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The Markowitz model of portfolio optimization quantifies the problem in a lucid form

of only two criteria: the mean, representing the expected outcome, and the risk, a scalar
measure of the variability of outcomes. The classical Markowitz model uses the variance
as the risk measure, thus resulting in a quadratic optimization problem. Following Sharpe’s
work on linear approximation to the mean—variance model, many attempts have been made
to linearize the portfolio optimization problem. There were introduced several alternative
risk measures which are computationally attractive as (for discrete random variables) they
result in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have to
meet numerous side constraints and take into account transaction costs. The variety of LP
solvable portfolio optimization models presented in the literature generates a need for their
classification and comparison. It is the main goal of our work. The paper introduces a
systematic overview of the LP solvable models with a wide discussion of their theoretical
properties. This allows us to classify the models with respect to the types of risk or safety
measures they use. The paper also provides the first complete computational comparison
of the discussed models on real-life data.

Keywords: portfolio optimization; mean—risk and mean—safety model; linear programming;
experimental analysis.

1. Introduction

The portfolio optimization problem considered in this paper follows the original Markowitz
formulation which is based on a single period model of investment. At the beginning of
aperiod, an investor allocates his capital among various securities, thus assigning a non-
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negative weight (share of the capital) to each security. During the investment period, a

security generates a random rate of return. This results in a change of the capital invested
(observed at the end of the period) which is measured by the weighted average of the
individual rates of return.

LetJ = {1, 2, ..., n} denote a set of securities considered for an investment. For each
security j € J, its rate of return is represented by a random varid®jewith a given
meanuj = E{R;j}. Further, letx = (Xj)j=12,...n denote a vector of decision variables
Xj expressing the weights defining a portfolio. To represent a portfolio, the weights must
satisfy a set of constraints that form a feasible/aeEhe simplest way of defining a feasible
set is by a requirement that the weights must sum to one and short sales are not allowed,
i.e. Z?:l Xj =1landxj > Ofor j =1,..., n. Hereafter, it is assumed th&tis a general
LP feasible set given in a canonical form as a system of linear equations with non-negative
variables.

Each portfoliox defines a corresponding random varialile = er‘zl Rjxj that
represents the portfolio rate of return. The mean rate of return for portfoiogiven
asuxX) = E{R«} = ZT=1/_L]'XJ'. Hence, the mean rate of return is a linear function of
portfolio x.

Following the seminal work by Markowitz (1952), the portfolio optimization problem
is modelled as a mean-—risk bicriteria optimization problem whepe) is maximized
and some risk measuggx) is minimized. In the original Markowitz model the risk is
measured by the standard deviation or varianc&x) = E{(u(X) — Ry)?}. Several
other risk measures have been later considered thus creating the entire family of mean—
risk models (Mitraet al., 2003, and references therein). While the original Markowitz
model forms a quadratic programming problem, following Sharpe (1971a), many attempts
have been made to linearize the portfolio optimization procedure (cf. Speranza, 1993 and
references therein). The LP solvability is very important for applications dealing with
real-life financial decisions where the constructed portfolios have to meet numerous side
constraints, such as minimum transaction lots (Mansini & Speranza, 1999), cardinality
constraints (Jobsd#t al., 2001), and to take into account transaction costs (Kellerat.,

2000; Konno & Wijayanayake, 2001; Chiotial., 2003; Bonagliat al., 2002).

Certainly, in order to guarantee that the portfolio takes advantage of diversification,
no risk measure can be a linear functionxofNewertheless, a risk measure can be LP
computable in the case of discrete random variables, i.e. in the case of returns defined by
their realizations under the specified scenarios. We will condidecenariosS (where
t =1,..., T) with corresponding probabilitiep;. We will assume that for each random
variable R; its realizationr j; under the scenarib is known. Typically, the realizations
are derived from historical data treatifighistorical periods as equally probable scenarios
(pt = 1/T). The realizations of the portfolio retuiR; are given as

n
Vo= rjtX] 1)
i1

and thus they are linear functions of portfoko The expected valug(x) can be then
expressed as a linear function of the realizatighsas u(x) = ZLl Ve pr. Similarly,
several risk measures can be LP computable with respect to the realizatidhge mean
absolute deviation was very early considered in portfolio analysis (Sharpe, 1971b) and
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references therein) while more recently Konno & Yamazaki (1991) presented and analysed
the complete portfolio LP solvable optimization model based on this risk measure—the
so-called MAD model. Yitzhaki (1982) introduced the mean-risk model using Gini's
mean (absolute) difference as the risk measure (the GMD model). Recently, Young
(1998) analysed the LP solvable portfolio optimization model based on risk defined by
the worst case scenario (the minimax approach), while Ogryczak (2000) introduced the
multiple criteria LP model covering all the above as special aggregation techniques.
During the achievement of this study, some risk measures for portfolio management have
been proposed (Chekhlat al., 2000), which result in models reducible to LP solvable
problems. This is a further evidence of the high interest shown for the subject dealt with in
our paper and of the constant evolution of this research domain.

The Markowitz model is frequently criticized as not consistent with axiomatic models
of preferences for choice under risk (Rothschild & Stiglitz, 1969). Models consistent with
the preference axioms are based on the relations of stochastic dominance or on expected
utility theory (Whitmore & Findlay, 1978; Bawa, 1982; Levy, 1992). If the rates of return
are normally distributed, then the mean absolute deviation and the Gini mean difference
become proportional to the standard deviatiomx) (Kruskal & Tanur, 1978, pp. 1216—
1217). Hence, the corresponding LP solvable mean—-risk models are then equivalent to
the Markowitz mean—variance model. However, the LP solvable mean-risk models do
not require any specific type of return distributions. Moreover, opposite to the mean—
variance approach, for general random variables some consistency with the stochastic
dominance relations was shown for the Gini mean difference (Yitzhaki, 1982), for the
MAD model (Ogryczak & Ruszc#yski, 1999) and for many other LP solvable models as
well (Ogryczak, 2000). Recently, in Artznetral. (1999), a class of coherent risk measures
has been defined by means of several axioms. Again, the coherence has been shown for
the MAD model (Ogryczak & Ruszchgki, 2002) and for some other LP computable
measures (Acerbi & Tasche, 2002).

It is often argued that the variability of the rate of return above the mean should
not be penalized since the investors are concerned with an underperformance rather than
the overperformance of a portfolio. This led Markowitz (1959) to propose downside
risk measures such as (downside) semivariance to replace variance as the risk measure.
Consequently, one observes growing popularity of downside risk models for portfolio
selection (Bawa, 1978; Fishburn, 1977; Zagst, 2002). Some authors pointed out that the
MAD model opens up opportunities for more specific modelling of the downside risk
(Feinstein & Thapa, 1993; Speranza, 1993). In fact, most of the LP solvable models may be
viewed as based on some downside risk measures. Moreover, the models may be extended
with some piecewise linear penalty (risk) functions to provide opportunities for more
specific modelling of the downside risk (Carigtal ., 1998; Konno, 1990; Michalowski &
Ogryczak, 2001).

The variety of LP solvable portfolio optimization models presented in the literature
generates a need for their classification and comparison. This is the major goal of this
paper. We provide a systematic overview of the models with a wide discussion of their
theoretical properties such as SSD consistency (Ogryczak & Rusdz2001) and the
coherence in the sense of Artzretral. (1999). In particular, we classify the performance
measures of the models in risk measures (to be minimized) and safety measures (to be
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maximized). We show that for each risk measure there exists a corresponding well-defined
safety measure and vice versa.

Since theoretical results provide only a limited background for models comparison,
we also present extensive computational results. The literature provides computational
results only for individual models and not all the models were tested in a real-life decision
environment. While the MAD model was quite extensively tested (Konno & Yamazaki,
1991) including its application to portfolios of mortgage-backed securities (Zenios &
Kang, 1993) where distribution of rate of return is known to be not symmetric, the other
LP solvable models seem to get much less recognition from applied studies.

The paper is organized as follows. In the next section we consider the stochastic
dominance and the related shortfall criteria. We show how various LP computable
performance measures can be derived from the shortfall criteria. Section 3 gives a detailed
review and classification of the LP solvable portfolio optimization models we examine.
Section 4 is devoted to the experimental analysis on real-life data from the Milan Stock
Exchange. Extensive in-sample and out-of-sample computational results are provided and
commented on. Finally, some concluding remarks are given.

2. Shortfall criteria and performance measures
2.1 Shortfall criteria and stochastic dominance

The notion of risk is related to a possible failure of achieving some targets. It was
formalized as the so-called safety-first strategies (Roy, 1952; Bawa, 1978) and later led
to the concept of below-target risk measures (Fishburn, 1977; Zagst, 2002) or shortfall
criteria. The simplest shortfall criterion for the specific target valuge the mean below-

target deviation

8:(x) = Efmaxz — Ry, 0}}. )

In the case of returns represented by their realizations, the mean below-target deviation is a
convex piecewise linear function of realizationgyiven asZthl max{t —yt, 0} p;. Hence,

due to (1), the mean below-target deviation is also a convex piecewise linear function of
the portfoliox itself and it is LP computable as

.
8 (X) = min Zd{pt subjectto d7 >t —w, d7 >0 fort=1,...,T.
=1

The concept of mean below-target deviation is related to the second-degree stochastic
dominance relation (Whitmore & Findlay, 1978) which is based on an axiomatic model
of risk-averse preferences (Rothschild & Stiglitz, 1969; Levy, 1992). In stochastic
dominance, uncertain returns (random variables) are compared by pointwise comparison
of functions constructed from their distribution functions. The first functigh is given
as the right-continuous cumulative distribution function of the rate of reﬁﬁh(n) =
Fc(m) = P{Rx < n} and it defines the weak relation of tHiest-degree stochastic
dominance (FSD) as follows:

Re >rep R & Fe(n) < Fer(n) foralln.
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The second function is derived from the first as
n
F2 () =/ Fx(£)de  for real numbers,,
—0o0

and defines the (weak) relation s#cond degree stochastic dominance (SSD)

Re zso R & F2m <FP ) forally.

