wk , one getsΓ (x) = ∑T
k=1 wk∆ k

T
(x).

On the other hand, for general discrete distributions, directly from the definition (18) and
from (3),

Γ (x) =
T∑

t ′=1

[
∑

t ′′:yt ′′<yt ′
(yt ′ − yt ′′)pt ′′ ]pt ′ =

T∑
t=1

F (2)
x (yt )pt =

T∑
t=1

δ̄yt (x)pt .

Hence,Γ (x) can be interpreted as the weighted sum of multiple mean below-target
deviations (4) but both the targets and the weights are distribution dependent. This
corresponds to an interpretation ofΓ (x) as the integral ofF (2)

x with respect to the
probability measure induced byRx (Ogryczak & Ruszczýnski, 2002). Thus, although not
representing directly any shortfall criterion, the Gini mean difference is a combination of
the basic shortfall criteria.

Note that the Gini mean difference defines the corresponding safety measure (Yitzhaki,
1982):

µ(x) − Γ (x) = E{Rx ∧ Rx} (19)

which is the expectation of the minimum of two i.i.d.r.v.Rx thus representing the
mean worse return. This safety measure is SSD consistent (Yitzhaki, 1982; Ogryczak &
Ruszczýnski, 2002) in the sense thatRx′ �SSD Rx′′ impliesµ(x′)−Γ (x′) � µ(x′′)−Γ (x′′).
Moreover, due to Theorem 3, the safety measure (its negative) is coherent in the sense of
Artzneret al. (1999).
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TABLE 1 Sample returns

Scenario Rxo Rx′ Rx′′
P{S1} = 0·5 1·5 3·5 5·0
P{S2} = 0·5 1·5 4·5 4·0

3. Portfolio optimization

3.1 Risk and safety measures

Following Markowitz (1952), the portfolio optimization problem is modelled as a mean–
risk bicriteria optimization problem:

max{[µ(x), −�(x)] : x ∈ P}, (20)

where the meanµ(x) is maximized and the risk measure�(x) is minimized. A feasible
portfolio x0 ∈ P is called an efficient solution of problem (20) or aµ/�-efficient portfolio
if there is nox ∈ P such thatµ(x) � µ(x0) and�(x) � �(x0) with at least one inequality
strict.

The original Markowitz (1952) model uses the standard deviationσ(x) as the risk
measure. As shown in the previous section, several other risk measures may be used instead
of the standard deviation thus generating the corresponding LP solvable mean–risk models.
In this paper we restrict our analysis to the risk measures which, similar to the standard
deviation, are shift-independent dispersion parameters. Thus, they are equal to 0 in the case
of a risk-free portfolio and take positive values for any risky portfolio. This excludes the
direct use of the mean below-target deviation (2) and its extensions with penalty functions
(4). Nevertheless, as shown in Section 2, there is a gamut of LP computable risk measures
fitting the requirements.

In Section 2 we have seen that in the literature some of the LP computable measures are
dispersion type risk measures and some are safety measures, which, when embedded in an
optimization model, are maximized instead of being minimized. Moreover, we have shown
that each risk measure�(x) has a well defined corresponding safety measureµ(x) − �(x)

and vice versa. Although the risk measures are more ‘natural’, due to the consolidated
familiarity with the Markowitz model, we have seen that the safety measures, contrary
to the dispersion type risk measures, are SSD consistent in the sense thatRx′ �SSD Rx′′
implies µ(x′) − �(x′) � µ(x′′) − �(x′′) (Michalowski & Ogryczak, 2001; Ogryczak &
Ruszczýnski, 1999, 2002; Yitzhaki, 1982; Young, 1998). Moreover, one may notice that the
safety measures, we consider, satisfy axioms of the so-called coherent risk measurement
as in Artzneret al. (1999) (with the sign change). We want to emphasize that the convexity
of (dispersion type) risk measures is essential for portfolio optimization solvability, while
their additional properties of positive homogeneity and appropriate scaling (see Theorem 4)
guarantee that the corresponding safety measures are coherent.

The practical consequence of the lack of SSD consistency or the lack of coherence can
be illustrated by three portfoliosxo, x′ andx′′ with rate of return (given in per cent) under
two equally probable scenariosS1 and S2 (Table 1). Note that the risk-free portfolioxo

with the guaranteed result 1·5 is obviously worse than the risky portfolios:x′ giving 3·5 or
4·5 andx′′ giving 5·0 or 4·0. Certainly, in all models consistent with the preference axioms
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TABLE 2 Risk and safety measures

Model Risk measure�(x) Safety measureµ(x) − �(x)

MAD model (Konno & Yamazaki, 1991) δ̄(x) (5) E{min{Rx, µ(x)}} (6)
m-MAD model

(Michalowski & Ogryczak, 2001) δ̄
(m)
w (x) (8) µ(x) − δ̄

(m)
w (x) (9)

Minimax model (Young, 1998) ∆(x) (11) M(x) (10)
CVaR model

(Rockafellar & Uryasev, 2000) ∆β(x) (12) Mβ(x) (13)

GMD model (Yitzhaki, 1982) Γ (x) (18) E{Rx ∧ Rx} (19)

of either coherence (Artzneret al., 1999) or SSD (Levy, 1992; Whitmore & Findlay, 1978)
portfolio xo is dominated by bothx′ andx′′. When a dispersion type risk measure�(x)

is used, then all the portfolios may be efficient in the corresponding mean–risk model.
Unfortunately, it also applies to portfolioxo, since for each such measure�(x′) > 0 and
�(x′′) > 0 while �(xo) = 0. This is a common flaw of all mean–risk models where risk is
measured with some dispersion measure (Markowitz-type models). Further, let us notice
that Rx′′ �SSD Rx′ althoughRx′′ 	� Rx′ . Hence, the SSD consistency of a model guarantees
that Rx′′ will be selected while the coherence allows that eitherRx′′ or Rx′ may be selected
(it only guarantees thatRxo will not be selected).

It is interesting to note that, in order to overcome this weakness of the Markowitz
model, Baumol (1964) suggested considering a safety measure, which he called the
expected gain-confidence limit criterion,µ(x) − λσ(x) to be maximized instead of the
σ(x) minimization. Thus, on the basis of the above remarks, for each risk measure, it is
reasonable to also consider an alternative mean–safety bicriteria model:

max{[µ(x), µ(x) − �(x)] : x ∈ P}. (21)

The full set of risk and safety measures is presented in Table 2. Note that the MAD
model was first introduced (Konno & Yamazaki, 1991) with the risk measure of mean
absolute deviationδ(x) whereas the mean semideviationδ̄(x) we consider is half of it. This
is due to the fact that the resulting optimization models are equivalent and that the model
with the semideviation is more efficient (Speranza, 1993). For the MAD model, the safety
measure represents the mean downside underachievement. For them-MAD model the two
measures represent the mean penalized semideviation and the weighted sum of the mean
downside underachievements, respectively.

The Minimax model was considered and tested (Young, 1998) with the safety measure
of the worst realizationM(x) but it was also analysed with the maximum semideviation
∆(x) (Ogryczak, 2000). The CVaR model was considered with the safety measure of
the worst conditional expectation (Rockafellar & Uryasev, 2000) while the risk measure
represents the worst conditional semideviation. Yitzhaki (1982) introduced the GMD
model with the Gini mean differenceΓ (x) but healso analysed the model implementation
with the corresponding safety measure of the mean worse returnE{Rx ∧ Rx}.

