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Abstract The mean-risk approach quantifies the problem of choice among uncertain prospects 
in a lucid form of only two criteria: the mean, representing the expected outcome, 
and the risk: a scalar measure of the variability of outcomes. The model is ap- 
pealing to decision makers but it may lead to inferior conclusions. Several risk 
measures, however, can be combined with the mean itself into the robust optimiza- 
tion criteria thus generating SSD consistent performances (safety) measures. In 
this paper we introduce general conditions for risk measures sufficient to provide 
the SSD consistency of the corresponding safety measures. 
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1. Introduction 
We consider the general problem of comparing real-valued random variables 

(distributions), assuming that larger outcomes are preferred. Two methods are 
frequently used for modeling choice among uncertain prospects: stochastic 
dominance, and mean-risk analysis. The former is based on an axiomatic model 
of risk-averse preferences but it does not provide us with a simple computational 
recipe. It is, actually, a multiple criteria model with a continuum of criteria. 
The mean-risk approach quantifies the problem in a lucid form of only two 
criteria: the mean, representing the expected outcome, and the risk: a scalar 
measure of the variability of outcomes. The mean-risk model is appealing to 
decision makers but it is not capable of modeling the entire gamut of risk-averse 
preferences. Moreover, for typical dispersion statistics used as risk measures, 
the mean-risk approach may lead to inferior conclusions. 
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In this paper we analyze conditions that are necessary and sufficient for 
risk measures to provide the SSD consistency of the corresponding mean-risk 
models. Actually, we show that under simple and natural conditions on the risk 
measures they can be combined with the mean itself into the robust optimization 
criteria thus generating SSD consistent performance (safety) measures. The 
analysis is performed for general distributions but we also pay attention to 
special cases such as discrete or symmetric distributions. We demonstrate 
that, while considering risk measures depending only on the distributions, the 
conditions similar to those for the coherency are, essentially, sufficient for SSD 
consistency. 

2. Stochastic dominance and mean-risk models 
In the stochastic dominance approach random variables are compared by 

pointwise comparison of some performance functions constructed from their 
distribution functions. Let X be a random variable representing some returns. 
The first performance function Fl (X ,  r )  is defined as the right-continuous cu- 
mulative distribution function itself: Fl(X. r )  = P[X 5 r]  for r  E R. 
We say that X weakly dominates Y under the FSD rules ( X  k,,, Y), if 
F l ( X ,  r )  < Fl (Y, r )  for all r  E R, and X FSD dominates Y ( X  k,,, Y), 
if at least one strict inequality holds. Actually, the stochastic dominance is a 
stochastic order thus defined on distributions rather than on random variables 
themselves. Nevertheless, it is a common convention, that in the case of ran- 
dom variables X and Y having distributions Px and Py, the stochastic order 
relation Px k Py might be viewed as a relation on random variables X Y 
[I 11. It must be emphasized, however, that the dominance relation on random 
variables is no longer an order as it is not antisymmetric. 

The second degree stochastic dominance relation is defined with the second 
performance function F2 (X, r )  given by areas below the cumulative distribution 
function itself, i.e.: F2 (X ,  r )  = Jr, Fl ( X ,  t )d t  for r  E R. Similarly to FSD, 
we say that X weakly dominates Y under the SSD rules ( X  k,,, Y), if 
F2 (X, r )  5 F2 (Y, r )  for all r E R, while X SSD dominates Y (X k,,, Y), 
when at least one inequality is strict. Certainly, X >,,, Y implies X >,,, Y. 
Function F2(X, r ) ,  used to define the SSD relation can also be presented as 
follows [12]: F2(X, r )  = E[max{r - X, 011, thus representing the mean 
below-target deviations from real targets. 

If X +,,, Y, then X is preferred to Y within all risk-averse preference 
models that prefer larger outcomes. In terms of the expected utility theory 
the SSD relation represent all the preferences modeled with increasing and 
concave utility functions. It is therefore a matter of primary importance that an 
approach to the comparison of random outcomes be consistent with the second 
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degree stochastic dominance relation. Our paper focuses on the consistency of 
mean-risk approaches with the SSD. 