We say that portfolio<’ dominates x” under the SSD (Ry ><sp Rx), If F(Z)(n) < F)f,?)(n)
for all n, with at least one strict inequality. A feasible portfolk8 € P is called SSD
efficient if there is nox € P such thatRy >, Ryo. If Ry ><n Ry, thenRy is preferred
to Ry within all risk-averse preference models where larger outcomes are preferred.

Note that the SSD relation covers increasing and concave utility functions, while the
first stochastic dominance is less specific as it covers all increasing utility functions (Levy,
1992), thus neglecting a risk-averse attitude. It is therefore a matter of primary importance
that a model for portfolio optimization be consistent with the SSD relation, in the sense
that Ry >, R« implies that the performance measureitakes a value not worse than
(lower than or equal to, in the case of a risk measura} iThe consistency with the SSD
relation implies that an optimal portfolio is SSD efficient.

Function F)EZ), used to define the SSD relation, can also be presented as follows
(Ogryczak & Ruszcziyski, 1999):

F2 () = PR« < n}E{n — Ry R« < n} = E{max{n — Ry, 0}} = &,(x).  (3)

Hence, the SSD relation can be seen as a dominance for mean below-target deviations from
all possible targets. We call them hereafter the basic SSD shortfall criteria.

The mean below-target deviation from a specific target (2) represents only a single basic
SSD shortfall criterion. One may consider several,sajargetsr; > t2 > --- > 7y and
use the weighted sum of the shortfall criteria as a risk measure

m
D wikbg (0 = ZwkE{maX{Tk — Ry, 0}} = Zwk maxzc — Ry, 0}} 4
k=1

wherewy (for k =1, ..., m) are positive weights which maintain LP computability of the
measure (when minimized). Actually, the measure (4) can be interpreted as a single mean
below-target deviation applied with a penalty functi@fu(maxty — Ry, 0})} whereu is

an increasing and convex piecewise linear penalty function with breakgmirtsr; —

and slopesg = w1 +--- +wg, k=1, ..., m. Such a piecewise linear penalty function is
used in the Russel-Yasuda—Kasai financial planning model (Ceraig 1998) to define

the corresponding risk measure.

When an investment situation involves minimal acceptable returns, then the below-
target deviation and its extensions, as presented in the previous section, are considered to be
good risk measures (Fishburn, 1977). However, they are in general not risk relevant as for
some targets they may not prevent concentration of risks from remaining undetected. When
the mean portfolio return is used to define target achievements, then the corresponding
risk measure should relate to shortfalls with respect to the meaain rather than to
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any fixed targetr. We will call such below-mean characteristics downside measures or
semideviations (if applicable). In the following sections we show how various possible
downside performance measures can be derived from the basic SSD shortfall criteria and
that some are consistent with the stochastic dominance relations and are coherent in the
sense of Artzneet al. (1999). Some of the performance measures are risk measures (to
be minimized) and some are safety measures (to be maximized). We show that there are
complementary pairs of risk and safety measures. That means, for each risk measure there
exists a corresponding safety measure and vice versa. We also show how these measures
become LP computable in the case of returns defined by discrete random variables.

2.2 MAD and downside versions

Let us simply use the mean portfolio retyuix) in the shortfall criterion (2) instead of a
fixed targetr. This results in the risk measure known as doanside mean semideviation
from the mean:

5(x) = E{max{u(x) — Ry, 0}} = F2 (u(x)). (5)

The downside mean semideviation is always equal to the upsid&one: E{max{u(x) —

Rx,0}} = E{maxRx — u(X),0}}, therefore we refer to it hereafter as the mean
semideviation. Note that the mean semideviation represents both downside as well as
upside mean deviations (Kenyehal., 1999; Ogryczak & Ruszchski, 1999). Actually,

the mean semideviation is a half of the mean absolute deviation from the mean, i.e.
§x) = E{|R« — u(X)]} = 25(x). Hence, the corresponding mean—risk model is
equivalent to the MAD model (Speranza, 1993). For a discrete random variable represented
by its realizations, the mean semideviation (5) is a convex piecewise linear function
of realizationsy;, given asZthl max{u(X) — Vt, 0} pt. Hence, due to (1), the mean
semideviation is also a convex piecewise linear function of the portfoiiself and it

is LP computable as

.
§(X) = min Zdt‘pt subjectto d” > u(x) —y, d” >0 fort=1,...,T.
t=1

Due to the use of distribution-dependent target val(e), the mean semideviation
cannot be directly considered as a basic SSD shortfall criterion. However, as shown by
Ogryczak & Ruszczigski (1999), the mean semideviation is closely related to the graph
of F>52). The function F)fz) is continuous, convex, non-negative and nondecreasing. The
graphF>§2) (n), referred to as the Outcome—Risk (O—R) diagram, has two asymptotes which
intersect at the pointu(x), 0) (Fig. 1). Exactly, they-axis is the left asymptote and the
ascent line; — w(X) is the right asymptote. In the case of a risk-free retiRp £ w1 (x)),
the graph ofF)EZ)(n) coincides with the asymptotes, whereas any uncertain return with
the same expected valugx) yields a graph above (precisely, not below) the asymptotes.
Thus, the space between the cufx/eF)ﬁz)(n)) and its asymptotes represents the dispersion
(and thereby the riskiness) 8% in comparison to the deterministic retyurix). Therefore,
it is called the dispersion space. The mean semideviation turns out to be the largest vertical
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n— pn(x)

§(X) T

1(X) n

FiG. 1. The O-R diagram and the mean semideviation.

diameter of the dispersion space while the variance represents its doubled area (Ogryczak
& Ruszczyski, 1999).

Every shortfall risk measure or, more precisely, every pair of a target walaed
the corresponding downside deviation defines also the quantity of mean below-target
underachievement

T —8;(X) = E{r — maX{t — Ry, 0}} = E{min{Ry, t}}.

The latter portfolio performance measure can be considered a safety measure as the larger
values are preferred. In the case of a fixed targene getsr — 8, (X') > © — §;(X")

iff 5;(xX) < 8;(xX"). Hence, the minimization of the mean below-target deviation (risk
measure) and the maximization of the corresponding mean below-target underachievement
(safety measure) are equivalent. The latest property is no longer valid puxens used

as the target. One may introduce the safety measureari downside underachievement

1 (x) = 5(x) = E{u(x) — maxu(x) — R, 0}} = E{min{Rx, n(x)}} (6)

but the minimization of the mean semideviation is, in general, not equivalent to the
maximization of the mean downside underachievement. Note that, as shown in Ogryczak
& Ruszczyski (1999),Ry >, Ry implies the inequalitys (x') —8(X') > u(X”) —8(X")

while the corresponding inequality on the mean semideviaigxis < 5(x”) may not be

valid. Thus, the mean downside underachievement is consistent with the SSD relation,
while the consistency is not guaranteed for the mean semideviation. In Arzrabr
(1999), a class of coherent risk measures has been defined by means of several axioms.
In our terms, these measures correspond to composite objectives of @jm= —u(x) +

o(X) (note the opposite scalarization via the sign change). The axioms are: translation
invariance, positive homogeneity, subadditivity, monotoniclRy (> Ry = f(X) <

f(x”)), and relevanceRx < 0,Rx # 0 = f(X) < 0). As pointed out in Ogryczak

& Ruszczyski (2002, Remark 1)§(x) is seminorm inLy, is cmnvex and positively
homogeneous. Therefore, the composite objectiugx) + 5(x) does satisfy the first three
axioms. Moreover, owing to the consistency with stochastic dominance, it also satisfies
monotonicity and relevance, becalBe > Ry = Ry >, Ryr. Theorems 3 and 4 (see
Appendix) generalize this assertion making it applicable to the various LP computable
measures we consider.
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For better modelling of the downside risk, one may consider a risk measure defined
by the mean semideviation applied with a piecewise linear penalty function (Konno,
1990) to penalize larger downside deviations. It turns out, however, that for maintaining
both the LP computability and SSD consistency (Michalowski & Ogryczak, 2001), the
breakpoints (or additional target values) must be located at the corresponding mean
downside underachievements (6). Namely, when ugingdjistribution-dependent targets
u1(X) = px), p2(x), ..., um(x) and the corresponding mean semideviatibnx) =
8(X), 82(X), . .., dm(x) defined recursively according to the formulae:

k-1
8k(x) = E{maxuk() — Re, 0} = E{max{n() — Y &) — Ry, 0}, (7)
i—1

k
M1 (0 = k() — 8k(¥) = ) — Y § (%) = E{min{Ry, uk()}},
i=1
one may combine the semideviations by the weighted sum to the measure
m
B0 =) wdk(0),  l=wiZwp> - >wm >0, ®)
k=1

as in them-MAD model (Michalowski & Ogryczak, 2001). Actually, the measure can be
interpreted as a single mean semideviation (from the mean) applied with a penalty function:
S\Svm) ) = E{u(max{u(x) — Ry, 0})} whereu is an increasing and convex piecewise linear
penalty function with breakpointsx = p©(X) — uk(x) and slopes = wy + --- + wy,

k = 1,..., m. Therefore, we will refer to the measu«ié") (x) as to themean penalized
semideviation.