As shown in the previous section, all the risk measures we consider may be derived
from the basic SSD shortfall criteria. However, they are quite different in their modelling
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of the downside risk aversion. Definitely, the strongest in this respect is the maximum
semideviation∆(x) used in the Minimax model. It is a strict worst case measure where
only the worst scenario is taken into account. The CVaR model allows one to extend the
analysis to a specifiedβ quantile of the worst returns. The measure of worst conditional
semideviation∆β(x) offers a continuum of models evolving from the strongest downside
risk aversion (β close to 0) to the complete risk neutrality (β = 1). The MAD model
with risk measured by the mean (downside) semideviation from the mean is formally a
downside risk model. However, due to the symmetry of mean semideviations from the
mean (Ogryczak & Ruszczyński, 1999), it is equally appropriate to interpret the MAD
model as an upside risk model. Actually, them-MAD model has been introduced to
incorporate downside risk modelling capabilities into the MAD model. The Gini mean
difference, although related to all the worst conditional semideviations, is similar to the
mean absolute deviation, a symmetric risk measure (in the sense that forRx and−Rx it
has exactly the same value).

Note that havingµ(x′) � µ(x′′) and�(x′) � �(x′′) with at least one inequality strict,
one getsµ(x′) − �(x′) > µ(x′′) − �(x′′). Hence, a portfolio dominated in the mean–
risk model (20) is also dominated in the corresponding mean–safety model (21). In other
words, the efficient portfolios of problem (21) form a subset of the entireµ/�-efficient set.
Due to the SSD consistency of the safety measures, except for portfolios with identical
mean and risk measure, every portfolio belonging to this subset is SSD efficient. Although
very important, the SSD efficiency is only a theoretical property. For specific types of
distributions or feasible sets the subset of portfolios with guaranteed SSD efficiency may
be larger (Ogryczak & Ruszczyński, 1999, 2002) than the corresponding mean–safety
efficient set. Hence, the mean–safety model (21) may be too restrictive in some practical
investment decisions.

3.2 Bicriteria portfolio selection

In order to compare on real-life data the performance of various mean–risk models, one
needs to deal with specific investor preferences expressed in the models. There are two
ways of modelling risk-averse preferences and therefore two major approaches to handle
bicriteria mean–risk problems (20). First, having assumed a trade-off coefficientλ between
the risk and the mean, the so-calledrisk aversion coefficient, one may directly compare real
valuesµ(x) − λ�(x) and find the best portfolio by solving the optimization problem

max{µ(x) − λ�(x) : x ∈ P}. (22)

Various positive values of parameterλ allow one to generate various efficient portfolios.
By solving the parametric problem (22) with changingλ > 0 one gets the so-calledcritical
line approach (Markowitz, 1959). Due to the convexity of risk measures�(x) with respect
to x, λ > 0 provides the parametrization of the entire set of theµ/�-efficient portfolios
(except of its two ends which are the limiting cases). Note that(1 − λ)µ(x) + λ(µ(x) −
�(x)) = µ(x) − λ�(x). Hence, bounded trade-off 0< λ � 1 in the mean–risk model (20)
corresponds to the complete weighting parametrization of the mean–safety model (21).
The critical line approach allows one to select an appropriate value of the risk aversion
coefficientλ and the corresponding optimal portfolio through a graphical analysis in the
mean–risk image space.
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Unfortunately, in practical investment situations, the risk aversion coefficient does
not provide a clear understanding of the investor preferences. The commonly accepted
approach to implementation of the mean–risk model is then based on the use of a specified
lower boundµ0 on expected returns which results in the following minimum risk bounded
problem:

min{�(x) : µ(x) � µ0, x ∈ P}. (23)

This bounding approach is widely accepted and provides a clear understanding of investor
preferences and a clear definition of solution portfolios to be used in the model comparison.
Therefore, we use the bounding approach (23) in our analysis.

Due to the convexity of risk measures�(x) with respect tox, by solving the parametric
problem (23) with changingµ0 ∈ [min j=1,...,n µ j , maxj=1,...,n µ j ] one gets various
efficient portfolios. Actually, the efficient frontier is bounded by theminimum risk portfolio
(MRP) defined as the solution of minx∈P �(x). Forµ0 smaller than the expected return of
the MRP, problem (23) always generates the MRP while larger values ofµ0 provide the
parametrization of theµ/�-efficient set as the optimal solution of the fixed return problem

min {�(x) : µ(x) = µ0, x ∈ P} (24)

which is then also an optimal solution to (23). This follows from the general properties of
a convex bicriteria minimization as shown in Theorem 1 (see Appendix) when applied to
f (x) = �(x).

As a complete parametrization of the entireµ/�-efficient set, the approach (23) also
generates portfolios belonging to the subset of efficient solutions of the corresponding
mean–safety problem (21). The latter correspond to larger values of boundµ0 as these
portfolios are bounded by themaximum safety portfolio (MSP), i.e. the solution to the
problem

max{µ(x) − �(x) : x ∈ P}. (25)

Note that, in contrast to the critical line approach, having a specified value of parameter
µ0 does not mean that one knows whether the optimal solution of (23) is also an efficient
portfolio with respect to the corresponding mean–safety model (21) or not. Therefore,
when using the bounding approach to the mean–risk models (20), essentially, we need to
consider explicitly a separate problem of the maximum safety under bounded return

max{µ(x) − �(x) : µ(x) � µ0, x ∈ P} (26)

for the corresponding mean–safety model (21). However, the solutions to the bounded
maximum safety problem (26) can be found by the analysis of the corresponding minimum
risk problem (23), provided that there is already known the MSP. Namely, ifµ0 �
µ(M S P), then the MSP is an optimal solution to (26). Whenµ0 � µ(M S P), then
according to Theorem 2 (see Appendix), the optimal solution of the corresponding problem
of risk minimization under fixed return (24) is the optimal solution to both bounded
problems: the corresponding minimum risk problem (23) and the maximum safety problem
(26).
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3.3 The LP models

We provide here the detailed LP formulations for all the models we have analysed. For
each type of model, the pair of problems (23) and (26) we have analysed can be stated as
the problem

max{αµ(x) − �(x) : µ(x) � µ0, x ∈ P} (27)

covering the minimization of risk measure�(x) (23) forα = 0 while forα = 1 it represents
the maximization of the corresponding safety measureµ(x)−�(x) (26). Both optimizations
are considered with a given lower bound on the expected returnµ(x) � µ0.

