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a b s t r a c t

The problem of averaging outcomes under several scenarios to form overall objective func-
tions is of considerable importance in decision support under uncertainty. The so-called
Weighted OWA (WOWA) aggregation offers a well-suited approach to this problem. The
WOWA aggregation, similar to the classical ordered weighted averaging (OWA), uses the
preferential weights assigned to the ordered values (i.e. to the worst value, the second
worst and so on) rather than to the specific criteria. This allows one to model various pref-
erences with respect to the risk. Simultaneously, importance weighting of scenarios can be
introduced. In this paper, we analyze solution procedures for optimization problems with
the WOWA objective functions related to decisions under risk. Linear programming formu-
lations are introduced for optimization of the WOWA objective with monotonic preferen-
tial weights thus representing risk averse preferences. Their computational efficiency is
demonstrated.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Consider a decision problem under uncertainty where the decision is based on the maximization of a scalar (real valued)
outcome. The final outcome is uncertain and only its realizations under various scenarios are known. Exactly, for each sce-
nario Siði ¼ 1; . . . ;mÞ the corresponding outcome realization is given as a function of the decision variables yi ¼ fiðxÞ. We are
interested in larger outcomes under each scenario. Hence, the decision under uncertainty can be considered a multiple cri-
teria optimization problem:
max
x2F

ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ; ð1Þ
where x denotes a vector of decision variables to be selected within the feasible set F � Rq of constraints under consider-
ation and fðxÞ ¼ ðf1ðxÞ; . . . ; fmðxÞÞ is a vector function that maps the feasible set F into the criterion space Rm.

From the perspective of decisions under uncertainty, model (1) only specifies that we are interested in maximization of all
objective functions fi for i 2 I ¼ f1;2; . . . ;mg. In order to make it operational, one needs to assume some solution concept
specifying what it means to maximize multiple objective functions. The solution concepts are defined by aggregation func-
tions a : Rm ! R. Thus the multiple criteria problem (1) is replaced with the (scalar) maximization problem
max
x2Q

aðfðxÞÞ:
The most commonly used aggregation is based on the weighted mean where positive importance weights piði ¼ 1; . . . ;mÞ are
allocated to several scenarios
. All rights reserved.
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ApðyÞ ¼
Xm

i¼1

yipi: ð2Þ
The weights are typically normalized to the total 1
Pm

i¼1 pi ¼ 1
� �

with possible interpretation as scenarios (subjective) prob-
abilities. The weighted mean allowing to define the importance of scenarios does not allow one to model the decision ma-
ker’s preferences regarding the distribution of outcomes. In particular, it does not allow one to model risk averse preferences
[17].

The preference weights can be effectively introduced within the fuzzy optimization methodology with the so-called Or-
dered Weighted Averaging (OWA) aggregation developed by Yager [37]. In the OWA aggregation the weights are assigned to
the ordered values (i.e. to the largest value, the second largest and so on) rather than to the specific criteria. This guarantees a
possibility to model various preferences with respect to the risk. Since its introduction, the OWA aggregation has been suc-
cessfully applied to many fields of decision making [41,42,16].

The OWA operator allows one to model various aggregation functions from the maximum through the arithmetic mean to
the minimum. Thus, it enables modeling of various preferences from the optimistic to the pessimistic one [7]. On the other
hand, the OWA does not allow one to allocate any importance weights to specific scenarios. Actually, the weighted mean (2)
cannot be expressed in terms of the OWA aggregations. Several attempts have been made to incorporate importance weight-
ing into the OWA operator [40,8]. Finally, Torra [29] has incorporated importance weighting into the OWA operator within
the Weighted OWA (WOWA) aggregation. The WOWA averaging is defined by two weighting vectors: the preferential
weights w and the importance weights p. It covers both the weighted means (defined with p) and the OWA averages (de-
fined with w) as special cases. Actually, the WOWA average is a particular case of Choquet integral using a distorted prob-
ability as the measure [30]. Since its introduction, the WOWA operator has been successfully applied to many fields of
decision making [33] including multicriteria optimization [18] and metadata aggregation problems [15].

Example 1. As an illustration we will use simple portfolio optimization problem. An investor has to allocate his capital
among various securities, thus assigning a nonnegative share of the capital to each security. During the investment period,
each security generates a random rate of return. This results in a change of the capital invested (observed at the end of the
period) depending on the earlier allocation decisions.

Following the (discrete) scenario analysis approach the portfolio optimization problem can be formulated as follows [16].
There is given a set J ¼ f1;2; . . . ; qg of securities for an investment. We assume, as usual, that for each security j 2 J there is
given a vector of data ðcijÞi¼1;...;m, where cij is the observed (or forecasted) rate of return of security j under scenario i
(hereafter referred to as outcome). We consider discrete distributions of returns defined by the finite set I ¼ f1;2; . . . ;mg of
scenarios. The outcome data forms an m� q matrix C ¼ ðcijÞi¼1;...;m;j¼1;...;q whose columns correspond to securities while rows
ci ¼ ðcijÞj¼1;2;...;q correspond to outcomes for different scenarios. Further, let x ¼ ðxjÞj¼1;2;...;q denote the vector of decision
variables defining a portfolio. Each variable xj expresses the portion of the capital invested in the corresponding security.
Under scenario i portfolio x generates return

Pq
j¼1cijxj
y ¼ Cx ¼ ðc1x; c2x; . . . ; cmxÞ:
The portfolio selection problem can be considered as an LP problem with m objective functions fiðxÞ ¼ cix ¼
Pq

j¼1cijxj to be
maximized [16]:
max
x

Cx :
Xq

j¼1

xj ¼ 1; xj P 0 for j ¼ 1; . . . ; q

( )
: ð3Þ
Hence, our portfolio optimization problem can be considered a special case of the multiple criteria problem (1) and one may
seek an optimal portfolio with some criteria aggregation.

Consider a simplified problem with 2 securities and 3 scenarios. The rates of return (in percents) are given in Table 1.
Portfolio x ¼ ðx1; x2Þ generates then rate of return �9x1 þ 7x2 under Scenario 1, 6x1 þ 7x2 under Scenario 2, and 9x1 � 5x2

under Scenario 3. For instance, portfolio (0.5,0.5) generates rate of return �1% under Scenario 1, 13.5% under Scenario 2, and
2% under Scenario 2. The multiple criteria LP model (3) for problem from Table 1 takes the following form:
max
x1 ;x2

fð�9x1 þ 7x2;6x1 þ 7x2;9x1 � 5x2Þ : x1 þ x2 ¼ 1; x1; x2 P 0g:
Introducing importance weights p1; p2 and p2 for the corresponding scenario one may optimize the weighted average
p1ð�9x1 þ 7x2Þ þ p2ð6x1 þ 7x2Þ þ p3ð9x1 � 5x2Þ getting the scalarized LP problem
f return (in percents) for simplified instance of the portfolio optimization problem.