Note that the mean semideviatiofig(x) defined by the recursive formula (7), in
general, may be not convex functions of portfoioNevertheless, the mean penalized
semideviation (8) is a convex piecewise linear function of portfoliavith returns
represented by its realizations (1). This follows from the properties of the cumulative
deviation functions® (x) = Z!‘Zl 8i () and the restriction used in (8). In the case of
returns represented by their realizations §13,(x) = §1(x) = §(x) is a convex piecewise
linear function ofx. Due to (7), the following recursive formula is valid:

50 (x) = §k(x) + 8%V (x) = Efmaxu(x) — R, 8% V1)
T
=Y max{u() — i, 8 0o} py
t=1

which justifiess® (x) as a convex piecewise linear function of portfolicfor anyk > 1.
Further, the mean penalized semideviation (8) can be expressed as the linear combination
of the cumulated deviations:

m—1
AP 00 = wnd ™0 + Y (wk — iy 18X (%),
k=1

where all the coefficients are non-negative. Hence, in the case of returns represented by
their realizations, the mean penalized semideviation is a convex piecewise linear function
of x.
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As defined by a convex piecewise linear function, the penalized mean semideviation is
LP computable. Exactly, it can be computed from the following LP problem:

SMx)=min Y wkz st z=
k=1 t
K—1

dg)u(x)—yt—Zzi, dge >0 fort=1,....,T; k=1,...,m.
i1

Oept fork=1,....,m,

m
= 1

T

The mean penalized semideviation (8) defines the corresponding safety measure
w(X)— S\S\,m) (x) which may be expressed directly as ttaghted sum of the mean downside

underachieverments i (X):

p(X) =8IV (x) = (w1 — w2)pa(X) + (w2 — wa)ua(X) + . ..
+ (Wm-1 — wM)UmX) + wmpm+1(X)  (9)

where the coefficients are non-negative and sum to 1. This safety measure was shown
by Michalowski & Ogryczak (2001) to be SSD consistent in the senseRpat-,
Ry implies u(x) — 84V (x) > n(x") — 34™ (x”). Moreover, due to Theorem 3, the

corresponding safety measure (its negative) is coherent in the sense of At&@nér999).

2.3 Minimax and the worst conditional expectation

For adiscrete random variable represented by its realizatjprthie worst realization

M(x) = mi 10
() = _min_ (10)

is an appealing safety measure, while theximum (downside) semideviation

AX) = p(X) — M(x) = t_Tf:‘\XT(M(X) %) (11)
represents the corresponding risk measure. The latter may be interpreted as the maximal
drawdown (Chekhloet al., 2000). It is also a well defined measure in the O—R diagram
(Fig. 1) as it represents the maximum horizontal diameter of the dispersion space.
According to (11), the maximum semideviation is a convex piecewise linear function of
realizationsy; and, due to (1), it is also a convex piecewise linear function of the portfolio
x itself. Similar to the mean semideviation, it is LP computable as

A(X) =min d;i  subjectto di > pu(X) —w, d >0 fort=1,...,T.

The measureM (x) is known to be SSD consistent and it was applied to portfolio
optimization by Young (1998). By the use of Theorem 4, one easily gets-tNaix) is
a coherent risk measure in the sense of Artzeteal. (1999). A natural generalization of
the measur® (x) is the worst conditional expectation defined as the mean of the specified
size (quantile) of worst realizations. For the simplest case of equally probable scenarios
(pt = 1/T), one may define the worst conditional expectaMQ (x) as the mean return
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under thek worst scenarios. In general, therst conditional expectation and theworst
conditional semideviation for any (real) tolerance level @ g < 1 are defined as

B
Mg (X) = %/O FSP(@)da for0< <1 (12)

and

Ag(X) = u(x) — Mg(x) for0O< g <1, (13)

respectively, wher(F)E_l)(p) =inf {n : Fx(n) > p} is the left-continuous inverse of the
cumulative distribution functiorfrx. Forany 0 < 8 < 1, the conditional worst realization

Mg (x) is an SSD consistent measure. Actually, the conditional worst expectations provide
an alternative characterization of the SSD relation (Ogryczak & Rugz&zy2002) in the
sense of the following equivalence:

Re =ep Rev & Mp(X) = Mg(x”) forall0<p <1 (14)

Note thatM1(x) = p(x) andMg(x) tends toM (x) for g approaching 0. By the theory
of convex conjugent (dual) functions (Rockafellar, 1970), the worst conditional expectation
may be defined by the optimization (Ogryczak & Rusztsii, 2002)

Mg (X) = max [n - E|:<2>(n)} = max [n - 1E{max{n — Ry 0}}} (15)
neR B X neR B ’ ’

wheren is a real variable taking the value gtquantile Qgz(x) at the optimum. Formula

(15) may be also interpreted &g (x) = max{(n — %é D E> F>§2)(n)}. Hence, the worst
conditional expectations and the corresponding worst conditional semideviations express
the results of the O—R diagram analysis according to a slant direction defined by the slope

B (Fig. 2).
For adiscrete random variable represented by its realizatjgrmmoblem (15) becomes
an LP:

1T

Mﬁ(x)zmax[n—EZdt‘pt] st. dg 2n—wn, d >0 fort=1,...,T,
t=1

(16)

wheren is an auxiliary (unbounded) variable. The worst conditional semideviations are
then available as the corresponding differences from the mgaRr) = w(xX) — Mg(x).
Alternatively, by using (15) one gets

Ag(X) = u(X) — Mg(x) = g;ig E { R« —n+ % max{n — R, 0}}

=min E {max{RX —n,0}+ l_—ﬂ max{n — RX,O}}
neR ,3
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(2)
R ) slope 1

slopep

Qﬁ ) n

Mp(x)  Ag(X) n(X)

FiG. 2. Quantile safety measures in the O—R diagram.

which allows one to compute the worst conditional semideviation directly from the
following LP:

LA T I
Ag(x) = min Z(dt = dt>pt sit.
t=1

d —-df=n-w, d",d >0 fort=1,...,T. (17)

Thus, the worst conditional semideviation is a convex piecewise linear function of
realizationsy; and, due to (1), it is also a convex piecewise linear function of the portfolio
x itself. It follows from Theorem 3 that-Mg(x) is coherent in the sense of Artzretral.
(1999).

Note that for8 = 0-50ne has - 8 = 8. Hence,Ao.5(x) represents the mean absolute
deviation from the median, the risk measure suggested by Sharpe (1971b). The LP problem
for computing this measure takes the form

.
Aos() =min > (@ +d)pe st df —df =y —w.
t=1

df,d- >0 fort=1,...,T.

The worst conditional expectation is closely related to the measure called Conditional
Concentration (Shalit & Yitzhaki, 1994), Expected Shortfall (Embreehtd., 1997) or
Conditional Value-at-Risk (CVaR) (Rockafellar & Uryasev, 2000) which may be expressed
as CVaR(x) = E{RR« < Qp(x)}. Exactly, Mg(x) = CVaRg(x) in the case of
continuous distributions of returns, while they can take different values for discrete
distributions (Ogryczak & Ruszcagki, 2002). Nevertheless, recently considered models
for portfolio optimization (Rockafellar & Uryasev, 2000) use the LP formula for the
worst conditional expectation as a computational approximation to CVaR for continuous
distributions. Therefore, the models using the worst conditional expectation or the worst
conditional semideviation as a performance measure we will refer to as the CvVaR models.
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2.4 Gini mean difference

Yitzhaki (1982) introduced the mean—risk model using Gini’'s mean (absolute) difference
as the risk measure. For a discrete random variable represented by its realigagtibes
Gini mean difference

1 T T
F(X) = E Z Z |yt/ — yt//| pt/ pt// (18)

t'=1t"=1

is obviously a convex piecewise linear function of realizatignand, due to (1), it is also
aconvex piecewise linear function of the portfokoThis allows one to compute the Gini
mean difference directly from the following LP:

T
F(X) = min Z Z dt/t// pt/ pt// s.t. dt/t// 2 yt/ — yt//’
t/:l t//#t/

Oy >0 fort/,t/ =1,...,T; t" #1t.

In the case of equally probable scenarios withpy = 1/ T, the Gini mean difference
may be expressed as the weighted average of the worst conditional semide\zibgi()()s

fork = 1,..., T (Ogryczak, 2000). Exactly, using weighits, = (2k)1/T2 for k =
1,2,....,T—landwr = )T = 1 — Y1 ; wk, one getsI'(x) = ey Wk Ak (0).

On the other hand, for general discrete distributions, directly from the definition (18) and
from (3),

T T T
reo=>1 > O —Y)plp = ; F2 P = ;Syt ).

t'=1 t”:yt// <YW

Hence, I'(x) can be interpreted as the weighted sum of multiple mean below-target
deviations (4) but both the targets and the weights are distribution dependent. This
corresponds to an interpretation 6f(x) as the integral ofF)EZ) with respect to the
probability measure induced By (Ogryczak & Ruszczgski, 2002). Thus, although not
representing directly any shortfall criterion, the Gini mean difference is a combination of
the basic shortfall criteria.

Note that the Gini mean difference defines the corresponding safety measure (Yitzhaki,
1982):

pn(X) = I'(X) = E{R« A Ry} (19)

which is the expectation of the minimum of two i.i.d.r.Rx thus representing the

mean worse return. This safety measure is SSD consistent (Yitzhaki, 1982; Ogryczak &
Ruszczyski, 2002) in the sense thBfy >, R impliesu(X)—I'(X') > u(X")—I'(X").
Moreover, due to Theorem 3, the safety measure (its negative) is coherent in the sense of
Artzneret al. (1999).
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TABLE 1 Samplereturns

Scenario Ro Ry Ry
P{(§}=05 15 35 50
P{S}=05 15 45 40

3. Portfolio optimization
3.1 Riskand safety measures

Following Markowitz (1952), the portfolio optimization problem is modelled as a mean—
risk bicriteria optimization problem:

maxX{[u(x), —e(X)]: X e P}, (20)

where the meam(x) is maximized and the risk measupéx) is minimized. A feasible
portfolio x° € P is called an efficient solution of problem (20) opao-efficient portfolio
if there is nox € P such thafu(x) > 1w (x%) ando(x) < o(x%) with at least one inequality
strict.

The original Markowitz (1952) model uses the standard deviation as the risk
measure. As shown in the previous section, several other risk measures may be used instead
of the standard deviation thus generating the corresponding LP solvable mean-risk models.
In this paper we restrict our analysis to the risk measures which, similar to the standard
deviation, are shift-independent dispersion parameters. Thus, they are equal to O in the case
of a risk-free portfolio and take positive values for any risky portfolio. This excludes the
direct use of the mean below-target deviation (2) and its extensions with penalty functions
(4). Nevertheless, as shown in Section 2, there is a gamut of LP computable risk measures
fitting the requirements.