By definition, any model (27) contains the following linear constraints:

x ∈ P and z � µ0, (28)

where z is an unbounded variable representing the mean return of the portfoliox.
Further, all the models contain an equation defining the mean return and explicitly defined
realization of the portfolio return, i.e.

n∑
j=1

µ j x j − z = 0 and
n∑

j=1

r jt x j − yt = 0 for t = 1, . . . , T, (29)

where yt (t = 1, . . . , T ) are unbounded variables to represent the realizations of the
portfolio return under the scenariot . In addition to these common variables and constraints,
each model contains its specific linear constraints to define the risk or safety measure. Note
that, in order to use a more standard LP notation and to relate models of the same class, we
modify here the notation for some of the variables introduced in Section 2.
MAD and downside versions. The standard MAD model (Konno & Yamazaki, 1991),

when implemented with the mean semideviation as the risk measure (�(x) = δ̄(x)), leads
to the following LP problem:

maximize αz − z1

subject to (28)–(29) and

z1 −
T∑

t=1

pt d1t = 0, (30)

d1t − z + yt � 0, d1t � 0 for t = 1, . . . , T, (31)

where non-negative variablesd1t represent downside deviations from the mean under
several scenariost andz1 is a variable to represent the mean semideviation itself. The latter
can be omitted by using the direct formula for mean semideviation in the objective function
instead of (30). The above LP formulation usesT + 1 variables andT + 1 constraints to
model the mean semideviation.

In them-MAD model (Michalowski & Ogryczak, 2001) constraints of type (30)–(31)
have to be repeated for each penalty levelk = 2, . . . , m. This results in the following
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problem:

maximize αz − z1 −
m∑

k=2

wk zk

subject to (28)–(29), (30)–(31) and fork = 2, . . . , m :

zk −
T∑

t=1

pt dkt = 0,

dkt − z +
k−1∑
i=1

zi + yt � 0, dkt � 0 for t = 1, . . . , T .

This results in an LP formulation that usesm(T + 1) variables andm(T + 1) constraints
to model them-level penalized mean semideviation.
Minimax and the worst conditional expectation. For any 0< β < 1 the CVaR model
(Rockafellar & Uryasev, 2000) with�(x) = ∆β(x) may be implemented as the following
LP problem (the variablesd+

t which appear in (17) have been substituted in the objective
function):

maximize y − (1 − α)z − 1

β

T∑
t=1

pt dt

subject to (28)–(29) and dt − y + yt � 0, dt � 0 for t = 1, . . . , T .

Recall that the optimal value ofy represents the value ofβ-quantile.T + 1 variables and
T constraints are used here to model the worst conditional semideviation.

As the limiting case whenβ tends to 0 one gets the standard Minimax model (Young,
1998). The latter may be additionally simplified by dropping the explicit use of the
deviational variables:

maximize y − (1 − α)z

subject to (28)–(29) and yt − y � 0 for t = 1, . . . , T,

thus resulting inT constraints and a single variable used to model the maximum
semideviation.
Gini mean difference. The model with risk measured by Gini mean difference (�(x) =
Γ (x)) (Yitzhaki, 1982), due to the relationΓ (x) = µ(x)−E{Rx∧Rx}, may be implemented
as follows:

maximize (α − 1)z +
T∑

t=1

p2
t yt + 2

T −1∑
t ′=1

T∑
t ′′=t ′+1

pt ′ pt ′′ut ′t ′′

subject to (28)–(29) and

ut ′t ′′ � yt ′ , ut ′t ′′ � yt ′′ for t ′ = 1, . . . , T − 1; t ′′ = t ′ + 1, . . . , T,

whereut ′t ′′ are unbounded variables to represent min{yt ′ , yt ′′ }. The above LP formulation
usesT (T − 1)/2 variables andT (T − 1) constraints to model the Gini mean difference.
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The direct formulation of the GMD model according to (18) takes the form

maximize αz −
T∑

t ′=1

∑
t ′′ 	=t ′

pt ′ pt ′′dt ′t ′′

subject to (28)–(29) anddt ′t ′′ � yt ′ − yt ′′ , dt ′t ′′ � 0 for t ′, t ′′ = 1, . . . , T ; t ′′ 	= t ′,

which containsT (T − 1) non-negative variablesdt ′t ′′ andT (T − 1) inequalities to define
them. The symmetry propertydt ′t ′′ = dt ′′t ′ is here ignored and, therefore, the number of
variables is doubled in comparison to the previous model. However, variablesdt ′t ′′ are
associated with the singleton coefficient columns. Hence, while solving the dual instead
of the original primal, the corresponding dual constraints take the form of simple upper
bounds (SUB) (Nazareth, 1987) which are handled implicitly outside the LP matrix. In
other words, the dual containsT (T −1) variables but the number of constraints (excluding
the SUB structure) is then proportional toT . Such a dual approach may dramatically
improve the LP model efficiency in the case of large number of scenarios.

4. Computational results

4.1 Testing environment

This section is devoted to a comprehensive analysis and comparison of all the discussed
models in a real-life decision environment. In particular, we have compared the practical
performance of the models using datasets from Milan Stock Exchange. Tests have been
conducted on a PC with the Pentium 200 MHz processor by using the CPLEX 6.5 package
(ILOG Inc., 1997). The Barrier solver of CPLEX has been applied to the quadratic
programs resulting from the Markowitz model. Below, firstly we describe the analytical
framework of the experiments. Secondly, we present and discuss the results of an in-sample
analysis, and, thirdly, we provide an extensive out-of-sample comparison of the models.
Due to the large number of solved instances, we have summarized and commented only
the main results.

Since the measure of conditional maximum semideviation∆β(x) offers a continuum of
models evolving from the strongest downside risk aversion (β close to 0) to the complete
risk neutrality (β = 1), some decisions need to be taken on these parameter values. We
have decided to consider two different values, i.e.β = 0·1 and 0·5, in order to compare
the corresponding CVaR models versus the standard Minimax and the other models. From
now on, we will refer to such models as CVaR(0·1) and CVaR(0·5), respectively. Note
that β = 0·5 corresponds to the median and, therefore, the two analysed CVaR models
can be considered as downside risk models. The mean penalized semideviationδ̄(m)(x)

of the m-MAD model is defined by the number of penalty levelsm and by the weights
1 � w2 � . . . wm > 0. The latter may be simplified by the use of a single parameter
0 < a � 1 and the power sequencewk = ak−1 for k = 2, . . . , m. Largerm (or largera)
implies larger downside risk aversion, whilea approaching 0 (or simplym = 1) reduces
them-MAD to the standard MAD model. In particular, whena = 1 andm tends to infinity
the Minimax model (maximum semideviation) is obtained as the limiting case. In order to
compare them-MAD model versus the standard MAD, the selected CVaR models and the
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Minimax rule, we have considered the following parameter values:m = 2, while a = 1
anda = 0·4. We will identify these models as 2-MAD(1) and 2-MAD(0·4), respectively.

We have prepared four sets of data, consisting of the rates of return of different sets of
stocks over periods of about 104 weeks (2 years). Historical realizations have been derived
from the stock index prices as listed in the Milan Stock Exchange. In-sample datasets are
as follows:

Period A (1994–95): 103 weekly observations and 209 securities available;

Period B (1995–96): 104 weekly observations and 220 securities available;

Period C (1996–97): 105 weekly observations and 235 securities available;

Period D (1997–98): 105 weekly observations and 246 securities available.

The choice of a weekly periodicity for the rates of return is consistent with the
requirement of having a large historical sample to reduce estimation errors (see Simaan,
1997). The same number of realizations, but with monthly rates of return, would have
implied, for each set, a historical period longer than 8 years. The rates of return have
been computed as relative variations of the pricesPjt , i.e. r jt = (Pj,t+1 − Pjt )/Pjt ; no
dividends have been taken into account. Results are reported with annualized returns.