Alternatively, the stochastic dominance order can be expressed on the in- 
verse cumulative functions (quantile functions). Namely, for random variable 
X, one may consider the performance function F-1 (X,p) defined as is the 
left-continuous inverse of the cumulative distribution function Fl (X, r), i.e., 
F-1 (X, p) = inf { q  : Fl (X, q )  > p). Obviously, X dominates Y under the 
FSD rules (X >,,, Y), if F-l (X, p) 2 F-1 (Y, p) for all p E [ O , l ] ,  where at 
least one strict inequality holds. Further, the second quantile function (or the 
so-called Absolute Lorenz Cuwe ALC) is defined by integrating F-1, which 
provides an alternative characterization of the SSD relation, 

Mean-risk approaches are based on comparing two scalar characteristics 
(summary statistics), the first, denoted p(X), represents the expected outcome 
(reward), and the second, denoted e(X), is some measure of risk. The original 
Markowitz portfolio optimization model [9] uses the variance or the standard 
deviation. Several other risk measures have been later considered thus creating 
the entire family of mean-risk models. Risk measures in Markowitz-type mean- 
risk models, similar to the standard deviation, are translation invariant and risk 
relevant deviation type measures (dispersion parameters). Thus, they are not 
affected by any shift of the outcome scale Q(X + a) = Q(X) for any real 
number a and they are equal to 0 in the case of a risk-free portfolio while taking 
positive values for any risky portfolio. Unfortunately, such risk measures are not 
consistent with the stochastic dominance order [I 11. Indeed, in the Markowitz 
model its efficient set may contain SSD inferior portfolios characterized by a 
small risk but also very low return [15]. Unfortunately, it is a common flaw of all 
Markowitz-type mean-risk models where risk is measured with some dispersion 
measures. In order to overcome this flaw of the Markowitz model, already 
Baumol[2] suggested to consider a performance measure, he called the expected 
gain-confidence limit criterion, p(X) - h ( X )  to be maximized instead of the 
minimization of a (X)  itself. Similarly, Yitzhalu [IS] considered maximization 
of the criterion p(X) - @(X) for the Gini's mean difference and he demonstrated 
its SSD consistency. Recently, similar consistency results have been introduced 
[12, 131 for measures corresponding to the standard semideviation and to the 
mean semideviation (half of the mean absolute deviation). 

Hereafter, for any dispersion type risk measure @(X), the performance func- 
tion S(X) = p(X) - ,(X) will be referred to as the corresponding safety mea- 
sure. Note that risk measures, we consider, are defined as translation invariant 
and risk relevant dispersion parameters. Hence, the corresponding safety mea- 
sures are translation equivariant in the sense that any shift of the outcome scale 
results in an equivalent change of the safety measure value (with opposite sign 
as safety measures are maximized), or in other words, the safety measures dis- 
tinguish (and order) various risk-free portfolios (outcomes) according to their 



values. The safety measures, we consider, are risk relevant but in the sense 
that the value of a safety measure for any risky portfolio is less than the value 
for the risk-free portfolio with the same expected returns. Moreover, when risk 
measure @(X) is a convex function of X, then the corresponding safety measure 
S(X) is concave. 

Relation of the SSD consistency of the safety measures directly involves 
criterion p(X) --@(X). However, the SSD dominance always implies the means 
inequality. Hence, in the case of X >,,, Y we have both p(X) 2 p(Y) and 
p(X) - e(X) 2 p(Y) - e(Y). Thus, by combining inequalities, one may 
easily notice that X F,,, Y implies p(X) - XQ(X) > p(Y) - X@(Y) for 
all 0 5 X 5 1. On the other hand, one may just consider ep(X) = Pe(X) 
as a basic risk measure, like the mean absolute semideviation equal to the 
half of the mean absolute deviation itself. In such a case one may gets another 
(possibly higher) upper bound for the trade-off coefficient guaranteeing the SSD 
consistency. Therefore, following [12], in this paper we say that the (deviation) 
risk measure is SSD a-safety consistent if there exists a positive constant a 
such that for all X and Y: 