In Section 2 we have seen that in the literature some of the LP computable measures are
dispersion type risk measures and some are safety measures, which, when embedded in an
optimization model, are maximized instead of being minimized. Moreover, we have shown
that each risk measuggx) has a well defined corresponding safety meagi(s® — o(X)
and vice versa. Although the risk measures are more ‘natural’, due to the consolidated
familiarity with the Markowitz model, we have seen that the safety measures, contrary
to the dispersion type risk measures, are SSD consistent in the sen&y thal, Ry
implies u(x) — o(X) > w(x”) — o(x”) (Michalowski & Ogryczak, 2001; Ogryczak &
Ruszczyski, 1999, 2002; Yitzhaki, 1982; Young, 1998). Moreover, one may notice that the
safety measures, we consider, satisfy axioms of the so-called coherent risk measurement
asin Artzneret al. (1999) (with the sign change). We want to emphasize that the convexity
of (dispersion type) risk measures is essential for portfolio optimization solvability, while
their additional properties of positive homogeneity and appropriate scaling (see Theorem 4)
guarantee that the corresponding safety measures are coherent.

The practical consequence of the lack of SSD consistency or the lack of coherence can
be illustrated by three portfolios®, X' andx” with rate of return (given in per cent) under
two equally probable scenaric® and S (Table 1). Note that the risk-free portfoli?
with the guaranteed result8lis doviously worse than the risky portfoliog: giving 3.5 or
4.5 andx” giving 50 or 40. Certainly, in all models consistent with the preference axioms
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TABLE 2 Risk and safety measures

Model Risk measurg(x) Safety measurg(x) — o(X)
MAD model (Konno & Yamazaki, 1991) 5x)  (5) E{min{Rx, u(xX)}}  (6)
m-MAD model

(Michalowski & Ogryczak, 2001) 5Mx)  (8) n) =5 (9)
Minimax model (Young, 1998) A (11) MX) (10)
CVaR model

(Rockafellar & Uryasev, 2000) Ag(x)  (12) Mg(x)  (13)
GMD model (Yitzhaki, 1982) rx (18) E{Rx A Ry} (19)

of either coherence (Artznetal., 1999) or SSD (Levy, 1992; Whitmore & Findlay, 1978)
portfolio x° is dominated by botk’ andx”. When a dispersion type risk measuré)

is used, then all the portfolios may be efficient in the corresponding mean-risk model.
Unfortunately, it also applies to portfolix?, since for each such measwéx’) > 0 and

o(X") > Owhile o(x°) = 0. This is a common flaw of all mean-risk models where risk is
measured with some dispersion measure (Markowitz-type models). Further, let us notice
thatRy >, Ry althoughRy» 2 Ry . Hence, the SSD consistency of a model guarantees
that Ry» will be selected while the coherence allows that eitReror R may be selected

(it only guarantees thd®yo will not be selected).

It is interesting to note that, in order to overcome this weakness of the Markowitz
model, Baumol (1964) suggested considering a safety measure, which he called the
expected gain-confidence limit criteriop,(X) — Ao (X) to be maximized instead of the
o (X) minimization. Thus, on the basis of the above remarks, for each risk measure, it is
reasonable to also consider an alternative mean—safety bicriteria model:

max{[u(x), u(X) —o(X)]: xe€P}. (21)

The full set of risk and safety measures is presented in Table 2. Note that the MAD
model was first introduced (Konno & Yamazaki, 1991) with the risk measure of mean
absolute deviatioB(x) whereas the mean semideviatim) we consider is half of it. This
is due to the fact that the resulting optimization models are equivalent and that the model
with the semideviation is more efficient (Speranza, 1993). For the MAD model, the safety
measure represents the mean downside underachievement. FeMA® model the two
measures represent the mean penalized semideviation and the weighted sum of the mean
downside underachievements, respectively.

The Minimax model was considered and tested (Young, 1998) with the safety measure
of the worst realizatiorM (x) but it was also analysed with the maximum semideviation
A(x) (Ogryczak, 2000). The CVaR model was considered with the safety measure of
the worst conditional expectation (Rockafellar & Uryasev, 2000) while the risk measure
represents the worst conditional semideviation. Yitzhaki (1982) introduced the GMD
model with the Gini mean differenc(x) but he also analysed the model implementation
with the corresponding safety measure of the mean worse ré{iRnA Ry}.

As shown in the previous section, all the risk measures we consider may be derived
from the basic SSD shortfall criteria. However, they are quite different in their modelling
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of the downside risk aversion. Definitely, the strongest in this respect is the maximum
semideviationA(x) used in the Minimax model. It is a strict worst case measure where
only the worst scenario is taken into account. The CVaR model allows one to extend the
analysis to a specified quantile of the worst returns. The measure of worst conditional
semideviationAg(x) offers a continuum of models evolving from the strongest downside
risk aversion g close to 0) to the complete risk neutralitg (= 1). The MAD model
with risk measured by the mean (downside) semideviation from the mean is formally a
downside risk model. However, due to the symmetry of mean semideviations from the
mean (Ogryczak & Ruszchgki, 1999), it is equally appropriate to interpret the MAD
model as an upside risk model. Actually, theMAD model has been introduced to
incorporate downside risk modelling capabilities into the MAD model. The Gini mean
difference, although related to all the worst conditional semideviations, is similar to the
mean absolute deviation, a symmetric risk measure (in the sense that &ord — Ry it
has exactly the same value).

Note that havingu(x') > w(x”) ando(x) < o(X”) with at least one inequality strict,
one getsu(X) — o(X) > u(x”) — o(x"). Hence, a portfolio dominated in the mean—
risk model (20) is also dominated in the corresponding mean—safety model (21). In other
words, the efficient portfolios of problem (21) form a subset of the eptige-efficient set.
Due to the SSD consistency of the safety measures, except for portfolios with identical
mean and risk measure, every portfolio belonging to this subset is SSD efficient. Although
very important, the SSD efficiency is only a theoretical property. For specific types of
distributions or feasible sets the subset of portfolios with guaranteed SSD efficiency may
be larger (Ogryczak & Ruszciagki, 1999, 2002) than the corresponding mean-safety
efficient set. Hence, the mean—safety model (21) may be too restrictive in some practical
investment decisions.

3.2 Bicriteria portfolio selection

In order to compare on real-life data the performance of various mean-risk models, one
needs to deal with specific investor preferences expressed in the models. There are two
ways of modelling risk-averse preferences and therefore two major approaches to handle
bicriteria mean-risk problems (20). First, having assumed a trade-off coeffidiemveen

the risk and the mean, the so-callésk aversion coefficient, one may directly compare real
valuesu (X) — Ao(x) and find the best portfolio by solving the optimization problem

max{u(X) — Ao(X) : X € P}. (22)

Various positive values of parameterllow one to generate various efficient portfolios.

By solving the parametric problem (22) with changing 0 one gets the so-calledlitical

line approach (Markowitz, 1959). Due to the convexity of risk measup€s) with respect

tox, A > 0 provides the parametrization of the entire set of thie-efficient portfolios
(except of its two ends which are the limiting cases). Note that 1) (X) + A(u(xX) —

o(X)) = u(xX) — Ao(X). Hence, bounded trade-off@ A < 1 in the mean—risk model (20)
corresponds to the complete weighting parametrization of the mean—safety model (21).
The critical line approach allows one to select an appropriate value of the risk aversion
coefficienta and the corresponding optimal portfolio through a graphical analysis in the
mean-risk image space.
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Unfortunately, in practical investment situations, the risk aversion coefficient does
not provide a clear understanding of the investor preferences. The commonly accepted
approach to implementation of the mean-risk model is then based on the use of a specified
lower boundug on expected returns which results in the following minimum risk bounded
problem:

minfo(X) :  w(X) > po, Xe€ Pl (23)

This bounding approach is widely accepted and provides a clear understanding of investor
preferences and a clear definition of solution portfolios to be used in the model comparison.
Therefore, we use the bounding approach (23) in our analysis.

Due to the convexity of risk measureéx) with respect te, by solving the parametric
problem (23) with changingo € [Minj—1_ npj , Maxj=1..nujl ONE gets various
efficient portfolios. Actually, the efficient frontier is bounded by thi@imumrisk portfolio
(MRP) defined as the solution of mige o(X). For ug smaller than the expected return of
the MRP, problem (23) always generates the MRP while larger valugg pfovide the
parametrization of tha /p-efficient set as the optimal solution of the fixed return problem

.....

min {o(X) : u(X) = o, X € P} (24)

which is then also an optimal solution to (23). This follows from the general properties of
aconvex bicriteria minimization as shown in Theorem 1 (see Appendix) when applied to
f(X) = 0().

As a complete parametrization of the entirgo-efficient set, the approach (23) also
generates portfolios belonging to the subset of efficient solutions of the corresponding
mean-safety problem (21). The latter correspond to larger values of hoyiad these
portfolios are bounded by theaximum safety portfolio (MSP), i.e. the solution to the
problem

max{i(x) —o(X) : X € P}. (25)

Note that, in contrast to the critical line approach, having a specified value of parameter
uo does not mean that one knows whether the optimal solution of (23) is also an efficient
portfolio with respect to the corresponding mean—safety model (21) or not. Therefore,
when using the bounding approach to the mean-risk models (20), essentially, we need to
consider explicitly a separate problem of the maximum safety under bounded return

max{iu(x) —o(X) :  u(X) > po, XeP} (26)

for the corresponding mean—safety model (21). However, the solutions to the bounded
maximum safety problem (26) can be found by the analysis of the corresponding minimum
risk problem (23), provided that there is already known the MSP. Namelyg if<
w(MSP), then the MSP is an optimal solution to (26). Wheg > w(MSP), then
according to Theorem 2 (see Appendix), the optimal solution of the corresponding problem
of risk minimization under fixed return (24) is the optimal solution to both bounded
problems: the corresponding minimum risk problem (23) and the maximum safety problem
(26).
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3.3 ThelLP models

We provide here the detailed LP formulations for all the models we have analysed. For
each type of model, the pair of problems (23) and (26) we have analysed can be stated as
the problem

maxX{au(X) —e(X) : u(xX) = uo, X € P} (27)

covering the minimization of risk measuséx) (23) fora = Owhile forae = 1 itrepresents
the maximization of the corresponding safety meagi(s@ —o(x) (26). Both optimizations
are considered with a given lower bound on the expected retn> uo.