The number of securities available in each in-sample dataset is different, since the
number of securities quoted with continuity on the market varies according to the period
taken into account. Each security has to meet predefined BSE (Board Stock Exchange)
standards to be quoted with continuity on the market. It is worth noticing that, over the
four periods, more than 90% of the available securities have been suspended at least once
and usually for not less than one week.

Each dataset, corresponding to one of the periods from A to D, has been used to find
the mean–risk/safety portfolios through the solution of all the described models including
that of Markowitz. The target weekly required return has been set to seven different
values (corresponding to the yearly rates 5, 7·5, 10, 12·5, 15, 17·5 and 20%, respectively).
Moreover, for each period and model, the MRP and MSP have been computed. The ex-post
behaviour of all the selected portfolios has been examined out-of-sample at the end of the
12 month investment periods following the portfolios selection date (the last date of the
corresponding in-sample period).

The objective of this section is to provide (when possible) experimental evidence of
what has been discussed from a theoretical point of view.

One may expect that some models will show a more aggressive behaviour, typically
providing larger returns and lower diversification. This is indeed one of the main results
from our computational analysis: while MAD and Markowitz might be classified as the
most ‘risk seeking’ models, Minimax and CVaR(0·1) are the most ‘risk averse’ providing
portfolios with a stable diversification and lower returns.

4.2 In-sample analysis

For each dataset and each level of required rate of return, we have solved all the LP
problems defined in Section 3.3 and the Markowitz (mean–variance) model. As an example
of information one can get from the analysis of the optimal portfolio selected by a given
model, we show Table 3 representing the findings for the Minimax model over Period
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TABLE 3 Minimax model—Period A: optimal portfolios characteristics

Min. risk models (α = 0) Max. safety models (α = 1)
µ0 obj. z div. shares obj. z div. shares
% 10−2 % # min max 10−3 % # min max
— −0·972 1·08 27 2·30 10−5 0·138 −8·804 8·34 25 4·51 10−4 0·129

5·0 −0·989 5·00 28 9·92 10−4 0·122 −8·804 8·34 25 4·51 10−4 0·129
7·5 −1·021 7·50 27 4·53 10−4 0·127 −8·804 8·34 25 4·51 10−4 0·129

10·0 −1·065 10·0 25 2·61 10−4 0·109 −8·817 10·0 25 2·61 10−4 0·109
12·5 −1·111 12·5 26 7·13 10−4 0·109 −8·840 12·5 26 7·13 10−4 0·109
15·0 −1·156 15·0 26 6·14 10−4 0·106 −8·864 15·0 26 6·14 10−4 0·106
17·5 −1·200 17·5 26 1·57 10−3 0·102 −8·891 17·5 26 1·57 10−3 0·102
20·0 −1·243 20·0 27 4·19 10−4 0·102 −8·917 20·0 27 4·19 10−4 0·102

A. Table 3 is divided into two parts: the first corresponds to the problem formulated as
minimization of the risk measure (α = 0), while the second refers to the maximization of
the corresponding safety measure (α = 1). Each part consists of five columns showing:
the objective function value (obj.), the portfolio per cent average return (z), the portfolio
diversification (div.) represented by the number of selected securities, and the minimum
and the maximum share within the portfolio, respectively. The average return is reported
as converted onto a yearly basis (e.g.z = 8·34% per year is equivalent to a mean return of
0·1542% per week). Each row of the table corresponds to a level of the required return (µ0).
The first row refers to the MRP and to the MSP, respectively (no required return bound).
Recall that, for a bound on the expected return larger than the MRP (equal to 1·08% per
year), the mean–risk model provides the complete parametrization of theµ/ρ-efficient
set. The latter includes the portfolios belonging to the subset of the efficient solutions of
the corresponding mean–safety problem, i.e. the portfolios with required return exceeding
the mean return of the MSP (8·34% per year), as proven in Section 3.2. The full set of
tables for all the models in the four periods, along with extensive details on the in-sample
computational results, can be found in Mansiniet al. (2002).

In Period A (see Table 3) the Minimax model shows a small gap between the return
of the MRP and that of the MSP. However, this is not always the case. Table 4 shows
the mean returns of the MRP and the MSP, respectively, in the four periods for all the
models. The symbol ‘**’ means that the mean return is larger than 10 000% per year.
Such large values may be caused by low diversified portfolios, the securities of which
have dramatically large weekly mean returns (sometimes close to 100%) over the period.
Usually, large weekly rates of return are a direct outcome of a stock quotation suspension
for excessive price increase: when newly admitted to quotation, the price of a security may
be drastically higher than its last quotation. For instance, the MSP for the MAD model
in Period A consists of only three securities (namely, Bintermo, Saiag and Simint) and it
returns 17·47% per week, which is greater than 40 000% on a yearly basis. This is due
to stock Simint, the average weekly return of which, over Period A, is about 94·25%.
This security price during the period 1994–95 moved from a minimum of 0·0054€ to a
maximum of 1·54 €. Simint’s quotation was suspended several times in Period A, and in
one case for more than two weeks. Similarly, the 2063·7% yearly return for the model
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TABLE 4 MRP and MSP mean returns over the four periods (in %)

Period A Period B Period C Period D
MRP MSP MRP MSP MRP MSP MRP MSP

Minimax 1·08 8·34 1·60 12·59 10·41 26·17 34·51 51·93
MAD 6·31 ** 1·21 ** 8·93 301·22 27·39 555·50
2-MAD(0·4) 6·65 2063·7 1·18 ** 9·39 257·27 30·34 222·97
2-MAD(1) 5·88 510·63 1·32 343·86 10·86 166·09 28·22 110·09
GMD 0·00 76·44 0·00 427·97 0·00 61·45 8·79 104·25
CVaR(0·1) 3·92 8·29 1·60 12·59 10·41 27·36 35·28 48·35
CVaR(0·5) 6·75 16·06 1·16 101·70 9·10 45·95 27·48 73·65
Markowitz 3·07 344·65 1·39 297·34 8·89 292·05 27·44 409·30

2-MAD(0·4) in period A stems from the high return of the same security. Through the
analysis of Table 4 some conclusions on market trend can also be drawn: the MRP return
tends to increase over time, being lower than 7% for all the models in Period A and being
always larger than 27% (except for GMD) in Period D.

In the following, for the sake of simplicity, we summarize the main figures available
for all the selected portfolios.

Table 5 shows, for all the models and all the time periods, the diversification of the
optimal portfolios obtained for various required rates of return. For instance, in Period A
with α = 0, the number of selected securities for the Minimax model ranges between
25 and 28 securities, while withα = 1 the corresponding range is 25–27. The number
of selected securities only takes into account the stocks with a share larger than or
equal to 10−6. On average, we have observed that, when the required return increases,
the diversification decreases (with the lowest diversification achieved by the MSP). The
Markowitz model provides the ranges with the largest upper limits but it may also result
in extremely low diversified portfolios (lower limits from 3 to 5). Some other models (like
Minimax and CVaR(0·1)) have larger lower limits showing a more stable diversification.
The single security portfolio in Period B for the model CVaR(0·5) corresponds to the MRP
and represents an exception, with respect to the diversification, when compared to the
portfolios selected by the same model in the remaining three periods. By comparing Table 4
with Table 5 we can conclude that both the MAD and the Markowitz models generate the
corresponding MSP with the largest mean return but with the lowest diversification.