Security 1 Security 2 Portfolio x

o 1 �9 �7 �9x1 þ 7x2

o 2 �6 �7 6x1 þ 7x2

o 2 �9 �5 9x1 � 5x2
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max
x1 ;x2

fð�9p1 þ 6p2 þ 9p3Þx1 þ ð7p1 þ 7p2 � 5p3Þx2 : x1 þ x2 ¼ 1; x1; x2 P 0g:
Such a model results, however, in very risky optimal solutions defined as single security portfolios. Indeed, portfolio ð1;0Þ is
the unique optimal solution when �9p1 þ 6p2 þ 9p3 > 7p1 þ 7p2 � 5p3 and portfolio (0, 1) when �9p1 þ 6p2 þ 9p3 <

7p1 þ 7p2 � 5p3.
The risk aversion preferences may be modeled with the OWA preferential weights. For instance, with preferential weights

w ¼ ð0;0;1Þ one gets max–min aggregation
max
x1 ;x2

fminf�9x1 þ 7x2;6x1 þ 7x2;9x1 � 5x2g : x1 þ x2 ¼ 1; x1; x2 P 0g
leading to the optimal portfolio (0.4,0.6) guaranteeing rather low but positive return under each scenario (0.6% under Sce-
narios 1 or 3, and 7.6% under Scenario 2).

The WOWA aggregation enables one to model both the importance of scenarios as well as the risk averse preferences. We
show further that the corresponding WOWA optimization problem can be modeled with auxiliary linear inequalities and
effectively solved.

While many researchers have paid attention to the problem of OWA weights determination [1–3,35] the OWA and
WOWA optimization problems have not gain much attention. The weighting of the ordered outcome values causes that
the OWA optimization problem is nonlinear even for linear programming (LP) formulation of the original constraints and
criteria. Yager [38] has shown that the OWA optimization can be converted into a mixed integer programming problem.
We have shown [21,24] that the OWA optimization with monotonic weights can be formed as a standard linear program
of higher dimension. Recently, similar concepts we have outlined for the WOWA optimization [22,23]. In this paper, we ana-
lyze in details solution models for optimization problems with the WOWA objective functions modeling decisions under risk.
A linear programming formulation is introduced and analyzed for optimization of the WOWA objective with increasing pref-
erential weights representing risk averse preferences. The paper is organized as follows. In the next section, we introduce
formally the WOWA operator and derive some alternative computational formulas based on direct application of the pref-
erential weights to the conditional means with respect to the importance weights. There is also introduced a generalized
WOWA aggregation where the preferential weights are allocated to an arbitrarily defined grid of ordered outcomes. Further,
in Section 3, we analyze the orness/andness properties of the WOWA operator with monotonic preferential weights and the
corresponding risk profiles. In Section 4, we introduce the LP formulations for maximization of the WOWA and the general-
ized WOWA aggregations with increasing preferential weights. Finally, in Section 5 we demonstrate computational effi-
ciency of the introduced models.
2. The Weighted OWA aggregation

2.1. The WOWA operator

Let w ¼ ðw1; . . . ;wmÞ be a weighting vector of dimension m such that wi P 0 for i ¼ 1; . . . ;m and
Pm

i¼1wi ¼ 1. The corre-
sponding OWA aggregation of outcomes y ¼ ðy1; . . . ; ymÞ can be mathematically formalized as follows [37]. First, we intro-
duce the ordering map H : Rm ! Rm such that HðyÞ ¼ ðh1ðyÞ; h2ðyÞ; . . . ; hmðyÞÞ, where h1ðyÞP h2ðyÞP � � �P hmðyÞ and there
exists a permutation s of set I such that hiðyÞ ¼ ysðiÞ for i ¼ 1; . . . ;m. Further, we apply the weighted sum aggregation to or-
dered achievement vectors HðyÞ, i.e. the OWA aggregation has the following form:
AwðyÞ ¼
Xm

i¼1

wihiðyÞ: ð4Þ
The OWA aggregation (4) allows to model various aggregation functions from the maximum (w1 ¼ 1;wi ¼ 0 for i ¼ 2; . . . ;m)
through the arithmetic mean (wi ¼ 1=m for i ¼ 1; . . . ;m) to the minimum (wm ¼ 1;wi ¼ 0 for i ¼ 1; . . . ;m� 1).

Again, let w ¼ ðw1; . . . ;wmÞ be an m-dimensional vector of preferential weights wi P 0 for i ¼ 1; . . . ;m and
Pm

i¼1wi ¼ 1.
Further, let p ¼ ðp1; . . . ; pmÞ be an m-dimensional vector of importance weights such that pi P 0 for i ¼ 1; . . . ;m andPm

i¼1pi ¼ 1. The corresponding Weighted OWA aggregation of vector y ¼ ðy1; . . . ; ymÞ is defined [29,32] as follows:
Aw;pðyÞ ¼
Xm

i¼1

xihiðyÞ with xi ¼ w�
X
k6i

psðkÞ

 !
�w�

X
k<i

psðkÞ

 !
; ð5Þ
where w� is an increasing function interpolating points i
m ;
P

k6iwk

� �
together with the point (0.0) and s representing the

ordering permutation for y (i.e. ysðiÞ ¼ hiðyÞ). Moreover, function w� is required to be a straight line when the points can
be interpolated in this way. We will focus our analysis on the piecewise linear interpolation function w� which is the sim-
plest form of the required interpolation.