By definition, any model (27) contains the following linear constraints:

xeP and z> puo, (28)
where z is an unbounded variable representing the mean return of the por#olio

Further, all the models contain an equation defining the mean return and explicitly defined
realization of the portfolio return, i.e.

n n
> wixj—z=0 and ) rpxj—y=0 fort=1...T, (29)
j=1 j=1
wherey; (t = 1,...,T) are unbounded variables to represent the realizations of the

portfolio return under the scenatioln addition to these common variables and constraints,
each model contains its specific linear constraints to define the risk or safety measure. Note
that, in order to use a more standard LP notation and to relate models of the same class, we
modify here the notation for some of the variables introduced in Section 2.

MAD and downside versions. The standard MAD model (Konno & Yamazaki, 1991),
when implemented with the mean semideviation as the risk measGte=£ §(x)), leads
to the following LP problem:

maximize 0z — 73
subject to (28)—(29) and

T
t=1
G- 7420 G20 fort=1 T @

where non-negative variablely; represent downside deviations from the mean under
several scenaridsandz; is a variable to represent the mean semideviation itself. The latter
can be omitted by using the direct formula for mean semideviation in the objective function
instead of (30). The above LP formulation u§es- 1 variables andl' + 1 constraints to
model the mean semideviation.

In them-MAD model (Michalowski & Ogryczak, 2001) constraints of type (30)—(31)
have to be repeated for each penalty ldvek 2, ..., m. This results in the following
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problem:
m
maximize @z — z; — Z WKZk
k=2
subject to (28)—(29), (30)—(31) and fer=2,..., m:
T
Z— ) Ptk =0,
t=1
k—1

dkt—z+22i+yt>o, g >0 fort=1,...,T.
=)

This results in an LP formulation that usesT + 1) variables anan(T + 1) constraints

to model them-level penalized mean semideviation.

Minimax and the worst conditional expectation. For any O< 8 < 1the CVaR model
(Rockafellar & Uryasev, 2000) with(x) = Ag(x) may be implemented as the following
LP problem (the variabled™ which appear in (17) have been substituted in the objective
function):

-
maximizey — (1 — w)z — % Z Pt dk

t=1
subjectto (28)—-(29)and dk —y+Vy >0, ¢ >0 fort=1,...,T.

Recall that the optimal value of represents the value gkquantile.T + 1 variables and
T constraints are used here to model the worst conditional semideviation.

As the limiting case whep tends to 0 one gets the standard Minimax model (Young,
1998). The latter may be additionally simplified by dropping the explicit use of the
deviational variables:

maximizey — (1 — o)z
subjectto (28)-(29)and yy —y >0 fort=1,..., T,

thus resulting inT constraints and a single variable used to model the maximum
semideviation.

Gini mean difference. The model with risk measured by Gini mean differengéxf =
I'(x)) (Yitzhaki, 1982), due to the relatidin(x) = u(x)—E{RxA Ry}, may be implemented

as follows:

T T-1 T
maximize (« — Dz+ Y Py +2Y . Y prprter
t=1 t=1 t'=t'+1

subject to (28)—(29) and
Uper < Yy, Uppr < W7 fort'=1,...,. T-L t"=t'+1,...,T,

whereuyy» are unbounded variables to represent{miny;»}. The above LP formulation
usesT (T — 1)/2 variables and (T — 1) constraints to model the Gini mean difference.
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The direct formulation of the GMD model according to (18) takes the form

.
maximize «z— » > py Py

t'=1 t"£t/
subjectto (28)—(29) anddytr > Yy — Yy, Opyr =0 fort’, 1" =1,...,T; t" #1t/,

which containsT (T — 1) non-negative variabled;» andT (T — 1) inequalities to define
them. The symmetry property» = dy is here ignored and, therefore, the number of
variables is doubled in comparison to the previous model. However, varidhleare
associated with the singleton coefficient columns. Hence, while solving the dual instead
of the original primal, the corresponding dual constraints take the form of simple upper
bounds (SUB) (Nazareth, 1987) which are handled implicitly outside the LP matrix. In
other words, the dual contaifq T — 1) variables but the number of constraints (excluding
the SUB structure) is then proportional 1o Such a dual approach may dramatically
improve the LP model efficiency in the case of large number of scenarios.

4. Computational results
4.1 Testing environment

This section is devoted to a comprehensive analysis and comparison of all the discussed
models in a real-life decision environment. In particular, we have compared the practical
performance of the models using datasets from Milan Stock Exchange. Tests have been
conducted on a PC with the Pentium 200 MHz processor by using the CPLEX 6.5 package
(ILOG Inc., 1997). The Barrier solver of CPLEX has been applied to the quadratic
programs resulting from the Markowitz model. Below, firstly we describe the analytical
framework of the experiments. Secondly, we present and discuss the results of an in-sample
analysis, and, thirdly, we provide an extensive out-of-sample comparison of the models.
Due to the large number of solved instances, we have summarized and commented only
the main results.

Since the measure of conditional maximum semideviatigix) offers a continuum of
models evolving from the strongest downside risk averspual¢se to 0) to the complete
risk neutrality 8 = 1), some decisions need to be taken on these parameter values. We
have decided to consider two different values, ge= 0-1 and 05, in order to compare
the corresponding CVaR models versus the standard Minimax and the other models. From
now on, we will refer to such models as CVaRl(Dand CVaR(b), respectively. Note
that = 0.5 corresponds to the median and, therefore, the two analysed CVaR models
can be considered as downside risk models. The mean penalized semidesfBian
of the m-MAD model is defined by the number of penalty levetsand by the weights
1> w2 > ...wm > 0. The latter may be simplified by the use of a single parameter
0 < a < 1 and the power sequenag = ak~1 fork = 2, ..., m. Largerm (or largera)
implies larger downside risk aversion, whadeapproaching 0 (or simplyn = 1) reduces
them-MAD to the standard MAD model. In particular, whan= 1 andm tends to infinity
the Minimax model (maximum semideviation) is obtained as the limiting case. In order to
compare then-MAD model versus the standard MAD, the selected CVaR models and the
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Minimax rule, we have considered the following parameter valoes: 2, whilea = 1
anda = 0-4. We will identify these models as 2-MAD(1) and 2-MAD4), respectively.

We have prepared four sets of data, consisting of the rates of return of different sets of
stocks over periods of about 104 weeks (2 years). Historical realizations have been derived
from the stock index prices as listed in the Milan Stock Exchange. In-sample datasets are
as follows:

Period A (1994-95): 103 weekly observations and 209 securities available;
Period B (1995-96): 104 weekly observations and 220 securities available;
Period C (1996-97): 105 weekly observations and 235 securities available;
Period D (1997-98): 105 weekly observations and 246 securities available.

The choice of a weekly periodicity for the rates of return is consistent with the
requirement of having a large historical sample to reduce estimation errors (see Simaan,
1997). The same number of realizations, but with monthly rates of return, would have
implied, for each set, a historical period longer than 8 years. The rates of return have
been computed as relative variations of the priegs i.e.rj; = (Pj (41 — Pjt)/Pjt; no
dividends have been taken into account. Results are reported with annualized returns.

The number of securities available in each in-sample dataset is different, since the
number of securities quoted with continuity on the market varies according to the period
taken into account. Each security has to meet predefined BSE (Board Stock Exchange)
standards to be quoted with continuity on the market. It is worth noticing that, over the
four periods, more than 90% of the available securities have been suspended at least once
and usually for not less than one week.

Each dataset, corresponding to one of the periods from A to D, has been used to find
the mean-risk/safety portfolios through the solution of all the described models including
that of Markowitz. The target weekly required return has been set to seven different
values (corresponding to the yearly rates 5, 70, 125, 15, 175 and 20%, respectively).
Moreover, for each period and model, the MRP and MSP have been computed. The ex-post
behaviour of all the selected portfolios has been examined out-of-sample at the end of the
12 month investment periods following the portfolios selection date (the last date of the
corresponding in-sample period).

The objective of this section is to provide (when possible) experimental evidence of
what has been discussed from a theoretical point of view.

One may expect that some models will show a more aggressive behaviour, typically
providing larger returns and lower diversification. This is indeed one of the main results
from our computational analysis: while MAD and Markowitz might be classified as the
most ‘risk seeking’ models, Minimax and CVaR{) are the most ‘risk averse’ providing
portfolios with a stable diversification and lower returns.