Table 6 shows the ranges for the minimum and the maximum share held by stocks
for each model in the four periods whenα = 0 andα = 1, respectively. Notice that the
minimum shares are scaled with 10−4, while the maximum ones are scaled with 10−2

(i.e. expressed in %). On average, efficient portfolios with respect to the mean–safety
measures consist of securities with larger minimum share. This is not always the case for
the securities with maximum share. Moreover, the Markowitz model and MAD seem to be
the models which generate more frequently portfolios with a huge maximum share. This
is the case for all the four periods, if we exclude Period B. This suggests that these models
might require the introduction of artificial bounding on the maximum share to guarantee a
necessary diversification.

In order to compare the structure of the various portfolios, we have analysed the ranking
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TABLE 5 Diversification of optimal portfolios

Min. risk models (α = 0) Max. safety models (α = 1)
A B C D A B C D

Minimax 25–28 38–44 41–46 20–21 25–27 38–40 41 20
MAD 3–37 2–50 12–42 9–33 3 2 12 9
2-MAD(0·4) 9–36 6–51 15–45 17–30 9 6 15 17
2-MAD(1) 21–38 24–50 31–46 21–33 21 24 31 21
GMD 28–35 29–41 35–48 19–30 28 29 35 21
CVaR(0·1) 30–34 38–44 41–46 19–21 30–31 38–40 44 19
CVaR(0·5) 33–38 1–39 37–46 25–34 33 37 37 25
Markowitz 5–37 5–63 3–63 4–34 5 5 3 4

TABLE 6 Minimum and maximum shares over the four periods

Period A Period B Period C Period D
Min Max Min Max Min Max Min Max

×10−4 ×10−2 ×10−4 ×10−2 ×10−4 ×10−2 ×10−4 ×10−2

α = 0
Minimax 0·23–15·7 10·2–13·8 0·11–11·8 12·3–13·6 1·94–12·2 17·8–19·6 6·28 11·7
MAD 0·07–85·4 12·4–81·9 0·10–690 16·3–93·7 0·46–65·0 24·9–32·6 4·99 26·3
2-MAD(0·4) 0·01–34·0 12·4–32·9 0·06–159 16·2–94·3 0·15–31·2 24·1–28·2 0·58 18·5
2-MAD(1) 0·82–19·3 11·8–15·8 0·10–20·8 17·7–92·3 0·60–18·3 18·3–27·3 4·16 20·2
GMD 0·11–6·27 10·2–15·2 0·07–8·31 13·0–91·9 0·11–12·3 8·70–28·9 2·08–102 10·6–26·7
CVaR(0·1) 0·52–66·5 9·4–11·5 0·11–11·8 12·3–13·6 0·44–12·2 15·8–19·5 55·7 13·7
CVaR(0·5) 0·11–1·68 12·3–17·0 0·44–104 15·2–100 0·28–11·6 7·30–31·9 0·39 21·5
Markowitz 0·01–101 13·8–80·9 0·01–102 13·1–54·1 0·01–0·09 23·0–88·4 0·01–507 20·5–76·2
α = 1
Minimax 2·61–15·7 10·2–12·9 0·11–11·8 12·3–13·6 2·30 17·8 1·51 12·5
MAD 85·4 81·9 690 93·1 65·0 28·1 2·40 35·4
2-MAD(0·4) 34·0 32·9 159 31·6 31·2 25·0 6·21 17·8
2-MAD(1) 19·3 14·2 20·8 17·9 0·60 18·3 3·01 12·1
GMD 6·27 11·8 8·31 14·9 5·80 8·70 42·5 10·6
CVaR(0·1) 0·70–15·5 10·3–10·7 0·11–11·8 12·3–13·6 0·44 15·8 50·5 11·5
CVaR(0·5) 0·82–1·18 12·3–12·5 1·59 15·2 11·6 7·30 28·6 12·0
Markowitz 101 80·9 102 54·1 0·09 88·4 507 76·2

of the securities which have been selected the most. Table 7 shows the ranking of the first
four securities with the largest share in the portfolios selected by the different models over
Period A, when the required return is set to 17·5% per year. In each cell the name of the
security and its share are given.

Similar tables have been built for the remaining three periods and for different levels of
the required rates of return. The ranking of the securities selected by a specific model may
vary for different levels of the required return, even within the same period. Nevertheless,
some core of the top ranked securities remains quite stable. For instance, with respect
to Period A, whenα = 0 and for all the required rates of return, the maximum share
security selected by the Minimax model is always Bpcomin. The only exception is for
µ0 = 20%; in such case the maximum share is held by Poligraf. As far as the MAD
model is concerned, the maximum share security is Bayer forµ0 = 17·5% while in all
the other cases it is Bpcomin, and similarly for the models 2-MAD(0·4), 2-MAD(0·1) and
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TABLE 7 Ranking of the first four securities over Period A; required return 17·5% per year

Security 1 Security 2 Security 3 Security 4
Minimax Bpcomin (0·102) Poligraf (0·101) Pininfrr (0·0956) Cbarlett (0·0809)
MAD Bayer (0·128) Bpcomin (0·110) Cbarlett (0·0974) Bpintra (0·0711)
2-MAD(0·4) Bayer (0·130) Bpcomin (0·106) Cbarlett (0·099) Bpintra (0·0822)
2-MAD(1) Cbarlett (0·119) Bayer (0·099) Bpcomin (0·098) Bpintra (0·076)
GMD Bayer (0·111) Bpcomin (0·110) Cbarlett (0·090) Bpintra (0·084)
CVaR(0·1) Bpcomin (0·105) Cbarlett (0·104) Bplodi (0·077) Poligraf (0·073)
CVaR(0·5) Bayer (0·124) Cbarlett (0·111) Bpcomin (0·095) Premudar(0·062)
Markowitz Bayer (0·141) Crvaltel (0·096) Bpintra (0·082) Saesgetp(0·076)

TABLE 8 Ranking of the four top securities over Period A; required return
17·5% per year

Bayer Cbarlett Bpcomin Poligraf
Minimax no 0·089 (4) 0·102 (1) 0·101 (2)
MAD 0·128 (1) 0·0974 (3) 0·110 (2) 0·018 (18)
2-MAD(0·4) 0·130 (1) 0·099 (3) 0·106 (2) 0·022 (15)
2-MAD(1) 0·098 (2) 0·119 (1) 0·098 (3) 0·031 (12)
GMD 0·111 (1) 0·09 (3) 0·11 (2) 0·0314 (13)
CVaR(0·1) 0·0487 (10) 0·104 (2) 0·105 (1) 0·073 (4)
CVaR(0·5) 0·124 (1) 0·111 (2) 0·095 (3) 0·0197 (16)
Markowitz 0·141 (1) 0·0325 (13) 0·0578 (7) 0·0579 (6)