Example 2. Consider outcome vectors y0 ¼ ð3;1;2;4;5Þ and y00 ¼ ð1;1;2;6;4Þ where individual outcomes correspond to five
scenarios. While introducing preferential weights w ¼ ð0:05;0:1;0:15;0:2;0:5Þ one may calculate the OWA averages:
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Awðy0Þ ¼ 0:05 � 5þ 0:1 � 4þ 0:15 � 3þ 0:2 � 2þ 0:5 � 1 ¼ 2 and Awðy00Þ ¼ 0:05 � 6þ 0:1 � 4þ 0:15 � 2þ 0:2 � 1þ 0:5 � 1 ¼ 1:7.
Further, let us introduce importance weights p ¼ ð0:1;0:1;0:2;0:5;0:1Þ which means that results under the third scenario
are 2 times more important then those under scenario 1, 2 or 5, while the results under scenario 4 are even 5 times more
important. To take into account the importance weights in the WOWA aggregation (5) we introduce piecewise linear
function
w�ðnÞ ¼

0:05n=0:2 for 0 6 n 6 0:2;
0:05þ 0:10ðn� 0:2Þ=0:2 for 0:2 < n 6 0:4;
0:15þ 0:15ðn� 0:4Þ=0:2 for 0:4 < n 6 0:6;
0:3þ 0:2ðn� 0:6Þ=0:2 for 0:6 < n 6 0:8;
0:5þ 0:5ðn� 0:8Þ=0:2 for 0:8 < n 6 1:0

8>>>>>><
>>>>>>:
and calculate weights xi according to formula (5) as w� increments corresponding to importance weights of the ordered out-
comes, as illustrated in Fig. 1. In particular, one get x1 ¼ w�ðp5Þ ¼ 0:025 and x2 ¼ w�ðp5 þ p4Þ �w�ðp5Þ ¼ 0:275 for vector y0

while x1 ¼ w�ðp4Þ ¼ 0:225 and x2 ¼ w�ðp4 þ p5Þ �w�ðp4Þ ¼ 0:075 for vector y00. Finally, Aw;pðy0Þ ¼ 0:025 � 5þ
0:275 � 4þ 0:1 � 3þ 0:35 � 2þ 0:25 � 1 ¼ 2:475 and Aw;pðy00Þ ¼ 0:225 � 6þ 0:075 � 4þ 0:2 � 2þ 0:25 � 1þ 0:25 � 1 ¼ 2:55.

Note that one may alternatively compute the WOWA values by using the importance weights to replicate corresponding
scenarios and calculate then OWA aggregations. In the case of our importance weights p we need to consider five copies of
scenario 4 and two copies of scenario 3 thus generating corresponding vectors ~y0 ¼ ð3;1;2;2;4;4;4;4;4;5Þ and
~y00 ¼ ð1;1;2;2;6;6;6;6;6;4Þ of ten equally important outcomes. Original five preferential weights must be then applied
respectively to the average of the two largest outcomes, the average of the next two largest outcomes etc. Indeed, we get
Aw;pðy0Þ ¼ 0:05 � 4:5þ 0:1 � 4þ 0:15 � 4þ 0:2 � 2:5þ 0:5 � 1:5 ¼ 2:475 and Aw;pðy00Þ ¼ 0:05 � 6þ 0:1 � 6þ 0:15 � 5þ 0:2 � 2þ
0:5 � 1 ¼ 2:55. We will further formalize this approach and take its advantages to build the LP computational models.
2.2. Alternative WOWA formulas

Function w� can be defined by its generation function g with the formula w�ðaÞ ¼
R a

0 gðnÞdn. Introducing breakpoints
ai ¼

P
k6ipsðkÞ and a0 ¼ 0 allows us to express
xi ¼
Z ai

0
gðnÞdn�

Z ai�1

0
gðnÞdn ¼

Z ai

ai�1

gðnÞdn
and the entire WOWA aggregation as
Aw;pðyÞ ¼
Xm

i¼1

hiðyÞ
Z ai

ai�1

gðnÞdn ¼
Z 1

0
gðnÞFð�1Þ

y ðnÞdn; ð6Þ
where Fð�1Þ
y is the stepwise function Fð�1Þ

y ðnÞ ¼ hiðyÞ for ai�1 < n 6 ai. It can also be mathematically formalized as follows.
First, we introduce the right-continuous cumulative distribution function (cdf):
Fig. 1. Definition of weights xi for Example 2: (a) vector y0 , (b) vector y00 .
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FyðdÞ ¼
Xm

i¼1

pidiðdÞ where diðdÞ ¼
1 if yi 6 d;

0 otherwise;

�
ð7Þ
which for any real (outcome) value d provides the measure of outcomes smaller or equal to d. Next, we introduce the quan-
tile function Fð�1Þ

y ¼ inffg : FyðgÞP ng for 0 < n 6 1 as the left-continuous inverse of the cumulative distribution function Fy ,
and finally Fð�1Þ

y ðnÞ ¼ Fð�1Þ
y ð1� nÞ.

Formula (6) provides the most general expression of the WOWA aggregation allowing for expansion to continuous case.
The original definition of WOWA allows one to build various interpolation functions w� [31] thus to use different generation
functions g in formula (6). Let us focus our analysis on the simplest piecewise linear interpolation function w�. Note, how-
ever, that the piecewise linear functions may be built with various number of breakpoints, not necessarily m. Thus, any non-
linear function can be well approximated by a piecewise linear function with appropriate number of breakpoints. Therefore,
we will consider weights vectors w of dimension n not necessarily equal to m. Any such piecewise linear interpolation func-
tion w� can be expressed with the stepwise generation function
gðnÞ ¼ nwk for ðk� 1Þ=n < n 6 k=n; k ¼ 1; . . . ;n: ð8Þ
This leads us to the following specification of formula (6):
Aw;pðyÞ ¼
Xn

k¼1

wkn
Z k=n

ðk�1Þ=n
Fð�1Þ

y ðnÞdn: ð9Þ
Note that n
R k=n
ðk�1Þ=n Fð�1Þ

y ðnÞdn represents the average within the kth portion of 1=n largest outcomes, the corresponding con-
ditional mean [20,25]. Hence, formula (10) defines WOWA aggregations with preferential weights w as the corresponding
OWA aggregation but applied to the conditional means calculated according to the importance weights p instead of the ori-
ginal outcomes. Fig. 2 illustrates application of formula (10) for computation of the WOWA aggregations in Example 2.

We will treat formula (9) as a formal definition of the WOWA aggregation of m-dimensional outcomes y defined by the m-
dimensional importance weights p and the n-dimensional preferential weights w.

Formula (9) may be reformulated to use the left-tail averages
Aw;pðyÞ ¼
Xn

k¼1

wkn
Z k=n

ðk�1Þ=n
Fð�1Þ

y ð1� nÞdn ¼
Xn

k¼1

wkn
Z ðk�1Þ=n

0
Fð�1Þ

y ð1� nÞdn�
Z k=n

0
Fð�1Þ

y ð1� nÞdn

 !