4.2 In-sample analysis

For each dataset and each level of required rate of return, we have solved all the LP
problems defined in Section 3.3 and the Markowitz (mean—variance) model. As an example
of information one can get from the analysis of the optimal portfolio selected by a given
model, we show Table 3 representing the findings for the Minimax model over Period



LP SOLVABLE MODELS FOR PORTFOLIO OPTIMIZATION 207

TABLE 3 Minimax model—Period A: optimal portfolios characteristics

Min. risk models ¢ = 0) Max. safety modelsy = 1)
o obj. z div. shares obj. z div. shares
% 102 % # min max 1073 %  # min max

— —0972 108 27 23010° 0138 —8804 834 25 45110% 0.129
50 —-0989 500 28 992104 0122 -8804 834 25 451104 0129
75 -1021 750 27 453104 0127 -8804 834 25 451104 0129
100 -1.065 100 25 261104 0109 -8817 100 25 261104 0109
125 —1111 125 26 713104 0109 -8840 125 26 713104 0.109
150 -1.156 150 26 614104 0106 —8864 150 26 614104 0.106
175 —-1.200 175 26 157103 0102 -8891 175 26 157103 0.102
200 —1.243 200 27 419104 0102 -8917 200 27 419104 0102

A. Table 3 is divided into two parts: the first corresponds to the problem formulated as
minimization of the risk measure: (= 0), while the second refers to the maximization of
the corresponding safety measuse=£ 1). Each part consists of five columns showing:
the objective function value (obj.), the portfolio per cent average ret)rie portfolio
diversification (div.) represented by the number of selected securities, and the minimum
and the maximum share within the portfolio, respectively. The average return is reported
as converted onto a yearly basis (e g 8-34% per year is equivalent to a mean return of
0-1542% per week). Each row of the table corresponds to a level of the required geurn (
The first row refers to the MRP and to the MSP, respectively (no required return bound).
Recall that, for a bound on the expected return larger than the MRP (equ&i8% Jer
year), the mean-risk model provides the complete parametrization of theefficient

set. The latter includes the portfolios belonging to the subset of the efficient solutions of
the corresponding mean—safety problem, i.e. the portfolios with required return exceeding
the mean return of the MSP -@1% per year), as proven in Section 3.2. The full set of
tables for all the models in the four periods, along with extensive details on the in-sample
computational results, can be found in Mansiral. (2002).

In Period A (see Table 3) the Minimax model shows a small gap between the return
of the MRP and that of the MSP. However, this is not always the case. Table 4 shows
the mean returns of the MRP and the MSP, respectively, in the four periods for all the
models. The symbol ** means that the mean return is larger than 10000% per yeatr.
Such large values may be caused by low diversified portfolios, the securities of which
have dramatically large weekly mean returns (sometimes close to 100%) over the period.
Usually, large weekly rates of return are a direct outcome of a stock quotation suspension
for excessive price increase: when newly admitted to quotation, the price of a security may
be drastically higher than its last quotation. For instance, the MSP for the MAD model
in Period A consists of only three securities (hamely, Bintermo, Saiag and Simint) and it
returns 1747% per week, which is greater than 40000% on a yearly basis. This is due
to stock Simint, the average weekly return of which, over Period A, is abo@5%

This security price during the period 1994-95 moved from a minimum @®e€ to a
maximum of 154 €. Simint’s quotation was suspended several times in Period A, and in
one case for more than two weeks. Similarly, the 2083 yearly return for the model
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TABLE 4 MRP and MSP mean returns over the four periods (in %)

Period A Period B Period C Period D
MRP MSP  MRP MSP MRP MSP MRP MSP
Minimax 1.08 834 1.60 1259 1041 2617 3451 51.93
MAD 6-31 *»* o 1.21 *x 8.93 30122 2739 55550
2-MAD(0-4) 665 20637 1.18 ** 9.39 25727 3034 22297
2-MAD(1) 588 51063 132 34386 1086 16609 2822 11009
GMD 0-00 7644 000 42797 000 6145 879 10425

CVaR(01) 392 829 160 1259 1041 2736 3528 4835
CVaR(05) 675 1606 116 10170 910 4595 2748 7365
Markowitz 307 34465 139 29734 889 29205 2744 40930

2-MAD(0-4) in period A stems from the high return of the same security. Through the
analysis of Table 4 some conclusions on market trend can also be drawn: the MRP return
tends to increase over time, being lower than 7% for all the models in Period A and being
always larger than 27% (except for GMD) in Period D.

In the following, for the sake of simplicity, we summarize the main figures available
for all the selected portfolios.

Table 5 shows, for all the models and all the time periods, the diversification of the
optimal portfolios obtained for various required rates of return. For instance, in Period A
with @« = 0, the number of selected securities for the Minimax model ranges between
25 and 28 securities, while witlh = 1 the corresponding range is 25-27. The number
of selected securities only takes into account the stocks with a share larger than or
equal to 10%. On average, we have observed that, when the required return increases,
the diversification decreases (with the lowest diversification achieved by the MSP). The
Markowitz model provides the ranges with the largest upper limits but it may also result
in extremely low diversified portfolios (lower limits from 3 to 5). Some other models (like
Minimax and CVaR(dl)) have larger lower limits showing a more stable diversification.
The single security portfolio in Period B for the model CVaR{orresponds to the MRP
and represents an exception, with respect to the diversification, when compared to the
portfolios selected by the same model in the remaining three periods. By comparing Table 4
with Table 5 we can conclude that both the MAD and the Markowitz models generate the
corresponding MSP with the largest mean return but with the lowest diversification.

Table 6 shows the ranges for the minimum and the maximum share held by stocks
for each model in the four periods when= 0 anda = 1, respectively. Notice that the
minimum shares are scaled with 1) while the maximum ones are scaled with—20
(i.e. expressed in %). On average, efficient portfolios with respect to the mean—safety
measures consist of securities with larger minimum share. This is not always the case for
the securities with maximum share. Moreover, the Markowitz model and MAD seem to be
the models which generate more frequently portfolios with a huge maximum share. This
is the case for all the four periods, if we exclude Period B. This suggests that these models
might require the introduction of artificial bounding on the maximum share to guarantee a
necessary diversification.

In order to compare the structure of the various portfolios, we have analysed the ranking
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TABLE 5 Diversification of optimal portfolios

Min. risk models & = 0) Max. safety modelsy( = 1)
A B C D A B C D

Minimax 25-28 38-44 41-46 20-21 25-27 38-40 41 20
MAD 3-37 2-50 12-42 9-33 3 2 12 9
2-MAD(0-4) 9-36 6-51 1545 17-30 9 6 15 17
2-MAD(1) 21-38 24-50 31-46 21-33 21 24 31 21
GMD 28-35 29-41 35-48 19-30 28 29 35 21
CVaR(01) 30-34 38-44 41-46 19-21 30-31 38-40 44 19
CVaR(05) 33-38 139 37-46 25-34 33 37 37 25
Markowitz 5-37 563 3-63 4-34 5 5 3 4

TABLE 6 Minimum and maximum shares over the four periods

Period A Period B Period C Period D
Min Max Min Max Min Max Min Max
x10~4 x1072 x10~4 %1072 x10~4 x1072  x1074 x10°2
a=0
Minimax 023-157 102-138 011-118 123-136 1.94-122 17.8-196 628 117
MAD 0-07-854 124-819 0.10-690 1&-937 0-46—650 249-326 499 263

2-MAD(0-4) 0.01-340 124-329 0.06-159 162-943 0.15-312 241-282 058 185
2-MAD(1) 0-82-193 11.8-158 0.10-208 17.7-923 0.60-183 183-273 416 202
GMD 0-11-627 102-152 0.07-831 130-919 011-123 870-289 2.08-102 1@6-267
CVaR(01) 052-665 94-115 011-118 123-136 044-122 158-195 557 137
CVaR(05) 011-168 123-170 044-1¢" 152-100 028-116 7.30-319 0-39 215
Markowitz 001-101 138-809 0.01-102 131-541 0-01-009 230-884 0-01-507 2@6-762
a=1

Minimax 2:61-157 102-129 011-118 123-136 230 178 151 125
MAD 854 819 690 931 650 281 240 354
2-MAD(0-4) 340 329 159 316 312 250 621 178
2-MAD(1) 193 142 208 179 0-60 183 301 121
GMD 6-27 118 831 149 580 870 425 106
CVaR(01) 070-155 103-107 011-118 123-136 044 158 505 115
CVaR(05) 082-118 123-125 1.59 152 116 7-30 286 120
Markowitz 101 809 102 541 0-09 884 507 762

of the securities which have been selected the most. Table 7 shows the ranking of the first
four securities with the largest share in the portfolios selected by the different models over
Period A, when the required return is set to3% per year. In each cell the name of the
security and its share are given.

Similar tables have been built for the remaining three periods and for different levels of
the required rates of return. The ranking of the securities selected by a specific model may
vary for different levels of the required return, even within the same period. Nevertheless,
some core of the top ranked securities remains quite stable. For instance, with respect
to Period A, wherr = 0 and for all the required rates of return, the maximum share
security selected by the Minimax model is always Bpcomin. The only exception is for
no = 20%; in such case the maximum share is held by Poligraf. As far as the MAD
model is concerned, the maximum share security is Bayergor= 17-5% while in all
the other cases it is Bpcomin, and similarly for the models 2-MABDY®-MAD(0-1) and
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TABLE 7 Ranking of thefirst four securities over Period A; required return 17.5% per year

Security 1 Security 2 Security 3 Security 4
Minimax Bpcomin (0-102 Poligraf (0-101) Pininfrr (0-0956 Cbarlett (0-0809
MAD Bayer  (0-128 Bpcomin (0-110) Cbarlett (0-0974 Bpintra (0-0711)

2-MAD(0-4) Bayer (0-130) Bpcomin (0-106) Cbarlett (0-099 Bpintra (0-0822
2-MAD(1) Chbarlett (0-119 Bayer (0-099 Bpcomin (0-098 Bpintra (0-076)
GMD Bayer (0-111) Bpcomin (0-110) Cbarlett (0-090) Bpintra (0-084)
CVaR(01) Bpcomin (0-105 Chbarlett (0-104) Bplodi (0-077 Poligraf (0-073
CVaR(05) Bayer (0-124 Cbarlett (0-111) Bpcomin (0-095 Premudar(0-062
Markowitz Bayer (0-141) Crvaltel (0-096) Bpintra (0-082 Saesgetp (0-076)

TABLE 8 Ranking of the four top securities over Period A; required return

17.5% per year

Bayer Cbarlett Bpcomin Poligraf
Minimax no 0089 (4) 0102 (1) 0101 (2
MAD 0128 (1) 00974 (3) 0110 (2) 0018 (18)