CVaR(0·5). In 2-MAD(0·1) Cbarlett is the first security only for portfolios withµ0 � 15%,
while in CVaR(0·5) Bpcomin is the maximum share security forµ0 � 12·5%. For all these
models, one of the last ranked securities is Simint. This security has a large mean return
over Period A, thus also a small investment may imply a large share of the total portfolio
return. In the MSP for the model 2-MAD(1), Simint is ranked at the 11th position, but
it is responsible for 81·92% of the total porfolio return. In the portfolio selected by the
GMD model the maximum share security is Bpintra whenα = 1 and Bayer or Bpcomin,
depending on the bound on the expected return, whenα = 0. The model CVaR(0·1)
generates, on average, portfolios very similar to those selected by the Minimax model.
Finally, portfolios selected by the Markowitz model usually contain a large number of
securities with small shares; such securities often cause marginal contributions to the
portfolio return. For all the required levels of the rate of return, the Markowitz model
chooses Bayer as the first security. In Table 8 we analyse the portfolio position (ranking)
of the four securities (namely, Bayer, Cbarlett, Bpcomin and Poligraf) with the largest share
out of all the portfolios selected by the different models in Period A for a required return
equal to 17·5% per year. The value of the share and the ranking position of the security
(if selected) in each portfolio are given. According to Table 8 we can conclude that, with
respect to the three most important securities in the portfolio ranking, the models tend to
produce similar results. These three top securities cover, however, only about 30% of the
total investment.



LP SOLVABLE MODELS FOR PORTFOLIO OPTIMIZATION 211

(a) (b)

FIG. 3. Period A - Efficient frontiers for the MAD-type models.

As an additional insight in models comparison, the efficient frontiers, found by the
models over the different periods, can be analysed. In particular, it may be interesting to
compare the efficient frontiers obtained by the different models in the same period. In this
case the analysis strictly depends on the mean/risk space used to compare the models. With
respect to Period A, Fig. 3 shows the efficient frontiers for the models MAD, 2-MAD(1)
and 2-MAD(0·4), respectively. In particular, panel (a) of the figure represents the frontiers
in the space mean/2-MAD(1), while panel (b) represents those in the space mean/MAD.

For each frontier we have plotted the sequence of points corresponding to the portfolios
selected by each model for the seven target required rates of return. Since in Fig. 3(a) the
frontiers are represented in the mean/2-MAD(1) space, in order to plot the frontier for the
MAD model it has been necessary to compute the value of the 2-level penalized mean
semideviationz2. For the model 2-MAD(0·4), we have simply summed up the values of
z1 and z2 already available. On the other hand, in Fig. 3(b) the frontiers for the models
2-MAD(1) and 2-MAD(0·4) have been represented by plotting only theirz1 value (i.e. the
mean absolute semideviation) as a component of the risk. Notice that the relative position
of the frontiers in the two figures is reversed. Hence, the relative position of the different
frontiers may be misleading in terms of models comparison.

4.3 Out-of-sample analysis

In a real-life environment, model comparisons is usually done by means of ex-post
analysis. Several approaches can be used in order to compare models. One of the most
commonly applied methods is based on the representation of the ex-post returns of the
selected portfolios over a given period and on their comparison against a required level
of the return. Unfortunately, the portfolio performances are usually affected by the market
trend which makes it very difficult to draw some uniform conclusions. This can be easily
seen by comparing the behaviour of the portfolios selected by the same model over the
different periods. As an example we show in Figs 4 and 5 the out-of-sample behaviour
of the portfolios selected by the different mean–risk models (α = 0) with the required
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FIG. 4. Ex-post portfolios performances: Period C, required return 17·5% andα = 0.

return 17·5% per year in Periods C and D, respectively. In order to take into account the
overall market performance, in the two figures the Milan Stock Market Index (MIB30)
has been added. This index consists of the 30 most important securities (so-called Blue
Chips) quoted at Milan Stock Exchange. Notice that, in both the periods, it may occur that
the returns of the selected portfolios are lower than the required level and that it usually
happens when the whole market has a negative trend. By comparing the two figures it
emerges that, depending on the period, the models may generate portfolios performing
very similarly (Period C) or very differently (Period D). In particular, in Period D, it is
evident that Minimax and CVaR(0·1) are the unique models which provide highly positive
returns when the market index is decreasing, thus confirming their extreme modelling of
the downside risk aversion.

Certainly, the models have been applied directly to the original historical data treated
as future returns scenarios thus losing the trend information. Possible application of some
forecasting procedures prior to the portfolio optimization models, we consider, seems to
be an interesting direction for future research. For references on scenarios generation see
Carino et al. (1998), while on index tracking applications of optimization models see
Worzelet al. (1994); Consiglio & Zenios (2001); Jobst & Zenios (2003).

We have decided to use some performance criteria to compare different models in
the out-of-sample period. For this purpose, we have computed the following nine ex-post
parameters:

• the number of times the mean portfolio return is above the required one (symbol #);

• the minimum, average and maximum portfolio return (rmin, rav andrmax, respectively);

• the standard deviation (std) and the semi-standard deviation (s-std);

• the mean absolute deviation (MAD) and the mean downside semideviation (s-MAD);

• the maximum downside deviation (D-DEV).
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FIG. 5. Ex-post portfolios performances: Period D, required return 17·5% andα = 0.

The minimum, maximum and average ex-post portfolio returns have been converted from
a monthly to yearly basis. All the dispersion measures (std, s-std, MAD, s-MAD and D-
DEV) have been computed with respect to a given target return, thus allowing their direct
comparison in the different models. Actually, we focus our analysis on the case of 17·5%
target (yearly) return.

In Tables 9–11 we present the average value of each criterion, over the four periods,
for several models. In each table we also add a line for the MIB30. This allows a direct
comparison of the market index performance with that of the portfolios selected by the
other models.

Table 9 shows the ex-post average performances of the optimal portfolios for the
corresponding risk minimization models (α = 0) with the required return equal to 17·5%.
Similarly, Table 10 presents those of the portfolios selected by the models when the
required return is equal to 10% per year, and Table 11 those for the MSPs. Recall that
all three tables share a common required return level, equal to 17·5%, used as a target
return for the ex-post dispersion measures.

Let us start with the analysis of the MIB30 performance. In Tables 9 and 10 the MIB30
index has an average return larger than that of all the other portfolios; at the same time the
minimum return is very low and the dispersion measures are impressively larger than those
of the other models. While in Table 9 the MIB30 maximum return is the largest, in Table
10 the models MAD, 2-MAD(0·4) and CVaR(0·5) show larger values for such parameter.

In Table 11 the models MAD and 2-MAD(0·4) have an average return larger than
the MIB30, but show dispersion measures (s-std, s-MAD and D-DEV) similar in value
to those of the MIB30. In general, the MIB30 is the most unstable portfolio with the
largest downside deviation. We can easily conclude that any model is preferable to a direct
investment in the market index.