¼
Xn

k¼1

nðwk �wk�1Þ
Z k=n

0
Fð�1Þ

y ð1� nÞdn; ð10Þ
where w0 ¼ 0. Further, taking into account 1� k=n ¼ ðn� kÞ=n we get
Aw;pðyÞ ¼
Xn

k¼1

w0kL y;p;
k
n

� �
ð11Þ
with weights
w0k ¼ nðwn�kþ1 �wn�kÞ for k ¼ 1; . . . ;n� 1 and w0n ¼ nw1 ð12Þ
and Lðy;p; nÞ defined as function of n by left-tail integrating of Fð�1Þ
y , i.e.
Lðy;p;0Þ ¼ 0 and Lðy;p; nÞ ¼
Z n

0
Fð�1Þ

y ðaÞda for 0 < n 6 1: ð13Þ
Fig. 2. Formula (10) applied to calculations in Example 2 (a) vector y0 , (b) vector y00 .
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Graph of function Lðy;p; nÞ takes the form of convex piecewise linear curve, connecting (0,0) and the point ð1;ApðyÞÞ as
Lðy;p;1Þ ¼

R 1
0 Fð�1Þ

y ðaÞda ¼ ApðyÞ. It is called Absolute Lorenz Curve (ALC) [19], due to its relation to the classical Lorenz curve
[12] used in income economics as a cumulative population versus income curve to compare equity of income distributions.
Indeed, the Lorenz curve may be viewed [5] as function LCðnÞ ¼ 1

ApðyÞ
R n

0 Fð�1Þ
y ðaÞda thus equivalent to function Lðy;p; nÞ nor-

malized by the distribution average. Therefore, the classical Lorenz model is focused on equity while ignoring the average
result and any perfectly equal distribution of income has the diagonal line as the Lorenz curve (the same independently from
the income value). Within the ALC model both equity and values of outcomes are represented. Fig. 3 shows the absolute Lor-
enz curves (13) for data from Example 2. We will use formula (11) to prove some properties of the WOWA aggregation as
well as to develop linear programming optimization models.

2.3. Generalized WOWA aggregation

WOWA aggregation follows the OWA preference model thus requiring the preferential weights to be defined for all k=n-
quantiles (k ¼ 1;2; . . . ;n). Although in various practical problems of decisions under risk the preferences might be modeled
in relation with a number of preselected quantiles. For instance, the risk measure Value-at-Risk (VaR) representing specific
b-quantile values VaRbðyÞ ¼ Fð�1Þ

y ðbÞ is commonly used in banking for b equal to 0.01 or 0.05. Formula (6) allows us to define a
generalized WOWA aggregation where the preferential weights wk are allocated to an arbitrarily defined grid of ordered out-
comes defined by quantile breakpoints b0 ¼ 0 < b1 < � � � < bn�1 < bn ¼ 1, i.e. the aggregation defined with a piecewise linear
function w�b introduced by the stepwise generation function
gbðnÞ ¼
wk

bk � bk�1
for bk�1 < n 6 bk; k ¼ 1; . . . ;n: ð14Þ
Such defined w�bðaÞ ¼
R a

0 gbðnÞdn is an increasing piecewise linear function interpolating points bk;
P

i6kwi
� �

together with the
point (0.0). Formula (14) applied within (6) leads us to the following generalization of the formula (10):
Aw;b;pðyÞ ¼
Xn

k¼1

wk

bk � bk�1

Z bk

bk�1

Fð�1Þ
y ðnÞdn: ð15Þ
For instance, the generalized WOWA aggregations Aw;b;pðyÞwith preferential weights w ¼ ð0:05;0:15;0:8Þ allocated to the grid
b ¼ ð0:2;0:5;1:0Þ calculated for vectors y0; y00 and importance weights from Example 2 results in: Aw;b;pðy0Þ ¼ 0:05 � 4:5þ
0:15 � 4þ 0:8 � 2:4 ¼ 2:745 and Aw;b;pðy00Þ ¼ 0:05 � 6þ 0:15 � 6þ 0:8 � 2 ¼ 2:8. This is illustrated in Fig. 4.

Similar to (11), the generalized WOWA aggregation may be expressed with the tail averages as
Aw;b;pðyÞ ¼
Xn

k¼1

wk

bk � bk�1
ðLðy;p;1� bk�1Þ � Lðy;p;1� bkÞÞ ¼

Xn

k¼1

w00kLðy;p;1� bk�1Þ; ð16Þ
where Lðy;p; nÞ is defined by left-tail integrating of Fð�1Þ
y according to formula (13) and weights w00k are defined as
w00k ¼
wk

bk � bk�1
� wk�1

bk�1 � bk�2
for k ¼ 2; . . . ; n and w001 ¼

w1

b1
: ð17Þ
Note that contrary to (11), for the case of general breakpoints bk we cannot take advantages of the grid symmetry replacing
values 1� bk with other breakpoints. Therefore, we stay with weights w00k assigned to tail averages Lðy;p;1� bk�1Þ.
Fig. 3. Absolute Lorenz curves (13) for Example 2: (a) vector y0 , (b) vector y00 .



Fig. 4. Formula (15) applied to calculations of the generalized WOWA aggregations in Example 2: (a) vector y0 , (b) vector y00 .
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As a very particular case of the generalized WOWA, for a single breakpoint between 0 and 1, i.e. n ¼ 2, for b1 ¼ 1� b with
some 0 < b < 1 and weights w1 ¼ 0;w2 ¼ 1 one gets
Aw;b;pðyÞ ¼
1
b

Z 1

1�b
Fð�1Þ

y ðnÞdn ¼ 1
b

Z b

0
Fð�1Þ

y ðnÞdn ð18Þ
thus representing the risk measure known as Tail Value-at-Risk or Conditional Value-at-Risk (CVaR) and becoming recently
very popular in financial applications [4].

3. The orness measures and risk preferences

The OWA aggregation may model various preferences from the optimistic (max) to the pessimistic (min). Yager [37]
introduced a well appealing concept of the orness measure to characterize the OWA operators. The degree of orness asso-
ciated with the OWA operator AwðyÞ is defined as
ornessðwÞ ¼
Xm

i¼1

m� i
m� 1

wi: ð19Þ
For the max aggregation representing the fuzzy ‘or’ operator with weights w ¼ ð1;0; . . . ;0Þ one gets ornessðwÞ ¼ 1 while for
the min aggregation representing the fuzzy ‘and’ operator with weights w ¼ ð0; . . . ; 0;1Þ one has ornessðwÞ ¼ 0. For the aver-
age (arithmetic mean) one gets ornessðð1=m;1=m; . . . ;1=mÞÞ ¼ 1=2. Actually, one may consider a complementary measure of
andness defined as andnessðwÞ ¼ 1� ornessðwÞ. OWA aggregations with orness greater or equal 1/2 are considered or-like
whereas the aggregations with orness smaller or equal 1/2 are treated as and-like. The former correspond to rather optimis-
tic preferences while the latter represents rather pessimistic preferences. The OWA aggregations with monotonic weights
are either or-like or and-like. Exactly, decreasing weights w1 P w2 P � � �P wm define an or-like OWA operator, while
increasing weights w1 6 w2 6 � � � 6 wm define an and-like OWA operator [11].