2-MAD(0-4) 0130 (1) 0099 (3) 0106 (2) 0022 (15)
2-MAD(1) 0098 (2) 0119 (1) 0098 (3) 0031 (12)
GMD 0111 (1) 009 (3) 011 (2) 00314 (13)
CVaR(01) 00487 (10) 0104 (2) 0105 (1) 0073 (4)
CVaR(05) 0124 (1) 0111 (2) 0095 (3) 00197 (16)
Markowitz ~ 0141 (1) 00325 (13) 00578 (7) 00579 (6)

CVaR(05). In 2-MAD(0-1) Cbarlett is the first security only for portfolios withy > 15%,

while in CVaR(05) Bpcomin is the maximum share security fay < 12.5%. For all these
models, one of the last ranked securities is Simint. This security has a large mean return
over Period A, thus also a small investment may imply a large share of the total portfolio
return. In the MSP for the model 2-MAD(1), Simint is ranked at the 11th position, but

it is responsible for 8D2% of the total porfolio return. In the portfolio selected by the
GMD model the maximum share security is Bpintra whega- 1 and Bayer or Bpcomin,
depending on the bound on the expected return, whea 0. The model CVaR(Q)
generates, on average, portfolios very similar to those selected by the Minimax model.
Finally, portfolios selected by the Markowitz model usually contain a large number of
securities with small shares; such securities often cause marginal contributions to the
portfolio return. For all the required levels of the rate of return, the Markowitz model
chooses Bayer as the first security. In Table 8 we analyse the portfolio position (ranking)
of the four securities (namely, Bayer, Cbarlett, Bpcomin and Poligraf) with the largest share
out of all the portfolios selected by the different models in Period A for a required return
equal to 17% per year. The value of the share and the ranking position of the security
(if selected) in each portfolio are given. According to Table 8 we can conclude that, with
respect to the three most important securities in the portfolio ranking, the models tend to
produce similar results. These three top securities cover, however, only about 30% of the
total investment.
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FIG. 3. Perid A - Efficient frontiers for the MAD-type models.

As an additional insight in models comparison, the efficient frontiers, found by the
models over the different periods, can be analysed. In particular, it may be interesting to
compare the efficient frontiers obtained by the different models in the same period. In this
case the analysis strictly depends on the mean/risk space used to compare the models. With
respect to Period A, Fig. 3 shows the efficient frontiers for the models MAD, 2-MAD(1)
and 2-MAD(04), respectively. In particular, panel (a) of the figure represents the frontiers
in the space mean/2-MAD(1), while panel (b) represents those in the space mean/MAD.

For each frontier we have plotted the sequence of points corresponding to the portfolios
selected by each model for the seven target required rates of return. Since in Fig. 3(a) the
frontiers are represented in the mean/2-MAD(1) space, in order to plot the frontier for the
MAD model it has been necessary to compute the value of the 2-level penalized mean
semideviationz,. For the model 2-MAD(®), we have simply summed up the values of
z1 and z; already available. On the other hand, in Fig. 3(b) the frontiers for the models
2-MAD(1) and 2-MAD(04) have been represented by plotting only tlzgivalue (i.e. the
mean absolute semideviation) as a component of the risk. Notice that the relative position
of the frontiers in the two figures is reversed. Hence, the relative position of the different
frontiers may be misleading in terms of models comparison.

4.3 Out-of-sample analysis

In a real-life environment, model comparisons is usually done by means of ex-post
analysis. Several approaches can be used in order to compare models. One of the most
commonly applied methods is based on the representation of the ex-post returns of the
selected portfolios over a given period and on their comparison against a required level
of the return. Unfortunately, the portfolio performances are usually affected by the market
trend which makes it very difficult to draw some uniform conclusions. This can be easily
seen by comparing the behaviour of the portfolios selected by the same model over the
different periods. As an example we show in Figs 4 and 5 the out-of-sample behaviour
of the portfolios selected by the different mean—risk models= 0) with the required
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FIG. 4. Ex-post portfolios performances: Period C, required returb%/ande = 0.

return 175% per year in Periods C and D, respectively. In order to take into account the
overall market performance, in the two figures the Milan Stock Market Index (MIB30)
has been added. This index consists of the 30 most important securities (so-called Blue
Chips) quoted at Milan Stock Exchange. Notice that, in both the periods, it may occur that
the returns of the selected portfolios are lower than the required level and that it usually
happens when the whole market has a negative trend. By comparing the two figures it
emerges that, depending on the period, the models may generate portfolios performing
very similarly (Period C) or very differently (Period D). In particular, in Period D, it is
evident that Minimax and CVaR(Q) are the unique models which provide highly positive
returns when the market index is decreasing, thus confirming their extreme modelling of
the downside risk aversion.

Certainly, the models have been applied directly to the original historical data treated
as future returns scenarios thus losing the trend information. Possible application of some
forecasting procedures prior to the portfolio optimization models, we consider, seems to
be an interesting direction for future research. For references on scenarios generation see
Carino et al. (1998), while on index tracking applications of optimization models see
Worzelet al. (1994); Consiglio & Zenios (2001); Jobst & Zenios (2003).

We have decided to use some performance criteria to compare different models in
the out-of-sample period. For this purpose, we have computed the following nine ex-post
parameters:

e the number of times the mean portfolio return is above the required one (symbol #);
e the minimum, average and maximum portfolio returqif, ra, andrmax, respectively);

e the standard deviation (std) and the semi-standard deviation (s-std);

e the mean absolute deviation (MAD) and the mean downside semideviation (s-MAD);
e the maximum downside deviation (D-DEV).
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FIG. 5. Ex-post portfolios performances: Period D, required returb%/ande = 0.

The minimum, maximum and average ex-post portfolio returns have been converted from
a monthly to yearly basis. All the dispersion measures (std, s-std, MAD, s-MAD and D-
DEV) have been computed with respect to a given target return, thus allowing their direct
comparison in the different models. Actually, we focus our analysis on the case58617
target (yearly) return.

In Tables 9—11 we present the average value of each criterion, over the four periods,
for several models. In each table we also add a line for the MIB30. This allows a direct
comparison of the market index performance with that of the portfolios selected by the
other models.

Table 9 shows the ex-post average performances of the optimal portfolios for the
corresponding risk minimization models & 0) with the required return equal to bPb.
Similarly, Table 10 presents those of the portfolios selected by the models when the
required return is equal to 10% per year, and Table 11 those for the MSPs. Recall that
all three tables share a common required return level, equal -84 used as a target
return for the ex-post dispersion measures.

Let us start with the analysis of the MIB30 performance. In Tables 9 and 10 the MIB30
index has an average return larger than that of all the other portfolios; at the same time the
minimum return is very low and the dispersion measures are impressively larger than those
of the other models. While in Table 9 the MIB30 maximum return is the largest, in Table
10 the models MAD, 2-MAD(&%) and CVaR(&b) show larger values for such parameter.

In Table 11 the models MAD and 2-MAD{@®) have an average return larger than
the MIB30, but show dispersion measures (s-std, s-MAD and D-DEV) similar in value
to those of the MIB30. In general, the MIB30 is the most unstable portfolio with the
largest downside deviation. We can easily conclude that any model is preferable to a direct
investment in the market index.

Table 9 shows that for all the models the average portfolio returns exceed the required
level of 175% per year. Exactly, the average returns are varying from&22 for the
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TABLE 9 Ex-post criteria average values: required return equal to 17.5% and o = 0

# ' min fav 'max std s-std MAD s-MAD D-DEV
Minimax 575 —-96:39% 2393% 27102% 00466 00281 00385 00173 00649

MAD 55 —7729% 2963% 34091% 00477 00243 00366 00144 00553
2-MAD(0-4) 575 —7823% 2841% 34189% 00470 00243 00365 00148 00572
2-MAD(1) 6 —7756% 2437% 36328% 00431 00241 00336 00146 00571
GMD 575 —7647% 2477% 31529% 00424 00241 00336 00145 00567
CVaR(01) 55 —9242% 2246% 27766% 00455 00277 00362 00166 00628
CVaR(05) 6 —7870% 2630% 35798% 00456 00242 00352 00147 00559
Markowitz 6 —7431% 2702% 33748% 00446 00233 00341 00140 00550

MIB30 6-75 —19221% 3550% 58321% 00728 00419 00585 00234 01027

TABLE 10 Ex-post criteria average values: required return equal to 10% and o = 0

# Mmin lav I'max std s-std MAD s-MAD D-DEV
Minimax 6 —84.05% 2775% 33419% 00483 00275 00398 00168 00616
MAD 5.25 —6623% 3500% 68713% 00569 00230 00391 00142 00512

2-MAD(0-4) 575 —7409% 3603% 70171% 00578 00232 00392 00139 00550
2-MAD(1) 575 —6657% 3024% 48745% 00509 00233 00361 00141 00523
GMD 55 —7914% 2947% 38620% 00497 00248 00370 00149 00587
CvaR(01) 6 —80-83% 2607% 34005% 00473 00272 00376 00162 00599
CVaR(05) 575 —6688% 3520% 61125% 00550 00229 00385 00138 00515
Markowitz 575 —7331% 3296% 41281% 00517 00238 00383 00144 00543
MIB30 6-75 —19221% 3550% 58321% 00728 00419 00585 00234 01027

CVaR(01) model to 29%63% for the MAD model. In contrast to what one might expect the
results obtained for models solved with the required return equal to 10% per year (Table 10)
turn out to be better than those with-5% per year. Portfolios average returns over the four
periods for all the models in Table 10 are larger (from0Z86 for CVaR(01) to 3603%

for 2-MAD(0-4)) than those in Table 9. Similarly, with respect to the average minimum
and maximum returns the portfolios built with the required return 10% outperform those
found for 175%. Moreover, downside dispersion measures are, on average, lower in Table
10 than in Table 9 (both computed with respect to the target retufi®d)7 Although, if we

count the number of times (on average) the portfolio return is higher than the target return,
then the results in Table 9 are better than Table 10 with the only exceptions of the Minimax
and CVaR(@1) portfolios. In conclusion, the above observations suggest that the required
return (boundeg) may not be the best way to control ex-post performance.