For the sake of simplicity, the SSD 1-safety consistency of a risk measure we 
will usually call simply SSD safety consistency. The relation of SSD (safety) 
consistency is called strong if, in addition to ( I ) ,  the following holds 

An important advantage of mean-risk approaches is that having assumed a 
trade-off coefficient X between the risk and the mean, one may directly compare 
real values of p(X) - XQ(X). If the risk measure @(X) is SSD a-safety 
consistent, then except for random variables with identical p(X) and @(X), 
every random variable that is maximal by p(X) - X@(X) with 0 < X < cr is 
efficient under he SSD rules. In the case of strong SSD safety consistency, every 
such maximal random variable is, unconditionally, SSD efficient. Therefore, 
the strong SSD safety consistency is an important property of a risk measure. 

The stochastic dominance partial orders are defined on distributions. The risk 
measures are commonly considered as functions of random variables. One may 
focus on a linear space of random variables C = L ~ ( L ? ,  3, P) with some k > 1 
(assuming k > 2 whenever variance or any related measure is considered). 
Although defined for random variables, typical risk measures depend only on 
the corresponding distributions themselves and we focus on such measures. 
In other words, we assume that e(X) = @(x) whenever random variables X 
and x have the same distribution, i.e. Fl (X, r)  = Fl (x, r)  for all r E R or 
equivalently F-1 (X, p) = ~ - 1  ( x , ~ )  for all p E [0,1]. 
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Table 1. SSD consistency limits for general distributions 

Risk Measure 
Standard semideviation 
Mean absolute semideviation 
Mean absolute deviation 
Conditional P-semideviation 
Mean abs. dev. from median 
Maximum semideviation 
Gini's mean difference 
Tail Gini's mean difference 

1 [I81 (strong [14]) 
1 1141 

Table 2. SSD consistency limits for symmetric distributions 

Risk Measure Consistency 
Standard semideviation B ( X )  2 [I21 (strong) 
Standard deviation 
Mean absolute semideviation J ( x )  2 [I21 
Mean absolute deviation 
Gini's mean difference r ( X )  2 [I41 (strong) 

Within the class of arbitrary uncertain prospects allowing to consider stochas- 
tic dominance (the class of random variables with finite expectations E[IXI] < 
m, or E [ X ~ ]  < cc while for standard deviation), several consistency results 
have been shown, as summarized in Table 1 (where the maximum value of alpha 
is presented). Obviously, any convex combination of measures preserves their 
SSD safety consistency which justifies several combined measures [8]. It turns 
out that when limiting the analysis to outcomes described with the symmetric 
distribution some consistency levels cr increase and one gets additionally SSD 
1-safety consistency of the standard deviation (see Table 2). 

3. SSD consistency conditions 
The risk measures we consider from the perspective of the stochastic domi- 

nance are defined as (real valued) functions of distributions rather than random 
variables themselves. Nevertheless, in many various applications it might be 
more convenient to analyze their properties as functions of random variables. 
Recently, a class of coherent risk measures [l] have been defined by means 
of several axioms. The axioms depicts the most important issues in the risk 
comparison for economic decisions. therefore, they have been quite commonly 
recognized as the standard requirements for risk measures. Let us consider a 
linear space of random variables C = L~ (Cl, 3, P) with some k > 1 (recall, we 
assume k 2 2 whenever variance or any related measure is considered). A real 
valued performance function C : C -3 R is called a coherent risk measure on 



C if for any X ,  Y E C it is monotonous ( X  2 Y implies C ( X )  5 C(Y)) ,  pos- 
itively homogeneous (C(hX)  = h C ( X )  for real number h > 0), subadditive 
( C ( X  + Y) 5 C ( X )  + C(Y)), translation equivariant ( C ( X  + a)  = C ( X )  - a ,  
for real number a), risk relevant ( X  < 0 and X # 0 implies C ( X )  > 0), where 
or inequalities on random variables are understood in terms 'as.'. If @(X)  2 0 
is a convex, positively homogeneous and translation invariant (dispersion type) 
risk measure, then the performance function C ( X )  = @(X) -p (X)  does satisfy 
the axioms of translation equivariance, positive homogeneity, and subadditivity. 
Further, if X > Y, then X = Y + ( X  - Y) and X - Y 2 0. Hence, the 
convexity together with the expectation boundedness 

of the risk measure imply that the performance function C ( X )  satisfies also the 
axioms of monotonicity and relevance [S]. 