Table 9 shows that for all the models the average portfolio returns exceed the required
level of 17·5% per year. Exactly, the average returns are varying from 22·46% for the
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TABLE 9 Ex-post criteria average values: required return equal to 17·5% and α = 0

# rmin rav rmax std s-std MAD s-MAD D-DEV
Minimax 5·75 −96·39% 23·93% 271·02% 0·0466 0·0281 0·0385 0·0173 0·0649
MAD 5·5 −77·29% 29·63% 340·91% 0·0477 0·0243 0·0366 0·0144 0·0553
2-MAD(0·4) 5·75 −78·23% 28·41% 341·89% 0·0470 0·0243 0·0365 0·0148 0·0572
2-MAD(1) 6 −77·56% 24·37% 363·28% 0·0431 0·0241 0·0336 0·0146 0·0571
GMD 5·75 −76·47% 24·77% 315·29% 0·0424 0·0241 0·0336 0·0145 0·0567
CVaR(0·1) 5·5 −92·42% 22·46% 277·66% 0·0455 0·0277 0·0362 0·0166 0·0628
CVaR(0·5) 6 −78·70% 26·30% 357·98% 0·0456 0·0242 0·0352 0·0147 0·0559
Markowitz 6 −74·31% 27·02% 337·48% 0·0446 0·0233 0·0341 0·0140 0·0550
MIB30 6·75 −192·21% 35·50% 583·21% 0·0728 0·0419 0·0585 0·0234 0·1027

TABLE 10 Ex-post criteria average values: required return equal to 10% and α = 0

# rmin rav rmax std s-std MAD s-MAD D-DEV
Minimax 6 −84·05% 27·75% 334·19% 0·0483 0·0275 0·0398 0·0168 0·0616
MAD 5·25 −66·23% 35·00% 687·13% 0·0569 0·0230 0·0391 0·0142 0·0512
2-MAD(0·4) 5·75 −74·09% 36·03% 701·71% 0·0578 0·0232 0·0392 0·0139 0·0550
2-MAD(1) 5·75 −66·57% 30·24% 487·45% 0·0509 0·0233 0·0361 0·0141 0·0523
GMD 5·5 −79·14% 29·47% 386·20% 0·0497 0·0248 0·0370 0·0149 0·0587
CVaR(0·1) 6 −80·83% 26·07% 340·05% 0·0473 0·0272 0·0376 0·0162 0·0599
CVaR(0·5) 5·75 −66·88% 35·20% 611·25% 0·0550 0·0229 0·0385 0·0138 0·0515
Markowitz 5·75 −73·31% 32·96% 412·81% 0·0517 0·0238 0·0383 0·0144 0·0543
MIB30 6·75 −192·21% 35·50% 583·21% 0·0728 0·0419 0·0585 0·0234 0·1027

CVaR(0·1) model to 29·63% for the MAD model. In contrast to what one might expect the
results obtained for models solved with the required return equal to 10% per year (Table 10)
turn out to be better than those with 17·5% per year. Portfolios average returns over the four
periods for all the models in Table 10 are larger (from 26·07% for CVaR(0·1) to 36·03%
for 2-MAD(0·4)) than those in Table 9. Similarly, with respect to the average minimum
and maximum returns the portfolios built with the required return 10% outperform those
found for 17·5%. Moreover, downside dispersion measures are, on average, lower in Table
10 than in Table 9 (both computed with respect to the target return 17·5%). Although, if we
count the number of times (on average) the portfolio return is higher than the target return,
then the results in Table 9 are better than Table 10 with the only exceptions of the Minimax
and CVaR(0·1) portfolios. In conclusion, the above observations suggest that the required
return (boundµ0) may not be the best way to control ex-post performance.

The better ex-post performances of the portfolios built with a relaxed bound on
the required return (see Table 11) suggest possible advantages of the maximum safety
portfolios. The latter are built with the expected return maximized as a part of the objective
function rather than bounded by a strict constraint. Indeed, for MAD, 2-MAD(0·4) and
the Markowitz models, ex-post average returns of the MSPs (Table 11) are even higher
than the corresponding performances of the portfolios found with the required return of
10% (Table 10). On the other hand, for the Minimax, CVaR and GMD models, the average
returns of the MSPs are worse than those of the portfolios built with the required return



LP SOLVABLE MODELS FOR PORTFOLIO OPTIMIZATION 215

TABLE 11 Ex-post criteria average values: MSPs

# rmin rav rmax std s-std MAD s-MAD D-DEV
Minimax 5 −99·09% 17·18% 244·82% 0·0456 0·0305 0·0380 0·0194 0·0658
MAD 7·5 −244·02% 75·03% 1947·24% 0·0974 0·0420 0·0756 0·0221 0·1088
2-MAD(0·4) 6·5 −159·14% 40·84% 1084·85% 0·0726 0·0361 0·0541 0·0200 0·0885
2-MAD(1) 6 −115·47% 25·53% 527·25% 0·0550 0·0308 0·0414 0·0181 0·0730
GMD 6 −114·13% 21·82% 303·09% 0·0464 0·0280 0·0358 0·0166 0·0706
CVaR(0·1) 5 −97·38% 18·34% 231·75% 0·0459 0·0301 0·0385 0·0191 0·0648
CVaR(0·5) 6·25 −86·87% 25·76% 320·68% 0·0457 0·0254 0·0346 0·0146 0·0612
Markowitz 6·5 −526·37% 33·53% 714·77% 0·0923 0·0587 0·0751 0·0326 0·1567
MIB30 6·75 −192·21% 35·50% 583·21% 0·0728 0·0419 0·0585 0·0234 0·1027

TABLE 12 Best performance: required return equal to 17·5% per year and α = 0

# rmin rav rmax std s-std MAD s-MAD D-DEV
Minimax 1 (D) 1 (D) 1 (C) 1 (C)
MAD 1 (B) 1 (D) 1 (C) 1 (B) 1 (A) 1 (D)
2-MAD(0·4) 1 (B) 1 (D) 1 (D)
2-MAD(1) 2 (B,D) 1 (A) 1 (D)
GMD 1 (B) 2 (B,C) 2 (B,D) 1 (C) 2 (B,C)
CVaR(0·1) 1 (D) 1 (A) 1 (A) 1 (A) 1 (A)
CVaR(0·5) 1 (B)
Markowitz 1 (B) 2 (B,C) 1 (B)
MIB30 3 (A,B,C) 2 (A,B) 4

equal to 17·5% (Table 9). The MSPs, on average, are characterized by a larger gap between
minimum and maximum return as well as larger downside dispersion measures when
compared to the portfolios built with the required return equal to 10 or 17·5%. Moreover,
the MSPs with the largest average and maximum returns (for the Markowitz, MAD and
2-MAD(0·4) models) are simultaneously characterized by the largest downside deviations,
thus generating very unstable results.

Finally, to compare the behaviour of the different models forα = 0 and the required
return equal to 17·5% per year, in Table 12 we show the number of times, out of the four
periods, a given model has found the best performance for each parameter used in the ex-
post comparison. The corresponding periods in which the result was achieved are given in
parentheses. For instance, the Minimax model found a portfolio with the largest average
return only once in Period D. In the first column the total number of entries is greater than
four since the highest average value for the corresponding parameter is equally reached by
different models in the same period. Notice that the MIB30 index has always the largest
maximum return and in two out of four periods also the best average return, however in no
periods does it succeed in minimizing a measure of dispersion.