The better ex-post performances of the portfolios built with a relaxed bound on
the required return (see Table 11) suggest possible advantages of the maximum safety
portfolios. The latter are built with the expected return maximized as a part of the objective
function rather than bounded by a strict constraint. Indeed, for MAD, 2-MAD(aGnd
the Markowitz models, ex-post average returns of the MSPs (Table 11) are even higher
than the corresponding performances of the portfolios found with the required return of
10% (Table 10). On the other hand, for the Minimax, CVaR and GMD models, the average
returns of the MSPs are worse than those of the portfolios built with the required return
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TABLE 11 Ex-post criteria average values: MSPs

# I min law 'max std s-std MAD s-MAD D-DEV
Minimax 5 —99.09% 1718% 24482% 00456 00305 00380 00194 00658
MAD 7.5 —24402% 7503% 194724% 00974 00420 00756 00221 01088
2-MAD(0:4) 65 —15914% 4084% 108485% 00726 00361 00541 00200 00885
2-MAD(1) 6 —11547% 2553% 52725% 00550 00308 00414 00181 00730
GMD 6 —11413% 2182% 30309% 00464 00280 00358 00166 00706
CvaR(01) 5 —97.38% 1834% 23175% 00459 00301 00385 00191 00648
CVaR(05) 625 —8687% 2576% 32068% 00457 00254 00346 00146 00612
Markowitz 65 —52637% 3353% 71477% 00923 00587 00751 00326 01567
MIB30 6-75 —19221% 3550% 58321% 00728 00419 00585 00234 01027

TABLE 12 Best performance: required return equal to 17-5% per year and o = 0

# 'min lav I'max std s-std MAD s-MAD D-DEV

Minimax 1(D) 1(D) 1(C) 1(C)

MAD 1(B) 1(D) 1(C) 1B) 1(A) 1(D)
2-MAD(0-4) 1 (B) 1(D) 1(D)
2-MAD(1) 2(B,D) 1(A) 1(D)

GMD 1(B) 2(B,C) 2 (B,D) 1(C) 2(B,C)
CVaR(01) 1 (D) 1(A) 1(A) 1(A) 1(A)
CVaR(05) 1(B)

Markowitz 1 (B) 2(B,C) 1(B)

MIB30 3(A,B,C) 2(AB) 4

equal to 175% (Table 9). The MSPs, on average, are characterized by a larger gap between
minimum and maximum return as well as larger downside dispersion measures when
compared to the portfolios built with the required return equal to 10 €8%7Moreover,
the MSPs with the largest average and maximum returns (for the Markowitz, MAD and
2-MAD(0-4) models) are simultaneously characterized by the largest downside deviations,
thus generating very unstable results.

Finally, to compare the behaviour of the different modelsdfor 0 and the required
return equal to 1'% per year, in Table 12 we show the number of times, out of the four
periods, a given model has found the best performance for each parameter used in the ex-
post comparison. The corresponding periods in which the result was achieved are given in
parentheses. For instance, the Minimax model found a portfolio with the largest average
return only once in Period D. In the first column the total number of entries is greater than
four since the highest average value for the corresponding parameter is equally reached by
different models in the same period. Notice that the MIB30 index has always the largest
maximum return and in two out of four periods also the best average return, however in no
periods does it succeed in minimizing a measure of dispersion.

Table 12 can be used as a valid means for ex-post model comparison and may represent
auseful tool as support for investors’ decisions. Similar results are also available for other
levels of the required rate of return.
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Concluding remarks

The classical Markowitz model uses variance as the risk measure, thus resulting in
a quadratic optimization problem. Several alternative risk measures were introduced
thereafter which are computationally attractive as (for discrete random variables) they
result in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have to
meet numerous side constraints and take into account transaction costs. A gamut of LP
solvable portfolio optimization models has been presented in the literature thus generating
aneed for their classification and comparison. In this paper we have provided a systematic
overview of these models with a wide discussion of their theoretical properties. We have
shown that all the risk measures used in the LP solvable models can be derived from the
basic SSD shortfall criteria. This has allowed us to classify the models with respect to the
use of risk measures or the corresponding safety measures.

Theoretical properties, although crucial for understanding the modelling concepts,
provide only a very limited background for comparison of the final optimization models.
Computational results are known only for individual models and not all the models
have been tested in a real-life decision environment. The second part of this paper has
presented a comprehensive experimental study comparing practical performances of the
LP solvable portfolio optimization models on real-life stock market data. The efficient
frontiers representation is mainly useful for evaluating a portfolio’s relative position in a
given mean/risk space and not for direct model comparison. Therefore, the experimental
analysis has focused on average properties and performances of the models. This allows us
to draw several interesting conclusions, some of which may deserve further research.

First of all, our analysis has shown that although the LP solvable models allow one
to avoid multiple marginal shares within the optimal portfolio, they usually provide a
reasonable diversification. Actually, for various datasets and varying values of the required
return bound, our experiments show that many of the LP solvable models provide a more
stable diversification than that given by the Markowitz model (see Table 5). In terms
of average ex-post performances (Tables 9-11), the MAD type models, similar to the
Markowitz one, generate the portfolios with the largest returns but also entailing the
largest risk of underachievement (expressed with various downside measures). On the
other hand, the GMD and CVaRf) models demonstrate quite good average returns with
relatively low risk of underachievement. This suggests further detailed research on a proper
parameter selection within the CVaR and theMAD models. One may also try to take
advantage of the LP models’ simplicity by combining the risk criteria of different models
to achieve better overall performances.

Further, our analysis shows that a historical period may affect average returns and that
all the models (including the Markowitz one) are preferable to a direct investment in the
market index. Moreover, the level of the required return does not seem to represent the best
way to control ex-post performances, as a lower level may result in higher achievements
(Tables 9 and 10). Therefore, the LP solvable models as well as all the mean—risk models,
deserve further work on their operational implementations to improve their capabilities to
adjust to the investor's preferences and to control effectively the portfolio performances.
In our experiments, the models have been applied directly to the original historical data
treated as equally probable scenarios of the future return while possible application of
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some scenario generation procedures (see Catiab, 1998; Klaassen, 1998; Zenios &
McKendall, 1993; Mulveyet al., 2000; Jobst & Zenios, 2004) seems to be a necessary first
step toward the operational implementations. Note that the LP solvable models themselves
allow one to consider scenarios with different probabilities although the experiments have
been limited to the equally probable scenarios. Nevertheless, further work on better ways
to control the portfolio selection process within the mean-risk modelling environment
remains an important direction for future research.
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Appendix

THEOREM1 Let f(x) be a convex function of portfoli andx’ € P be its global
minimizer, i.e.f (x) < f(x) for all x € P. The bounded minimization problem

min {f(x) : w(X) = po, x € P} (AL)
has the following properties:

oif 1o < n(x"), thenx® is an optimal solution to (A1);

eif 110 > n(x"), then the optimal solution of the fixed return problem
min {f(X) : w(X) = o, X € P} (A2)
is also an optimal solution to (Al).

Proof. If uo < n(x"), thenx' is a feasible solution to (A1) and, as a global minimizer, it
is optimal.

Let uo > n(x") and letx® be an optimal solution to the corresponding fixed return
problem (A2). Consider portfoli& € P such thatu(X) > uo and let us defin&® =
A= 0xF +axwith x = (@ — n(xM)/(w®) — nx")). By the convexity of set
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P, portfolio X° is feasible and, due to the convexity of functidiix), one getsf (X) <
A—=nfx" +1f(x) < (%), sincex’ is the global minimizer. Moreover (X°) = 1o
and thereforef (x%) < f(x%) < f (%) which proves the optimality of® for problem (A1).

O

THEOREM2 Let o(x) be a convex risk measure anél € P be the maximum safety
portfolio, i.e. an optimal solution to problem (25). The maximum safety bounded problem
(26) has the following properties:

oif 1o < w(x®), then the maximum safety portfolid is an optimal solution to (26);

oif o > w(x®), then the optimal solution to the corresponding problem of risk
minimization under fixed return (24) is the optimal solution to both bounded problems:
the corresponding minimum risk problem (23) and the maximum safety problem (26).

Proof. The theorem follows from Theorem 1 applied tgx) = o(x) — u(x) which is
a wonvex function. The case gfg < w(x%) is obvious as the minimization of (x) is
equivalent to the safety maximization. For the second case one needs to notick tihat
optimal solution to problem (24), due to restrictigiix) = w0, isalso an optimal solution
to the fixed return problem (A2) with the performance functioix) = o(xX) — u(x). O

THEOREM 3 Let o(x) > 0 be aconvex, positively homogeneous and shift-independent
(dispersion type) risk measure. If the measure satisfies additionally the SSD consistency

Re =so Rev = u(X)—oX) = nXX") —o(X")

then the corresponding performance functibfx) = o(X) — w(x) fulfils the coherence
axioms (Artznest al., 1999).

Proof. The axioms are: translation invariance, positive homogeneity, subadditivity,
monotonicity Ry > Ry = f (X)) < (X)), and relevanceRx < 0, Ry #0 = f(x) <

0). The composite objective .(x) + §(x) does satisfy the first three axioms by assumed
properties ofo(x). Moreover, due to the consistency with stochastic dominance, it also
satisfies monotonicity and relevance, becaBge> Ry = Ry >, Ryr. O

THEOREM4 Let o(X) > 0 be aconvex, positively homogeneous and shift-independent
(dispersion type) risk measure. If the measure additionally meets the risk scaling bound

Re=20 = o <puX) (A3)

then the corresponding performance functibfx) = o(X) — w(x) fulfils the coherence
axioms (Artzneset al., 1999).

Proof. By assumed properties @f(x), the performance functiorf (xX) = o(X) — u(X)

does satisfy the axioms of translation invariance, positive homogeneity, and subadditivity.
Further, if Ry > Ry, thenRy = Ry + (Ry — Ryr) and Ry — Ry» > 0. Hence, the
subadditivity together with the risk scaling bound (A3) imply that the performance function
f (x) satisfies also the axioms of monotonicity and relevance. O