Yager [39] proposed to define the OWA weighting vectors via the regular increasing monotone (RIM) quantifiers, which
provide a dimension independent description of the aggregation. A fuzzy subset Q of the real line is called a RIM quantifier if
Q is (weakly) increasing with Qð0Þ ¼ 0 and Qð1Þ ¼ 1. The OWA weights can be defined with a RIM quantifier Q as
wi ¼ Qði=mÞ � Qðði� 1Þ=mÞ, and the orness measure can be extended to a RIM quantifier (according to m!1) as follows
[39]:
ornessðQÞ ¼
Z 1

0
QðaÞda: ð20Þ
Thus, the orness of a RIM quantifier is equal to the area under it. The measure takes the values between 0 (achieved for
Qð1Þ ¼ 1 and QðaÞ ¼ 0 for all other a) and 1 (achieved for Qð0Þ ¼ 0 and QðaÞ ¼ 1 for all other a). In particular,
ornessðQÞ ¼ 1=2 for QðaÞ ¼ a which is generated by equal weights wk ¼ 1=n. Formula (20) allows one to define the orness
of the WOWA aggregation (5) which can be viewed with the RIM quantifier QðaÞ ¼ w�ðaÞ [10]. Let us consider piecewise lin-
ear function Q ¼ w� defined by weights vectors w of dimension n according to the stepwise generation function (8). One may
easily notice that decreasing weights w1 P w2 P � � �P wn generate a strictly increasing concave curve QðaÞP a thus guar-
anteeing the or-likeness of the WOWA operator. Similarly, increasing weights w1 6 w2 6 � � � 6 wn generate a strictly increas-
ing convex curve QðaÞ 6 a thus guaranteeing the and-likeness of the WOWA operator. With respect to decisions under risk
the and-likeness of the scenarios aggregation represents the risk averse preferences and the WOWA objective functions with
increasing preferential weights (interpreted as probabilities) represent the risk averse aggregations of outcomes under sev-
eral scenarios.
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The classical model of choice under uncertainty, following the von Neumann and Morgenstern’s Expected Utility (EU) the-
ory [34], is based on maximization of quantities

R1
�1 uðnÞdFyðnÞ where the risk preferences are represented by the utility

function u. The risk averse preferences are characterized by increasing concave utility functions. The most general mathe-
matical model of the risk averse preferences is then given by the Second Stochastic Dominance (SSD) relation [14]:
Fy0 �SSD Fy00 iff

R a
�1 Fy0 ðnÞdn 6

R a
�1 Fy00 ðnÞdn for all a. The SSD dominance Fy0�SSDFy00 guarantees that Fy0 is preferred to Fy00 within

all risk averse preference models that prefer larger outcomes (Fy0 generates greater or equal expected utility for all increasing
concave utility functions).

Following formula (6), the WOWA averages may be interpreted within the Rank-Dependent Expected Utility (RDEU)
model of choice under uncertainty [27] (known also as Anticipated Utility [26] or the dual theory of choice under uncertainty
[36]) which is based on the axiomatic foundation [28] alternative to that for the classical EU theory. Indeed, according to (6),
Aw;pðyÞ ¼
Z 1

0
gðnÞFð�1Þ

y ðnÞdn ¼
Z 1

0
gð1� nÞFð�1Þ

y ðnÞdn ¼
Z 1

0
Fð�1Þ

y ðnÞd/ðnÞ
with the rank-dependent utility function /ðnÞ ¼ 1�w�ð1� nÞ. Increasing weights w1 6 w2 6 � � � 6 wn generate a strictly
increasing concave rank-dependent utility function / thus guaranteeing the risk averse preferences in terms of the RDEU
model.

Actually, the absolute Lorenz curves (13) represent a dual characterization of the SSD relation [19] as Fy0 �SSD Fy00 iffR b
0 Fð�1Þ

y0 ðnÞdn P
R b

0 Fð�1Þ
y00 ðnÞdn for all 0 6 b 6 1. Formula (11) represents the WOWA aggregation with increasing preferential

weights as the weighted (positive) combination of the n ALC values. Therefore, the WOWA objective functions with increas-
ing preferential weights are SSD consistent and they represent also the risk averse preferences in term of the classical deci-
sion theory (despite they do not represent expected utility).

Proposition 1. WOWA aggregation defined by increasing preferential weights w1 6 w2 6 � � � 6 wn represents risk averse
preferences in terms of the SSD order, i.e.
Fy0 �SSD Fy00 ) Aw;pðy0ÞP Aw;pðy00Þ:
Similarly, the generalized WOWA aggregation (15) can be viewed with the RIM quantifier QðaÞ ¼ w�bðaÞ defined by weights
vectors w of dimension n according to the stepwise generation function (14), i.e., w�bðaÞ ¼

R a
0 gbðnÞdn.

Relatively increasing weights w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ generate a strictly increasing convex curve
QðaÞ 6 a thus guaranteeing the and-likeness of the generalized WOWA operator.

The generalized WOWA can be directly expressed within the RDEU model with the rank-dependent utility function
/ðnÞ ¼ 1�w�bð1� nÞ. Relatively increasing weights w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ generate a strictly increasing
concave rank-dependent utility function / thus guaranteeing the risk averse preferences in terms of the RDEU model. More-
over, following formula (16), the generalized WOWA aggregations with relatively increasing preferential weights are SSD
consistent and they represent also the risk averse preferences in term of the classical decision theory.

Proposition 2. Generalized WOWA aggregation defined by relatively increasing preferential weights
w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ represents risk averse preferences in terms of the SSD order, i.e.
Fy0 �SSD Fy00 ) Aw;b;pðy0ÞP Aw;b;pðy00Þ:
We will focus our analysis on the WOWA aggregation defined by increasing weights w1 6 w2 6 � � � 6 wn or the general-
ized WOWA characterized by relatively increasing weights w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ. Following Proposi-
tions 1 and 2, respectively, maximization of such WOWA aggregations models risk averse preferences.

4. Linear programming models for WOWA optimization

4.1. WOWA models

Consider maximization of a risk averse WOWA aggregation defined by increasing weights w1 6 w2 6 � � � 6 wn
max
x2Q

Aw;pðfðxÞÞ: ð21Þ
Due to formula (11), the problem may be expressed as
max
x2Q

Xn

k¼1

w0kL fðxÞ;p; k
n

� �
ð22Þ
with positive weights w0k defined by (12).
According to (13), values of function Lðy;p; nÞ for any 0 6 n 6 1 can be given by optimization:
Lðy;p; nÞ ¼min
si

Xm

i¼1

yisi :
Xm

i¼1

si ¼ n; 0 6 si 6 pi 8 i

( )
: ð23Þ
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The above problem is an LP for a given outcome vector y. Although, when used within the problem (22) it leads to nonlinear
optimization as both yi and si represent variables. This difficulty can be overcome by taking advantage of the LP dual to (23).
Introducing dual variable t corresponding to the equation

Pm
i¼1 si ¼ n and variables di corresponding to upper bounds on si

one gets the following LP dual expression of Lðy;p; nÞ
Lðy;p; nÞ ¼ max
t;di

nt �
Xm

i¼1

pidi : t � di 6 yi; di P 0 8 i

( )
: ð24Þ
This LP model enables the following statements.

Proposition 3. WOWA aggregation Aw;pðyÞ defined by increasing preferential weights w1 6 w2 6 � � � 6 wn is a piecewise linear
concave function of y.

Proof. Note that for any given p and n, due to formula (24), Lðy;p; nÞ is a piecewise linear concave function of y. Hence, due to
increasing preferential weights, following formula (11) the entire WOWA aggregation is a piecewise linear concave function
of y as a linear combination of functions Lðy;p; nÞ for n ¼ k=n, k ¼ 1;2; . . . ;n with nonnegative weights w0k. �

Proposition 4. Maximization of a risk averse WOWA aggregation (21) with increasing preferential weights w1 6 w2 6 � � � 6 wn

may be implemented as the following LP expansion of the original constraints:
max
tk ;dik ;xj

Pn
k¼1

w0k
k
n tk �

Pm
i¼1

pidik

� �
s:t: x 2 F; tk � dik 6 fiðxÞ; dik P 0 8 i; k:

ð25Þ
Consider multiple criteria problems (1) with linear objective functions fiðxÞ ¼ cix and polyhedral feasible sets:
max fðy1; y2; . . . ; ymÞÞ : y ¼ Cx; Ax ¼ b; x = 0g; ð26Þ
where C is an m� q matrix (consisting of rows ci), A is a given v � q matrix and b ¼ ðb1; . . . ; bv ÞT is a given right hand side
vector. For such problems, we get the following LP formulation of the WOWA maximization (21):
max
tk ;dik ;yi ;xj

Xn

k¼1

k
n

w0ktk �
Xn

k¼1

Xm

i¼1

w0kpidik ð27Þ

s:t:
Xq

j¼1

arjxj ¼ br for r ¼ 1; . . . ;v ; ð28Þ

yi �
Xq

j¼1

cijxj ¼ 0 for i ¼ 1; . . . ;m; ð29Þ

dik P tk � yi; dik P 0 for i ¼ 1; . . . ;m; k ¼ 1; . . . ;n; ð30Þ
xj P 0 for j ¼ 1; . . . ; q: ð31Þ
Model (27)–(31) is an LP problem with mnþmþ nþ q variables and mnþmþ v constraints. Thus, for problems with not
too large number of scenarios (m) and preferential weights (n) it can be solved directly. Note that WOWA model (27)–
(31) differs from the analogous deviational model for the OWA optimizations [21] only due to coefficients within the objec-
tive function (27) and the possibility of different values of m and n.

The number of constraints in problem (27)–(31) is similar to the number of variables. Nevertheless, for the simplex ap-
proach it may be better to deal with the dual of (27)–(31) than with the original problem. Note that variables dik in the primal
are represented with singleton columns. Hence, the corresponding rows in the dual represent only simple upper bounds.

Introducing the dual variables: urðr ¼ 1; . . . ;vÞ; miði ¼ 1; . . . ;mÞ and zikði ¼ 1; . . . ;m; k ¼ 1; . . . ;nÞ corresponding to the con-
straints (28)–(30), respectively, we get the following dual:
min
zik ;mi ;ur

Pv
r¼1

brur

s:t:
Pv
r¼1

arjur �
Pm
i¼1

cijmi P 0 for j ¼ 1; . . . ; q;

mi �
Pn
k¼1

zik ¼ 0 for i ¼ 1; . . . ;m;

Pm
i¼1

zik ¼ k
n w0k for k ¼ 1; . . . ;n;

0 6 zik 6 piw
0
k for i ¼ 1; . . . ;m; k ¼ 1; . . . ;n:

ð32Þ
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The dual problem (32) contains: mþ nþ q structural constraints, mþ v unbounded variables and mn bounded variables.
Since the average complexity of the simplex method depends on the number of constraints, the dual model (32) can be
directly solved for quite large values of m and n. Moreover, the columns corresponding to mn variables zik form the
transportation/assignment matrix thus allowing one to employ special techniques of the simplex SON algorithm [6] for im-
plicit handling of these variables. Such techniques increase dramatically efficiency of the simplex method but they require a
special tailored implementation. We have not tested this approach within our initial computational experiments based on
the use of a general purpose LP code.

4.2. Generalized WOWA models

Linear programming models can also be introduced for the generalized WOWA. Consider the maximization of a risk
averse generalized WOWA aggregation with relatively increasing weights w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ
max
x2Q

Aw;b;pðfðxÞÞ: ð33Þ
Following (16), it may be expressed as the problem maxx2Q
Pn

k¼1w00kLðfðxÞ;p;1� bk�1Þ with positive weights w00k defined by
formula (17). Taking advantages of the dual LP expression for the tail averages (24), one gets the following statements.

Proposition 5. Generalized WOWA aggregation Aw;b;pðyÞ defined by relatively increasing preferential weights
w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ is a piecewise linear concave function of y.

Proposition 6. Maximization of a risk averse generalized WOWA aggregation (33) with relatively increasing preferential weights
w1=b1 6 w2=ðb2 � b1Þ 6 � � � 6 wn=ðbn � bn�1Þ may be implemented as the following LP expansion of the original constraints:
max
tk ;dik ;xj

Pn
k¼1

w00k½ð1� bk�1Þtk �
Pm
i¼1

pidik	

s:t: x 2 F; tk � dik 6 yi; dik P 0 8i; k:
ð34Þ
For multiple criteria problems (26) with linear objective functions fiðxÞ ¼ cix defining the return realizations under several
scenarios, problem (34) takes the following LP form:
max
tk ;dik ;xj

Pn
k¼1
ð1� bk�1Þw00ktk �

Pn
k¼1

Pm
i¼1

w00kpidik

s:t:
Pq
j¼1

arjxj ¼ br for r ¼ 1; . . . ;v

dik P tk �
Pq
j¼1

cijxj; dik P 0 for i ¼ 1; . . . ;m; k ¼ 1; . . . ; n;

xj P 0 for j ¼ 1; . . . ; q:

ð35Þ
Since, in the generalized WOWA model the number of breakpoints n is usually much smaller that the number of scenarios m,
we have eliminated variables yi. This allows us to eliminate also m equities defining those variables. Obviously, such an elim-
ination is also possible for the standard WOWA model (27)–(31) although not important for comparable orders of n and m.
Actually, our computational experiments has demonstrated that for the case of n ¼ m explicit use of variables yi results in
shorter computation times.

The LP model (35) with mnþ nþ q variables and mnþ v constraints can be directly solved for problems with not too
large number of scenarios (m) and preferential weights (n). Alternatively, it can be replaced with the corresponding LP
dual:
min
zik ;ur

Pv
r¼1

brur

s:t:
Pv
r¼1

arjur �
Pn
k¼1

�cjzik P 0 for j ¼ 1; . . . ; q;

Pm
i¼1

zik ¼ ð1� bk�1Þw00k for k ¼ 1; . . . ; n;

0 6 zik 6 piw
00
k for i ¼ 1; . . . ;m; k ¼ 1; . . . ;n;

ð36Þ
where �cj ¼
Pm

i¼1 cij. The dual problem (36) contains mnþ v variables but only nþ q structural constraints.
In particular, for a limiting case of n ¼ 2; b1 ¼ 1� b with some 0 < b < 1 and weights w1 ¼ 0;w2 ¼ 1 allowing the general-

ized WOWA (18) to represent the CVaRbðyÞ risk measure, the corresponding LP computational models take the following
forms of primal
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max
t;di ;xj

t � 1
b

Pm
i¼1

pidi

s:t:
Pq
j¼1

arjxj ¼ br for r ¼ 1; . . . ;v ;

di P t �
Pq
j¼1

cijxj; di P 0 for i ¼ 1; . . . ;m;

xj P 0 for j ¼ 1; . . . ; q;

ð37Þ
and dual, respectively
min
zi ;ur

Pv
r¼1

brur

s:t:
Pv
r¼1

arjur � �cjzi P 0 for j ¼ 1; . . . ; q;

Pm
i¼1

zi ¼ 1; 0 6 zi 6 pi=b for i ¼ 1; . . . ;m:

ð38Þ
5. Computational tests

In order to analyze the computational performances of the LP models for the WOWA optimization, similarly to [21], we
have solved randomly generated problems of portfolio optimization as presented in Example 1 with the objectives aggre-
gated by the WOWA
max
x

Aw;pðCxÞ :
Xq

j¼1

xj ¼ 1; xj P 0 for j ¼ 1; . . . ; q

( )
; ð39Þ
where matrix C ¼ ðcijÞi¼1;...;m;j¼1;...;q represents returns of security j under scenario i, the importance weights pi are assigned to
several scenarios while the preferential weights wk are increasing to represent the risk averse preferences. Both the primal
(27)–(31) and the dual (32) forms of the computational model have been tested.

Example 3. For illustration of model building let us consider the simplified problem with 2 securities and 3 scenarios (see
Table 1) with the WOWA aggregation defined by importance weights p ¼ ð0:2;0:2;0:6Þ and preferential weights
w ¼ ð0:1;0:2;0:7Þ. The primal model (27)–(31) takes then the following form:
max
tk ;dik ;yi ;xj

0:5t1 þ 0:2t2 þ 0:3t3 � 0:3d11 � 0:3d21 � 0:9d31

�0:06d12 � 0:06d22 � 0:18d32 � 0:06d13 � 0:06d23 � 0:18d33

s:t: x1 þ x2 ¼ 1; x1 P 0; x2 P 0;
y1 ¼ �9x1 þ 7x2; y2 ¼ 6x1 þ 7x2; y3 ¼ 9x1 � 5x2;

dik P tk � yi; dik P 0 for i ¼ 1;2; k ¼ 1;2;3;
while the respective dual (32) can be written as follows:
min
zik ;mi ;u

u

s:t: u P �9m1 þ 6m2 þ 9m3; u P 7m1 þ 7m2 � 5m3;

m1 ¼ z11 þ z12 þ z13; m2 ¼ z21 þ z22 þ z23; m3 ¼ z31 þ z32 þ z33;

z11 þ z21 þ z31 ¼ 0:5; z12 þ z22 þ z32 ¼ 0:2; z13 þ z23 þ z33 ¼ 0:3;
0 6 z11 6 0:3; 0 6 z21 6 0:3; 0 6 z31 6 0:9;
0 6 z12 6 0:06; 0 6 z22 6 0:06; 0 6 z32 6 0:18;
0 6 z13 6 0:06; 0 6 z23 6 0:06; 0 6 z33 6 0:18:
The optimal portfolio equals (0.8, 0.2) with rates of return 6.2% under Scenarios 2 or 3, and �5.8% under Scenario 1.
The performance tests were based on the randomly generated problems (39) with varying number q of securities (deci-

sion variables) and number m of scenarios. The generation procedure worked as follows. First, for each security j the max-
imum rate of return rj was generated as a random number uniformly distributed in the interval [0.05,0.15]. Next, this value
was used to generate specific outcomes cij (the rate of return under scenarios i) as random variables uniformly distributed in
the interval ½�0:75rj; rj	. Further, strictly increasing and positive weights wk were generated. The weights were not normal-
ized which allowed us to define them by the corresponding increments dk ¼ wk �wk�1. The latter were generated as uni-
formly distributed random values in the range of 1.0 to 2.0, except from a few (5 on average) possibly larger increments
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ranged from 1.0 to n=3. Importance weights pi were generated according to the exponential smoothing scheme, which as-
signs exponentially decreasing weights to older or subjectively less probable scenarios: pi ¼ að1� aÞi�1 for i ¼ 1;2; . . . ;m
and the parameter a is chosen for each test problem size separately to keep the value of pm around 0.001.

The basic tests were performed for the standard WOWA model with n ¼ m. However, we also analyzed the case of larger n
for more detailed preferences modeling, as well as the case of smaller n thus representing a rough preferences model. For
each number of securities q and number of criteria (scenarios) m we solved 10 randomly generated problems (39). All com-
putations were performed on a PC with the Athlon 64, 1.8 GHz processor employing the CPLEX 9.1 package. The 600 s time
limit was used in all the computations.

In Tables 2 and 3 we show the solution times for the primal (27)–(31) and the dual (32) forms of the computational mod-
el, being the averages of 50 randomly generated problems. Upper index in front of the time value indicates the number of
tests among 10 that exceeded the time limit. The empty cell (minus sign) shows that this occurred for all 10 instances. Both
forms were solved by the CPLEX code without taking advantages of the constraints structure specificity. The dual form of the
model performs much better in each tested problem size. It behaves very well with increasing number of securities if the
number of scenarios does not exceed 100. Similarly, the model performs very well with increasing number of scenarios if
only the number of securities does not exceed 50.

Table 4 presents solution times for different numbers of the preferential weights. The number of securities equals 50. It
can be noticed that increasing the number of preferential weights and thus the number of breakpoints in the interpolation
function induce moderate increase in the computational complexity. On the other hand, the computational efficiency can be
significantly improved by reducing the number of preferential weights to a few which can be reasonable in non-automated
decision making support systems.

The portfolio selection models equivalent to optimization of the generalized WOWA aggregation based on a few prefer-
ential weights attached to an irregular grid of breakpoints provided very good results on real-life market data [13]. Therefore,
we have also tested computational efficiency of the following generalized WOWA maximization problem.
Table 2
Solution times [s] for the primal model.

Number of scenarios (m) Number of securities (q)

10 20 50 100 150 200 300 400

10 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.00
20 0.02 0.04 0.40 0.02 0.02 0.06 0.04 0.08
50 0.74 1.00 1.40 1.60 1.56 1.58 1.58 1.62
100 21.76 28.40 32.66 43.98 49.94 65.02 86.78 95.16
150 182.52 244.46 312.28 354.30 404.90 456.12 11514.32 22556.06

Table 3
Solution times [s] for the dual model (32).

Number of scenarios (m) Number of securities (q)

10 20 50 100 150 200 300 400

10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02
20 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02
50 0.04 0.06 0.22 0.30 0.34 0.38 0.50 0.56
100 0.38 0.54 1.52 6.66 7.82 9.66 11.42 12.52
150 1.20 1.88 3.42 26.16 44.76 54.50 61.96 63.76
200 2.86 4.18 7.94 59.20 138.76 207.38 238.24 236.56
300 9.26 15.10 30.00 2215.00 19466.62 – – –
400 23.64 34.42 82.10 9237.30 31521.60 – – –

Table 4
Solution times [s] for different numbers of preferential weights ðq ¼ 50Þ.

Number of scenarios (m) Number of preferential weights (n)

3 5 10 20 50 100 150 200 300 400

10 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.06 0.08
20 0.00 0.00 0.00 0.00 0.02 0.04 0.10 0.10 0.26 0.38
50 0.02 0.00 0.02 0.06 0.24 0.24 0.36 0.56 1.02 1.46
100 0.00 0.02 0.08 0.22 1.10 1.54 1.44 2.06 3.54 5.20
150 0.02 0.06 0.18 0.58 3.56 4.78 3.42 4.66 7.54 11.26
200 0.06 0.10 0.32 1.10 7.36 11.22 6.00 7.92 14.08 23.28
300 0.10 0.22 0.74 3.26 17.58 25.92 11.84 16.40 29.96 40.18
400 0.18 0.44 1.54 6.36 34.00 49.26 20.48 28.60 48.82 82.84



Table 5
Solution times [s] for different numbers of preferential weights ðq ¼ 50Þ.

Number of scenarios (m) Number of weights (n)

3 6 11 15

10 0.00 0.00 0.00 0.00
20 0.00 0.02 0.02 0.02
50 0.02 0.02 0.04 0.08
100 0.02 0.08 0.18 0.20
150 0.04 0.12 0.30 0.36
200 0.08 0.20 0.44 0.54
300 0.10 0.30 0.78 0.98
400 0.16 0.46 1.18 1.54

Table 6
Solution times [s] for the large scale (m ¼ 50; 000) generalized WOWA problems.

Number of securities (q) Number of weights (n)

2 4 6

50 18.7 123.2 296.2
100 52.1 327.4 867.1
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max
x

Aw;b;pðCxÞ :
Xq

j¼1

xj ¼ 1; xj P 0 for j ¼ 1; . . . ; q

( )
: ð40Þ
Exactly, there was tested the corresponding LP dual model (36) with some irregular grids of 3–15 breakpoints and corre-
sponding weights defined according to [13]. The results presented in Table 5 show exceptionally good performance in the
considered range of scenario numbers.

Further, the generalized WOWA models have been also tested for a large number of scenarios. We have run computa-
tional test on 10 randomly generated test instances developed by Lim et al. [9]. They were originally generated from a mul-
tivariate normal distribution for 50 or 100 securities with the number of scenarios 50,000 just providing an adequate
approximation to the underlying unknown continuous price distribution. Table 6 presents average computation times of
the dual model (36) for n ¼ 4 with breakpoints b1 ¼ 0:5; b2 ¼ 0:75; b3 ¼ 0:9; b4 ¼ 1, thus representing the parameters leading
to good results on real life data [13], as well as for n ¼ 6 with uniformly distributed tolerance levels
b1 ¼ 0:5; b2 ¼ 0:6; b3 ¼ 0:7, b4 ¼ 0:8; b5 ¼ 0:9; b6 ¼ 1. Additionally, for n ¼ 2 we have actually tested the (dual) generalized
WOWA model (38) representing the CVaRb measure optimization with the most commonly considered breakpoint (toler-
ance level) b ¼ 0:1. The latter have been solved in less than a minute while the larger problem may require computation
times up to 15 min for 100 securities.

6. Concluding remarks

The problem of averaging outcomes under several scenarios to form overall objective functions is of considerable impor-
tance in decision support under uncertainty. The WOWA aggregation [29] represents such a universal tool allowing one to
take into account both the risk aversion preferences depicted with the preferential weights allocated to ordered outcomes as
well as the scenarios importance expressed with weights allocated to several scenarios. The ordering operator used to define
the WOWA aggregation is, in general, hard to implement. We have shown that the WOWA aggregations with the increasing
weights can be modeled by introducing auxiliary linear constraints. Hence, an LP decision under risk problem with the risk
averse WOWA aggregation of outcomes under several scenarios can be formed as a standard linear program and it can be
further simplified by taking advantages of the LP duality. This model can also be applied to the generalized WOWA aggre-
gations with preferential weights allocated to an arbitrary grid of breakpoints.

Our computational experiments show that the LP formulation enables to solve effectively medium size WOWA problems.
Actually, the number of 100 scenarios covered by the dual approach to the LP model in less a minute seems to be quite en-
ough for most applications to decisions under risk. Moreover, the large scale problems of 50,000 scenarios have been effec-
tively solved with the generalized WOWA criterion built on a few breakpoints. Such a criterion turned out to provide very
good optimization results in the real-life optimization problems [13].

The problems have been solved directly by a general purpose LP code. Taking advantages of the constraints structure
specificity may remarkably extend the solution capabilities.
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