In order to derive similar conditions for the SSD consistency we will use the 
SSD separation results. Namely, the following result [ I  1, Th. 1.5.141 allows 
us to split the SSD dominance into two simpler stochastic orders: the FSD 
dominance and the Rotschild-Stiglitz (RS) dominance (or concave stochastic 
order), where the latter is the SSD dominance restricted to the case of equal 
means. 

THEOREM 1 Let X and Y be random variables with X k,,, Y. Then there 
is a random variable Z such that 

x t,,, z tRS Y 

The above theorem allows us to separate two important properties of the SSD 
dominance and the corresponding requirements for the risk measures. 

COROLLARY 2 Let @(X)  2 0 be a (dispersion type) risk measure. The mea- 
sure is SSD l-safety consistent i f  and only i f  it satisfies both the following 
conditions: 

x k,,, y =+ P(X)  - @(X)  2 P(Y) - d Y ) !  (4) 

x kR ,  Y * e ( X )  I e(Y) .  ( 5 )  

Proof. If X kssD Y, then according to separation theorem X k,,, Z kRs  Y 
where E[Z] = E[Y].  Hence, applying (4) and (5) one gets 

On the other hand, both the requirements are obviously necessary. 0 
For strict relation X >,,, Y, the separating Z satisfies X >,,, Z or 

Z F,, Y. Hence, the corresponding strong forms of both (4) and (5) are 
necessary and sufficient for the strong SSD 1-safety consistency. 
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Condition (4) represents the stochastic monotonicity and it may be replaced 
with more standard monotonicity requirement 

where the inequality X 2 Y is to be viewed in the sense o holding almost surely 
(as.). Essentially, X 2 Y implies X k,,, Y, but not opposite. However, the 
relation X >,,, Y is equivalent [ l  1, Th. 1.2.41 to the existence of aprobability 
space and random variables x and Y on it with the distribution functions the 
same as X and Y, respectively, such that x 2 Y .  Hence, for risk measures 
depending only on distributions, we consider, one gets requirements (4) and (6) 
equivalent. Note that for any X > 0 and a E R one gets X + a > a while 
Q(X + a )  = @(X) and, therefore, the monotonicity (6) implies ,o(X) < p(X) .  
This justifies the expectation boundedness (3) as a necessary for monotonicity 
(6) or (4). 

Condition (5) represents the required convexity properties to model diver- 
sification advantages. Note that the second cumulative distribution functions 
F2(X,  r )  are convex with respect to random variables X [13]. Hence, takmg 
two random variables Y/ and Y// both with the same distribution as X one gets 
F2(aYf  + (1 - a )Yf / ,  r )  < F2(X,  r )  for any 0 < a < 1 and any r E R. 
Thus, a Y f  + (1 - a)Yf '  >,, X and convexity of @(X) is necessary to meet 
the requirement (5). 

The concept of separation risk measures properties following Theorem I 
is applicable while considering general (arbitrary) distributions. It may be, 
however, adjusted to some specific classes of distribution. In particular, we will 
show that it remains valid for a class of symmetric distributions. Indeed, a more 
subtle construction 

preserves symmetry of the distribution thus leading us to the following assertion. 
For any symmetric random variables with X t,,, Y, there is a symmetric 
random variable Z such that X k,,, Z >,, Y. One may also notice that 
the 'as. ' characteristic of the FSD relation may be, respectively, enhanced for 
symmetric distributions. 

It follows from the majorization theory [6, 101 that in the case of simple lot- 
teries constructed as random variables corresponding n-dimensional real vec- 
tors (probability l l n  is assigned to each coordinate if they are different, while 
probability k l n  is assigned to the value of k coinciding coordinates) a convex, 
positively homogeneous and translation invariant (dispersion type) risk measure 
is SSD 1-safety consistent if and only if it is additionally expectation bounded 
(3). We will demonstrate this for more general space of lotteries. Hereafter, a 
lottery is a discrete random variable with a finite number of steps. 



L E M M A  3 Lotteries X and Y satisfies X >RS Y ifand only i fFF2(X,p)  2 
F_:!(Y, p) for all p - cumulative probability of a step of Fl (X, a )  or Fl (Y, a) 
and F - 2  (X,  1) = F-2 (Y, 1). 

Proof. From quantile characterization of SSD we have inequality for all 
p E ( 0 , l ) .  On the other hand, we can see that p - cumulative probabil- 
ity of steps are sufficient. Let p l , p2 , .  . . ,p, - cumulative probability of the 
steps of Fl (X,  a )  or Fl (Y, a ) ,  and let c E (pi, pi+l). Then, F - 2  ( X ,  c) = 

F-P(X: ~ i ) + ( c - p i ) F - l ( X , ~ i + l )  = F-2(X, ~ i + l ) - ( ~ i + l - c ) F - l  (X ,  pi+l).  
Hence, F-2  (X ,  c) 2 F - 2  (Y, c) whenever F-2 (X ,  pi) 2 F - 2  (Y, pi) and 
F-2(X,pi+l)  2 F-2(Y, pi+l). Furthermore, F_2(X, 1) = E [ X ]  = E[Y]  = 
F_2(Y, 1) is necessary for RS-dominance. 0 

Let X = Y, t ~ s  Y,-l t ~ s  . . . t ~ s  Yl = Y and for all k: Yk = 

Xk-lYi!l + (1 - Xk-l)YL-l, where Xk-1 E ( 0 , l )  and Yiw1 # Y[-l are 
the same distributed as Yk-1, then it is obvious to say that Y is more risky that 
X for all p - convex risk measures. Rothschild and Stiglitz have formulated 
that RS-dominance between two random variables is equivalent to existing a 
sequence of mean preserving spreads (MPS) that transform one variable to the 
other. Two variables X and Y differ by MPS if there exists some interval that 
the distribution of X one gets from the distribution of Y by removing some of 
the mass from inside the interval and moving it to some place outside this inter- 
val. Gaining by MPS we will show that for lotteries with rational probability 
X and Y if only X >RS Y then Y is always more risky than X for all convex 
risk measures. 

THEOREM 4 Proof. Let X,  Y - lotteries with rational probability of steps. If 
X t RS Y then there exists a sequence of lotteries Yl , Y2, . . . , Yn satisfiing the 
following conditions: 

2 yi+l = (1 - X')Y; + Xiy;, for i = 1 , .  . . , n - 1, where 0 < Xi < 1 and 
Y: # Y; are identically distributed as Yi. 

We will construct a sequence of MPS - Yl, Y2, . . . , Y, using quantile char- 
acterization of RS-dominance. From Rothschild and Stiglitz theorem [7] one 
knows that the sequence (Yk)k=l....,n exists. We will build it, however, as a 
convex combination of two identidally distributed random variables. 

Let cl , c2, . . . , C, - cumulative probability of steps of Fl (X, a )  or F1 (Y, a ) .  
Due to Lemma 3, we may focus on the steps of distributions. 
Letpi = c i  -ci-1,fori = 2 , . . .  , m a n d p l  = e l , @ =  ( p l , . .  . ,p,), 

+ 

xi - ci-quantile of X for i = 1, . . . , m, X = ( x l , .  . . , x,), - 
yi - ci-quantile of Y for i = 1, . . . , m, Y = (yl,  . . . , y,). 
There exists the first index i such that xi # yi (actually xi > yi, due to the 
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dominance) as well as there exists the last index i for which xi # yi (actually 
xi < yi, due to the equality: R 2 ( X ,  1) = E [ X ]  = E[Y]  = FP2(Y, 1)). With 
no loss of generality we can assume that the first index is 1 and the last one is 
m. By definition, we get F-2(Y, ci) = Cg=l pjyj. 
Define: A" := x j  - y: ViZl ,,... n, j= l  ,..., m,  

3 
First step. A! > 0 and A: < 0, where k = min{i : A: < 01, let 

A1 = min{A:, -A;) and p1 = rnin{pl,pk) 
p'l: PI, P2 . . .  Pk, . . . p m  

9 :  yl, Y2 . . .  Yk, . . . Y m  

2 :  XI ,  22 . . .  Xk, . . . X m  

g 2  : pl, pl-pl, PZ . . .  PI, p k - p l  . . .  P m  

p 2 :  yl, 1 Y2 . . .  Yk, Yk . . .  Y m  

g 2 :  21, 51, 22 . . . Xk, Xk . . . X m  

Note ttat g2 ha: at least one coordinate equal 0: pl - p1 = 0 or pk - p1 = 0 
while Y and X have at least one new the same coordinate: x l  = y: + A' 
orxk = y; -A1.  

With a finite number of steps we can transform yi to xl  or y; to xk. Thus, 
m coordinates of Y can be transformed with a finite number of steps to m 
coordinates of X .  

The i-th step has the same idea: we choose first index where A; is positive 
and it can be treated as A: in first step, because for all indexes before A: = 0. 
Then, we choose first index when A; is negative as A: in first step. Ai ,pi  are 
formed in the same way as A', pl .  

? ' is built from ? by moving the same mass - Ai from one coordinate 
to another with the same probability -pi. Let j ,  k be these coordinates, the rest 
of them are the same in the vectors. 

P'" : . .  pz> . . .  p', . . . 
: . . .  ~ 4 ,  . . . YL . . . 
' : . .  . y:, . . .  Y;> . . . 
i+l . . . . . y; +Az, . . . y k  - Az, . . . 

and ? are the same distributed and (1 - Xi)qli+ Xi? i=? where 

X, Y', Y" E (R, F, P); YI, Y" -the same distributed lotteries with rational 
probability of steps. If X = XYf+(l - X)Yf', then for all convex positive 
functions Q (where Q(Y') < oo), one gets Q(X)  = Q(XY' + (1 - X)Y'') 5 
XQ(Y') + (1 - X)Q(Y"). Moreover, if Q depends only on distributions, then 
e(Y1) = e(Yf'). Hence, X h,, Y' implies Q(X)  5 ,o(YJ), and X >,, 
Y' implies Q(X)  < Q(Y') if Q is strictly convex on identically distributed 
random variables. Recall that expectation boundedness together with convexity 
guarantee the corresponding monotonicity with strict monotonicity properties 



for strictly expectation bounded risk measures. This leads to the following 
assertion. 

THEOREM 5 Let us consider a linear space C c L ~ ( R ,  3, P )  of lotteries 
with rational probability of steps. If risk measure @ ( X )  > 0 depending only 
on distributions is convex, positively homogeneous, translation invariant and 
expectation bounded, then the measure is SSD I-safety consistent on C. I f @ ( X )  
is also strictly convex on identically distributed random variables and strictly 
expectation bounded (on risky rv.), then it is strongly SSD 1-safety consistent 
on C. 

Note that Theorem 5 applies to the important class of distributions where 
one may take advantages of the LP computable risk measures [S]. It justifies 
then the sufficient conditions for the coherency as simultaneously sufficient for 
SSD (safety) consistency. The basic consistency results could be also derived 
for continuous distributions from the relation [3] 

However, the strong consistency results cannot be achieved in this way. 

4. Concluding remarks 

One may specify risk dependent performance functions to transform several 
risk measures into SSD consistent and coherent safety measures. We have in- 
troduced convexity and expectation boundedness as necessary and sufficient 
conditions which allow us to justify various risk measures with respect to such 
coherent transformation. While focusing on the space of finite lotteries, where 
one may take advantages of the LP computable risk measures, it turns out that 
these sufficient conditions for the coherency are also sufficient for SSD consis- 
tency. Moreover, when enhanced to strict convexity (on identically distributed 
random variables) and strict expectation boundedness (on risky random vari- 
ables) they are also sufficient for strong SSD consistency. The latter is crucial to 
guarantee the SSD efficiency of the corresponding safety maximization optimal 
solutions. 
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