Table 12 can be used as a valid means for ex-post model comparison and may represent
a useful tool as support for investors’ decisions. Similar results are also available for other
levels of the required rate of return.
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Concluding remarks

The classical Markowitz model uses variance as the risk measure, thus resulting in
a quadratic optimization problem. Several alternative risk measures were introduced
thereafter which are computationally attractive as (for discrete random variables) they
result in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have to
meet numerous side constraints and take into account transaction costs. A gamut of LP
solvable portfolio optimization models has been presented in the literature thus generating
aneed for their classification and comparison. In this paper we have provided a systematic
overview of these models with a wide discussion of their theoretical properties. We have
shown that all the risk measures used in the LP solvable models can be derived from the
basic SSD shortfall criteria. This has allowed us to classify the models with respect to the
use of risk measures or the corresponding safety measures.

Theoretical properties, although crucial for understanding the modelling concepts,
provide only a very limited background for comparison of the final optimization models.
Computational results are known only for individual models and not all the models
have been tested in a real-life decision environment. The second part of this paper has
presented a comprehensive experimental study comparing practical performances of the
LP solvable portfolio optimization models on real-life stock market data. The efficient
frontiers representation is mainly useful for evaluating a portfolio’s relative position in a
given mean/risk space and not for direct model comparison. Therefore, the experimental
analysis has focused on average properties and performances of the models. This allows us
to draw several interesting conclusions, some of which may deserve further research.

First of all, our analysis has shown that although the LP solvable models allow one
to avoid multiple marginal shares within the optimal portfolio, they usually provide a
reasonable diversification. Actually, for various datasets and varying values of the required
return bound, our experiments show that many of the LP solvable models provide a more
stable diversification than that given by the Markowitz model (see Table 5). In terms
of average ex-post performances (Tables 9–11), the MAD type models, similar to the
Markowitz one, generate the portfolios with the largest returns but also entailing the
largest risk of underachievement (expressed with various downside measures). On the
other hand, the GMD and CVaR(0·5) models demonstrate quite good average returns with
relatively low risk of underachievement. This suggests further detailed research on a proper
parameter selection within the CVaR and them-MAD models. One may also try to take
advantage of the LP models’ simplicity by combining the risk criteria of different models
to achieve better overall performances.

Further, our analysis shows that a historical period may affect average returns and that
all the models (including the Markowitz one) are preferable to a direct investment in the
market index. Moreover, the level of the required return does not seem to represent the best
way to control ex-post performances, as a lower level may result in higher achievements
(Tables 9 and 10). Therefore, the LP solvable models as well as all the mean–risk models,
deserve further work on their operational implementations to improve their capabilities to
adjust to the investor’s preferences and to control effectively the portfolio performances.
In our experiments, the models have been applied directly to the original historical data
treated as equally probable scenarios of the future return while possible application of
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some scenario generation procedures (see Carinoet al., 1998; Klaassen, 1998; Zenios &
McKendall, 1993; Mulveyet al., 2000; Jobst & Zenios, 2004) seems to be a necessary first
step toward the operational implementations. Note that the LP solvable models themselves
allow one to consider scenarios with different probabilities although the experiments have
been limited to the equally probable scenarios. Nevertheless, further work on better ways
to control the portfolio selection process within the mean–risk modelling environment
remains an important direction for future research.
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Appendix

THEOREM 1 Let f (x) be a convex function of portfoliox and x f ∈ P be its global
minimizer, i.e. f (x f ) � f (x) for all x ∈ P. The bounded minimization problem

min { f (x) : µ(x) � µ0, x ∈ P} (A1)

has the following properties:

• if µ0 � µ(x f ), thenx f is an optimal solution to (A1);

• if µ0 � µ(x f ), then the optimal solution of the fixed return problem

min { f (x) : µ(x) = µ0, x ∈ P} (A2)

is also an optimal solution to (A1).

Proof. If µ0 � µ(x f ), thenx f is a feasible solution to (A1) and, as a global minimizer, it
is optimal.

Let µ0 � µ(x f ) and letx0 be an optimal solution to the corresponding fixed return
problem (A2). Consider portfoliōx ∈ P such thatµ(x̄) > µ0 and let us definēx0 =
(1 − λ)x f + λx̄ with λ = (µ(x0) − µ(x f ))/(µ(x̄) − µ(x f )). By the convexity of set
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P, portfolio x̄0 is feasible and, due to the convexity of functionf (x), one getsf (x̄0) �
(1 − λ) f (x f ) + λ f (x̄) � f (x̄), sincex f is the global minimizer. Moreover,µ(x̄0) = µ0
and thereforef (x0) � f (x̄0) � f (x̄) which proves the optimality ofx0 for problem (A1).

�

THEOREM 2 Let �(x) be a convex risk measure andxs ∈ P be the maximum safety
portfolio, i.e. an optimal solution to problem (25). The maximum safety bounded problem
(26) has the following properties:

• if µ0 � µ(xs), then the maximum safety portfolioxs is an optimal solution to (26);

• if µ0 � µ(xs), then the optimal solution to the corresponding problem of risk
minimization under fixed return (24) is the optimal solution to both bounded problems:
the corresponding minimum risk problem (23) and the maximum safety problem (26).

Proof. The theorem follows from Theorem 1 applied tof (x) = �(x) − µ(x) which is
a convex function. The case ofµ0 � µ(xs) is obvious as the minimization off (x) is
equivalent to the safety maximization. For the second case one needs to notice thatx0, the
optimal solution to problem (24), due to restrictionµ(x) = µ0, is also an optimal solution
to the fixed return problem (A2) with the performance functionf (x) = �(x) − µ(x). �

THEOREM 3 Let �(x) � 0 be aconvex, positively homogeneous and shift-independent
(dispersion type) risk measure. If the measure satisfies additionally the SSD consistency

Rx′ �SSD Rx′′ ⇒ µ(x′) − �(x′) � µ(x′′) − �(x′′)

then the corresponding performance functionf (x) = �(x) − µ(x) fulfils the coherence
axioms (Artzneret al., 1999).

Proof. The axioms are: translation invariance, positive homogeneity, subadditivity,
monotonicity (Rx′ � Rx′′ ⇒ f (x′) � f (x′′)), and relevance (Rx � 0, Rx 	= 0 ⇒ f (x) <

0). The composite objective−µ(x) + δ̄(x) does satisfy the first three axioms by assumed
properties of�(x). Moreover, due to the consistency with stochastic dominance, it also
satisfies monotonicity and relevance, becauseRx′ � Rx′′ ⇒ Rx′ �SSD Rx′′ . �

THEOREM 4 Let �(x) � 0 be aconvex, positively homogeneous and shift-independent
(dispersion type) risk measure. If the measure additionally meets the risk scaling bound

Rx � 0 ⇒ �(x) � µ(x) (A3)

then the corresponding performance functionf (x) = �(x) − µ(x) fulfils the coherence
axioms (Artzneret al., 1999).

Proof. By assumed properties of�(x), the performance functionf (x) = �(x) − µ(x)

does satisfy the axioms of translation invariance, positive homogeneity, and subadditivity.
Further, if Rx′ � Rx′′ , then Rx′ = Rx′′ + (Rx′ − Rx′′) and Rx′ − Rx′′ � 0. Hence, the
subadditivity together with the risk scaling bound (A3) imply that the performance function
f (x) satisfies also the axioms of monotonicity and relevance. �


