
Path Generation Issues for Survivable Network Design�

Michał Pióro, Tomasz Śliwiński, Michał Zagożdżon,
Mateusz Dzida, and Włodzimierz Ogryczak

Warsaw Univ. of Technology, Faculty of Electronics & Info. Technology, Warsaw, Poland
(tsliwins,wogrycza)@ia.pw.edu.pl,

(mpp,mzagozdz,mdzida)@tele.pw.edu.pl

Abstract. Link dimensioning and routing problems in resilient network design
are considered. Reliable network operation is ensured by means of flow restora-
tion which is performed on preselected protection (backup) paths that can ab-
sorb traffic overflows from failed primary paths. Backup and primary flows use
separated link capacities, and can be split among many paths. In the paper, two
restoration models are considered. The first model assumes that once the backup
path is assigned it must be used in every state in which the protected primary path
fails while the second model allows different protection paths to be used in differ-
ent network failure states. The problems are formulated as multiple commodity
linear programming (LP) models using the link-path (L-P) notation and solved by
the column generation technique. Consequent pricing models and algorithms are
introduced. Computational efficiency of the presented approaches is analyzed.

1 Introduction

Large capacity of optical transmission systems in telecommunication networks can
drastically influence the network performance in the case of network link failures. The
implied increasing aggregation level of the traffic flows makes them more and more
sensitive to such failures. For this reason, transport network operators are interested in
providing reliable services, that thanks to fast recovery mechanisms are able to survive
network failures. To provide reliable transport services, the transport network operator
must foresee failures that can appear in the network, and accordingly design protection
(backup) paths that can absorb the traffic overflows from failed primary paths that are
used in the normal, failure-less state of network operation. This is referred to as flow
restoration. In this paper, we investigate link dimensioning and flow routing design
problems for resilient (i.e., robust to failures) networks that assume flow restoration of
affected flows against the foreseen failures. Hence, the problem consists in searching for
a configuration of paths for each operating state, such that the capacity installation cost
resulting from realization of given traffic demands is minimized. Throughout the paper
we assume that capacity of the primary flows is separated from the capacity used by
the protection flows. There is a strong motivation for this assumption, stemming from
practical aspects of the network operation. Having reserved capacity for primary flows

� The research was partially supported by the Dean’s grant from the Faculty of Electronics and
Information Technology, Warsaw University of Technology.

O. Gervasi et al. (Eds.): ICCSA 2008, Part II, LNCS 5073, pp. 820–835, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Path Generation Issues for Survivable Network Design 821

and establishing them, a network operator is in fact able to immediately bring back pri-
mary path flows once a failure is removed. Such capacity model is known as the case
of no stub-release, since it does not allow protection flows to use the basic capacity that
could be released due to failing primary paths.

As indicated above, we assume that network survivability is achieved by means of
a flow restoration mechanism. We distinguish two problem variants, depending on the
assumptions concerning restoration of affected primary flows. The first, called state-
independent flow restoration assumes that once a backup path is assigned, it is used in
every state in which the protected primary path fails. The second model, though, allows
different protection paths to be used in different network failure states and is therefore
called state-dependent flow restoration. Thus, in this paper we assume that each pri-
mary flow is protected by its backup paths (state-dependant or not), and bifurcation is
permitted for each primary flow as well for its protection flows.

The considered resilient design problems are well recognized in the literature (see
[1] and discussion there) and were considered in many research papers, for example in
[2,3,4,5,6,7,8,9,10]. The two problems considered in this paper have a property that is
common in resilient network design. Both problems are NP-complete and cannot be
formulated through LP formulations in a compact way. Still, they can be formulated
using the Link-Path (L-P) notation (see [11,1]), but certainly not in a compact way.
Hence, the use of L-P formulations is useful only in two situations: when all required
paths can be used in the formulation, or when an efficient path (column) generation
method can be proposed. Since the former solution is not scalable with growing number
of nodes, we focus on the latter method.

Path generation (PG) is an application of the general column generation technique,
developed to effectively solve large-scale LP problems of special structure (see [11]).
The PG framework can be described as follows. Having given traffic demands and costs
of link capacities, we determine preliminary sets of the candidate paths, containing, for
each demand, at least one primary path together with its necessary backup paths. Using
these sets we formulate an LP problem in the L-P notation. Having the LP problem in
hand, we treat it with an LP solver and get the values of the dual variables related to
the L-P problem constraints. The dual equalities allow us to verify if the current sets of
candidate paths should be extended in order to get an optimal flow distribution in the
sense of minimal capacity cost. If the current set of candidate paths for a specific de-
mand does not contain a path (either primary or backup) that due to the dual constraints
may be necessary, then the so-called pricing problem is formulated and the required
path is obtained as a solution of this problem. The procedure consists of re-optimizing
the LP problem and introducing new paths generated by the pricing problem, until no
new path is necessary.

Application of the PG technique allows one to keep the lists of candidate paths very
short with respect to the sets of all possible paths. Thanks to that, the corresponding
LP problem can be solved very efficiently. Still, the efficiency of the overall technique
depends on the efficiency of the path generation method resolving the pricing problems.
It appears that for some network failure scenarios the pricing problem can become NP-
complete [6,5,7,8]. One of the investigated approaches is to solve pricing problems
formulated as mixed-integer (MIP) programmes. Another approach assumes a special

822 M. Pióro et al.

variant of a shortest path algorithm, namely a label-setting algorithm [12], that allows
to compute shortest paths with respect to additional resource constraint requirements.
In our case these requirements are induced by backup paths used in the failure states
in which the generated primary path fails. In any case, exact generation methods are
sometimes inefficient, still in such cases it is often sufficient to use path lists produced
by a heuristic method. Therefore, we also propose a heuristic for solving the considered
PD problems. Its application makes PG quite easy and allows to obtain solutions of
good quality for the overall problem. The heuristic is based on precomputed sets of
potential primary paths. Then, the pricing problem consists in searching through these
sets and selecting the best path for each demand. The presented approach assumes that
the sets of candidate primary paths are initially determined as a solution of a K-shortest
path algorithm.

The paper is organized as follows. In Section 2 we give mathematical formulations
for the problems under consideration. Section 3 introduces the related pricing problems.
There are also presented exact and approximate approaches to generate efficiently new
columns (paths). The paper is summarized with the discussion on computational exper-
iments (Section 4) and some concluding remarks (Section 5).

2 The Survivability Models

2.1 Network Model

The considered network is modeled with a directed graph G = (V , E) composed of a set
of nodes V and a set of (directed) links E between the nodes. For ease of exposition, we
assume that the graph does not contain loops nor parallel links, i.e., E ⊆ V2 \ {(v, v) :
v ∈ V}. For any link e ∈ E , its source node is denoted by ue, whereas the target node
is denoted by ve, so that e = (ue, ve). The cost of realizing one unit of demand on link
e ∈ E is denoted by ξe.

The set D ⊆ V2 represents (directed) point-to-point demands. For notational conve-
nience, at most one demand between each ordered pair of nodes is assumed. The source
and target of a demand d ∈ D are denoted by ud and vd, respectively, and assumed to
be different from each other. The demand value of demand d ∈ D is given by hd > 0.

Let S ⊆ 2E be the family of all considered failure states (failure scenario) where
each state (also called failure situations) s ∈ S is identified with the set of its failing
links. Family S is assumed to include the failure-less state O (formally equal to the
empty subset of E) in which all links are operational (state O is also called the normal
state). It is assumed that links fail totally. The sets of surviving links in state s ∈ S
are denoted by Es ⊆ E . Similarly, Ēs = E \ Es denotes the set of failing links in state
s ∈ S. Certainly, EO = E .

We observe that the node failures can be easily modeled by link failures. This is
achieved by a suitable transformation of the network graph. We simply substitute each
node v ∈ V that can fail by two nodes v′ and v′′ connected by a dummy link ev =
(v′, v′′) with infinite capacity and zero cost. Also, in the transformed graph we terminate
all original links e ∈ E such that ve = v at node v′, and start all original links e ∈ E
such that ue = v at node v′′.

Path Generation Issues for Survivable Network Design 823

Let P :=
⋃

d∈D Pd be the set of all candidate (undirected) paths that can be used for
realizing demand flows, where Pd is the set of candidate paths for demand d ∈ D. We
assume that paths do not contain loops so for each demand d ∈ D the set Pd is a subset
of all simple paths from ud to vd. Note that the sets Pd, d ∈ D are mutually disjoint
(since we have assumed at most one demand per node-pair) and in consequence, each
path p ∈ P can be identified with the set of the links it traverses, so that p ⊆ E .

Notation Ps
d ⊆ Pd refers to the set of all those candidate paths for demand d ∈ D

that are available in state s ∈ S, i.e., Ps
d := {p ∈ Pd | p ∩ s = ∅}. Similarly,

P̄s
d = {p ∈ Pd | p ∩ s �= ∅} denotes the set of all candidate paths for demand d ∈ D

that fail in state s, so that Ps
d ∪ P̄s

d = Pd. Furthermore, Pe ⊆ P is the set of all
paths containing link e ∈ E , and Ps

e := Pe ∩
(⋃

d∈D Ps
d

)
denotes the set of all paths

containing link e ∈ E that are available in state s ∈ S.
For convenience, we also introduce the notation Sp ⊆ S for the set of all states s ∈ S

in which path p ∈ P is available, i.e., Sp = {s ∈ S | p ∩ s = ∅}, and S̄p := S \Sp

is the set of all states s ∈ S where path p ∈ P fails, i.e., S̄p = {s ∈ S | p ∩ s �= ∅}.
Similarly, Se = {s ∈ S | e /∈ s} will denote the set of all states s ∈ S in which link
e ∈ E is available, and S̄e = S\Se— the set of all failure states in which it is failed.

For the restoration paths (called also protection or backup paths) we will use the
following notation. For each demand d ∈ D and each path p ∈ Pd, the set Qp, Qp ⊆
Pd denotes all candidate backup paths q ∈ Pd that never fail together with p. Hence,
if q ∈ Qp then for all s ∈ S, (p ∩ s �= ∅) ⇒ (q ∩ s = ∅), i.e., paths p and q never
fail simultaneously (and therefore are called failure-disjoint). Besides, Qpe := {q ∈
Qp | q 	 e} denotes the set of all paths protecting path p that contain a particular link
e ∈ E .

2.2 State-Dependent Restoration – FD

Both restoration models considered in this paper assume protection of traffic against
node or link failures using flow restoration. We also adopt a natural assumption that
in the case of a failure of one or more links (multiple failure), only the flows affected
by this failure are restored, and the flows not containing any of the failed links are
not modified. This mechanism is sometimes referred to as “restricted reconfiguration”
(see [1]). In the model considered in this section we assume that the failed flows are
restored in a failure-dependent fashion, i.e., the flow restoration pattern depends on the
particular failure state. We also assume that the failed flows are restored using protection
capacity of links that is separated from the basic capacity on the links used by primary
flows. As already mentioned, this is known as path restoration “without stub release”.
Hence, we note that separated protection capacity assumes that each link e ∈ E has
its “primary” (basic) capacity, denoted by y′

e, used for realizing flows in the normal
operating state (i.e., primary flows), and the protection capacity, y′′

e , used for restoration
of failed primary flows. The (primal) formulation of the state-dependent flow restoration
(FD) design problem is as follows (alternative formulations can be found in [1]):

minimize F (y) =
∑

e∈E
ξe(y′

e + y′′
e) (1a)

824 M. Pióro et al.

∑

p∈Pd

xp ≥ hd d ∈ D (1b)

∑

p∈Pe

xp ≤ y′
e e ∈ E (1c)

∑

p∈P̄s
d

xp ≤
∑

q∈Ps
d

zqs d ∈ D, s ∈ S \ {O} (1d)

∑

q∈Ps
e

zqs ≤ y′′
e e ∈ E , s ∈ Se \ {O} (1e)

x, y, z ≥ 0. (1f)

Formulation (1) uses flow variables xp ≥ 0 for the primary paths p ∈ P , and backup
path flow variables zqs for restoration paths Ps

d , d ∈ D, s ∈ S \ {O}. Link capaci-
ties, both basic and protection to be installed are modeled using variables y′

e and y′′
e

respectively.
At this point it is worth to mention the Path Diversity (PD) problem—a network

design problem in which traffic is protected against node or link failures using over-
provisioning. The concept behind PD is to route, for each demand d ∈ D, possibly
more traffic than specified by the demand value hd in the failure-less state, and ensur-
ing that at least a specified fraction of hd survives any failure state in the considered
failure scenario; in effect no flow restoration/rerouting has to be considered. This con-
cept, called also diversification, was later extended [13] to develop a new survivability
concept called demand-wise shared protection (DSP). The DSP was generalized [14]
to the model where it is required that at least the amount of flow equal to hs

d (where
hs

d ≤ hd, s ∈ S and hO
d = hd) should survive in failure state s ∈ S. The problem

formulation is following:

minimize
∑

e∈E
ξeye (2a)

hs
d ≤

∑

p∈Ps
d

xp d ∈ D, s ∈ S (2b)

∑

p∈Pe

xp ≤ ye e ∈ E . (2c)

As shown in Section 3 the pricing model for the above problem and, hence, the used
algorithms, are essentially the same as for the FD problem, in spite of different model
origin.

2.3 State-Independent Restoration – FI

Assume that restoration of a failed flow is state-independent, i.e., that restoration of a
failed primary flow is performed in the same fashion in every failure state in which the
restoration of this particular primary flow is called for. Now the corresponding primal
problem FI reads as follows:

minimize F (y) =
∑

e∈E
ξe(y′

e + y′′
e) (3a)

Path Generation Issues for Survivable Network Design 825

∑

p∈Pd

xp ≥ hd d ∈ D (3b)

∑

p∈Pe

xp ≤ y′
e e ∈ E (3c)

xp ≤
∑

q∈Qp

zpq p ∈ P (3d)

∑

d∈D

∑

p∈P̄s
d

∑

q∈Qpe

zpq ≤ y′′
e e ∈ E , s ∈ Se \ {O} (3e)

x, y, z ≥ 0, (3f)

3 Solution Approach

The problems considered in this paper are formulated as non-compact LP models with
the number of path-flow variables growing exponentially with the problem size. Such
problems are treated by column (path) generation [15,16], as this does not require all
the columns of the constraint matrix to be held in the computer memory (which is im-
possible for large problem instances). Instead, we only keep a subset of the variables
(columns) and this can be seen as an approximation (restriction) of the original prob-
lem. The algorithm iteratively modifies this subset by introducing new variables in a
way that improves the current optimal solution. At the end, the set contains all the
variables (paths) necessary to construct the overall optimal solution which can use all
possible paths in graph G. Certainly, to make the calculation efficient we have to be
able to effectively generate the paths required during the optimization. At each itera-
tion we are interested in generating paths for which the corresponding dual constraint
is most violated, as we can expect that this will improve the current optimal solution
to the greatest possible extent. As shown in the next paragraphs, finding such a path
corresponds to finding the shortest path in a graph according to specific criteria and is
called path generation, the pricing problem, or dual separation.

3.1 Pricing Models

Pricing for FD Models. Let λd, π
s
e , σ

s
d be the dual variables corresponding to con-

straints (1b), (1d) and (1e), respectively (note that the dual variable corresponding to
constraint (1c) equals ξe in the optimal solution). Then, the dual problem to (1) reads
as follows:

maximize W (λ) =
∑

d∈D
hdλd (4a)

∑

s∈Se\{O}
πs

e = ξe e ∈ E (4b)

σs
d ≤

∑

e∈q
πs

e d ∈ D, s ∈ S \ {O}, q ∈ Ps
d (4c)

λd ≤
∑

e∈p
ξe +

∑

s∈S̄p

σs
d d ∈ D, p ∈ Pd (4d)

λ, π, σ ≥ 0. (4e)

826 M. Pióro et al.

It follows from formulation (4) that if for the current optimal dual variables σ∗ and π∗

we are able to find, for some d ∈ D and a failure state s ∈ S \ {O}, a protection path
qs
d /∈ Ps

d from node ud to node vd with

∑

e∈qs
d

π∗s
e < (σs

d)∗ (5)

then adding this path to the set Ps
d can potentially decrease the optimal objective (1a).

Note that it is easy to generate a shortest protection paths—we just need to use state-
dependent link weights equal to πs

e , e ∈ E in the shortest path algorithm. Let qs
d denote a

shortest path for demand d ∈ D in situation s ∈ S \ {O}, and its length by rs
d. Clearly,

rs
d ≤ (σs

d)
∗. Further, when considering the problem of generating a shortest primary

path for demand d ∈ D we need to find a path p∗ such that the following condition
holds

∑

e∈p∗

ξe +
∑

s∈S̄p∗

rs
d < λ∗

d. (6)

Note that in inequality (6), rs
d can be substituted with (σs

d)
∗ and the procedure will still

be valid. As noted above, the pricing problem associated with backup paths is solvable
in polynomial time as it can be solved using shortest path algorithm. This is not always
the case when the pricing of primary paths is concerned. We comment on the related
issues below.

It has been shown in [17,9] (see also [10]) that the path generation problem is solv-
able in polynomial time in the case of single link (or node) failures. To see this assume
only single link failures, i.e., S ⊆ {{e} | e ∈ E} ∪ {O}, and observe that for demand
d ∈ D the condition (6) can be rewritten as follows:

∑

e∈p

(ξe + r
{e}
d) < λ∗

d. (7)

The right-hand side depends only on the demand, and the left-hand side is nonnegative.
Hence, for each demand d ∈ D, violation of dual constraint (4d) can be tested by
searching for a shortest path between the end-nodes of d with respect to the demand-
dependent link weights γe

d := ξe + r∗{e}
d using for example the Dijkstra algorithm, and

comparing its length to the value of λ∗
d (if link e does not fail at all we assume r

{e}
d = 0).

If the shortest path fulfills condition (7), then the corresponding path variable can be
added to the dual formulation (4) (and the corresponding flow variable to the primal
formulation (1)) to reduce the domain of the dual problem; otherwise we know that
no path for this demand violates its dual constraint for the current set of optimal dual
variables.

A general case of a failure state admits multiple link (node) failures; the set of links
that fail simultaneously is sometimes called “shared risk link group” (SRLG), and the
set of links and nodes that fail simultaneously—“shared risk resource group” (SRRG),
see [18]. For this case the path generation problem for FD is difficult.

Path Generation Issues for Survivable Network Design 827

As for the PD problem, the corresponding dual problem augmented with an auxiliary
dual variable Λd, d ∈ D reads as follows:

minimize W (λ) =
∑

d∈D

∑

s∈S
hs

dλ
s
d (8a)

Λd =
∑

s∈S
λs

d d ∈ D (8b)

Λd ≤
∑

e∈p
ξe +

∑

s∈S̄p

λs
d d ∈ D, p ∈ Pd, (8c)

where λs
d is dual variable corresponding to constraint (2b). It follows from formulation

(8) that if for current optimal dual variables λ∗ and Λ∗ we are able to find for some
d ∈ D a path p /∈ Pd from node ud to node vd with

∑

e∈p

ξe +
∑

s∈S̄p

(λs
d)

∗ < Λ∗
d (9)

then adding this path to set Pd can decrease the optimal objective (2a). Note that con-
dition (9) has the form equivalent to (6), and in effect the two pricing problems can be
considered as essentially the same.

Pricing for FI Models. Let λd, π
s
e be the dual variables corresponding to constraints

(3b) and (3e), respectively (again, the dual variable corresponding to constraint (3c)
equals ξe in the optimal solution). Then, the dual problem to (3) reads:

maximize W (λ) =
∑

d∈D
hdλd (10a)

∑

s∈Se\{O}
πs

e = ξe e ∈ E (10b)

λd ≤
∑

e∈p
ξe +

∑

e∈q
(

∑

s∈S̄p

πs
e) d ∈ D, p ∈ Pd, q ∈ Qp (10c)

λ, π ≥ 0. (10d)

Observe that in this case the pricing problem is always difficult, i.e., also in single link
failure scenarios (see [8]). Path generation consists, for each d ∈ D, in finding a pair of
paths (p, q), p ∈ Pd, q ∈ Qp with the smallest length defined by the right-hand side of
(10c). It follows that the link metrics for calculating the length of the basic path p ∈ Pd

are equal to the true unit link costs ξe, while the link metrics for calculating the length
of the backup path q ∈ Qp are given by

∑

s∈S̄p

πs
e .

The pricing problem for FI consists in finding, for each demand d ∈ D, a pair of
failure-disjoint paths r = (p, q) from ud to vd minimizing

〈r〉 =
∑

e∈p

ξe +
∑

e∈q

(
∑

s∈S̄p

πs
e). (11)

828 M. Pióro et al.

3.2 Pricing Algorithms

In the following section we analyze three algorithms for the path generation: two exact
(MIP and label-setting), and one approximate (primary path precomputation).

MIP Models. For FD problem with multiple link failures, the pricing problem (which
is: for each demand d ∈ D find a path p from ud to vd minimizing

∑
e∈pξe +

∑
s∈S̄p

r∗{s}
d) can be formulated as the following mixed-binary problem in binary variables

x = (xe : e ∈ E) and continuous variables Y = (Y s : s ∈ S):

minimize F (x, Y) =
∑

e∈E
ξexe +

∑

s∈S
rs
dY

s (12a)

∑

e∈δ+(v)
xe −

∑

e∈δ−(v)
xe = 0 v ∈ V \ {ud, vd} (12b)

∑

e∈δ+(ud)
xe −

∑

e∈δ−(ud)
xe = 1 (12c)

Y s ≥ xe s ∈ S, e ∈ Ēs (12d)

For the FI problem, the pricing problem (minimizing (11)) can be formulated as a
mixed-binary problem in binary variables x′ = (x′

e : e ∈ E) and x′′ = (x′′
e : e ∈ E),

and continuous variables Y = (Y s : s ∈ S) and Z̄ = (Z̄s
e : s ∈ S, e ∈ E):

minimize F (x, Z̄) =
∑

e∈E
ξex

′
e +

∑

e∈E

∑

s∈S
πs

eZ̄
s
e (13a)

∑

e∈δ+(v)
x′

e −
∑

e∈δ−(v)
x′

e = 0 v ∈ V \ {ud, vd} (13b)

∑

e∈δ+(ud)
x′

e −
∑

e∈δ−(ud)
x′

e = 1 (13c)

∑

e∈δ+(v)
x′′

e −
∑

e∈δ−(v)
x′′

e = 0 v ∈ V \ {ud, vd} (13d)

∑

e∈δ+(ud)
x′′

e −
∑

e∈δ−(ud)
x′′

e = 1 (13e)

Y s ≥ x′
e s ∈ S, e ∈ Ēs (13f)

Z̄s
e ≥ 0, Z̄s

e ≥ x′′
e + Y s − 1 s ∈ S, e ∈ E . (13g)

In the above formulation it is important to assume that πs
e = +∞ for e ∈ Es.

Label-Setting. The pricing problems for FD and FI can be approached in a way de-
scribed in [8]. The idea is as follows. Consider a demand d ∈ D and a path p ∈ Pd

between nodes ud and vd. The length of path p with respect to weights ξe (e ∈ E) will
be denoted by ‖p‖ :=

∑

e∈p
ξe. For fixed dual variables, the notation 〈p〉 will stand for

the dual length of path p, and in case of FD, can be expressed as follows (9):

〈p〉 =
∑

e∈p

ξe +
∑

s∈S̄p

rs
d (14)

Path Generation Issues for Survivable Network Design 829

and in case of FI:
〈p〉 =

∑

e∈p

ξe +
∑

e∈q

(
∑

s∈S̄p

(πs
e)

∗). (15)

We say that path p ∈ Pd dominates another path p′ ∈ Pd if ‖p‖ ≤ ‖p′‖ and S̄p ⊆ S̄p,
i.e., when path p is not longer than path p′ and when the set of failure states that affect
path p is a subset (not necessarily proper) of the set of failure states affecting path p′.
It is obvious that if path p dominates path p′ then 〈p〉 ≤ 〈p′〉. Consequently, in order
to generate a new path p for demand d (i.e., a path with minimum value of 〈p〉 with
respect to the current optimal dual variables) it is sufficient to generate the set U(d) of
minimal paths with respect to the relation of domination defined above. That is, no path
from U(d) dominates another path from this set.

Such a set U(d) of all non-dominated paths can be generated by means of a label-
setting algorithm for shortest-path problems with resource constraints (SPPRC) [12].
This can be done in pseudo-polynomial time, i.e., in time which is polynomial with
respect to the size of the network graph, and exponential with respect to the number of
failure states |S| (“resources” are the failure states in this case).

The label-setting algorithm works by creating a set of paths originating at node ud.
Each path is represented by a label placed in its last node. The label contains informa-
tion about the already visited nodes, as well as the utilized resources. The path can be
extended by a link incident to its last node, but only if it does not result in a cycle or in
a violation of the resource constraints. In the worst case the number of different paths
between the nodes ud and vd can grow exponentially with the number of resources. In
many cases, however, we are able to apply some dominance rules to decrease the num-
ber of the resulting paths. This can be done not only in the target node vd but also in
the intermediate nodes. It is easy to show that if path p′ is dominated with respect to the
rules defined above, then any extension of p′ would be finally dominated in vd as well.

As an extension of the SPPRC algorithm applied in [8], we have also introduced
path length limitation—an important contribution to the reduction of the size of set
U(d). The extension is based on the observation that excessively long paths are use-
less as they cannot improve the current solution, or the solutions they represent are
known to be worse than some already known solutions. For example, a simple path
length restriction for FD can be constructed from (6):

∑
e∈p ξe < λ∗

d. Also, knowledge
of some path p′ representing a feasible solution can help to tighten the path length re-
striction. In such a case, for FD we are only interested in finding a path p satisfying∑

e∈p ξe <
∑

e∈p′ ξe +
∑

s∈S̄p′ rs
d. Similar constraints can be derived for problem FI

as well. Applying path length limitation to pricing in problem FI results in significant
(up to 3 orders of magnitude in our experiments) reduction of the pricing time.

Primary Path Precomputation. Usefulness of the pricing algorithms presented be-
fore may sometimes be limited if applied for large network instances. Therefore, we
consider a heuristic solution based on large predefined sets of allowable primary paths
that are kept aside from the current problem formulation (using smaller sets of candi-
date primary paths Pd). Having sets Rd, d ∈ D of the allowable primary paths defined
in advance, we can reduce the pricing problem to simple enumeration of the primary
paths contained in these (large) sets.

830 M. Pióro et al.

Table 1. Network characteristics

Network
Pdh Newyork Ta1 France Norway Cost266

Nodes 11 16 24 25 27 37
Links 34 49 51 45 51 57
Demands 24 120 163 300 351 666

For problem FD, we simply compute the lengths of the paths in each Rd according
to the left hand side of formula (6), where rs

d are the appropriate shortest path lengths
computed previously for the current optimal dual variables. For each d ∈ D the shortest
path in set Rd should be added to the problem (i.e., to set Pd) if its length is strictly less
than λ∗

d.
For problem FI, we enumerate, for each d ∈ D, the allowable primary paths p in the

set Rd, and for each of them we determine the shortest backup path q computed as a
shortest path with respect to link weights πs

e , s ∈ S̄p, i.e., for the states in which the
considered primary path p fails. Obviously, the resulting backup paths should be state-
disjoined with respect to the protected primary paths. We assure this property simply by
removing links belonging to the protected primary path p. As a result, a pair r = (p, q)
for each p ∈ Rd is formed. Finally, a pair with the smallest total length defined by the
right-hand side of (10c) is found, and added to the formulation of problem (3), as long
as its length is strictly smaller than the value of λ∗

d.
As shown by numerical experiments presented in Section 4, this approach seems

to be reasonable, often allowing for the globally optimal solution of the considered
problem. Still, the effectiveness of the proposed simplified method heavily depends on
the construction of the sets of allowable primary paths Rd. Sets Rd should contain
only “good” candidate primary paths and should be kept as small as possible. Having
routing lists that contain “good” paths (sufficient for resolving the problem in hand)
the resolution process would be simplified a lot. It seems that a reasonable approach
for arriving at lists of paths which have a good chance to be sufficient for solving the
problem can be based on the computation of K-shortest paths with respect to unit link
costs ξe, e ∈ E . Hence, using these costs as link weights, we can construct the lists
of paths that are most likely to be used in the globally optimal solution. This follows
from the observation that in the simplified LP dimensioning problems without failure
states, an optimal solutions consists in realizing the demands along the shortest paths
computed with respect to unit link costs ξe, e ∈ E . Algorithms for finding K-shortest
path are well known and can be found in [19,20,21,22,23,24].

4 Computational Experiments

In our computational investigations we conducted a series of performance tests of the
discussed methods. For this purpose we selected a set of six network instances (cf. Ta-
ble (1)). Network topologies and demand volumes were taken from SNDLib library
[25]. The unit link costs ξe, e ∈ E were generated randomly since not all the network

Path Generation Issues for Survivable Network Design 831

Table 2. FD – double link failures

Network Path Iterations Columns Time [s]
generation master pricing total
MIP 53 1253 1 1 2

Pdh Label-setting 63 1057 1 0 1
Precomputed 52 1226 1 0 1
MIP 88 10101 61 15 76

Newyork Label-setting 78 7785 49 3 52
Precomputed 82 9965 56 0 56
MIP 69 13964 39 19 58

Ta1 Label-setting 62 12427 36 4 40
Precomputed 60 13124 32 3 29
MIP 34 12583 32 28 60

France Label-setting 32 10762 29 4 33
Precomputed 32 12531 36 0 36
MIP 39 29277 323 43 366

Norway Label-setting 34 21741 301 53 354
Precomputed 40 28363 329 1 330
MIP 33 44752 394 85 479

Cost266 Label-setting 34 34714 350 104 454
Precomputed 34 44850 424 4 428

instances contained in SNDlib contained this information. Also, we assumed the pres-
ence of a demand requirement between each pair of nodes. Regarding failure states, we
tested the two following scenarios: all single link failures, and all double link failures
(for FD only). In the second case the number of failure states was equal to the number of
states in the single link failure scenario, i.e., equal to the number of links (plus 1 for the
normal state). The second scenario was constructed by randomly choosing the second
failing links in the considered state and marking it to be failed. Clearly, this operation
should be performed carefully as the network graph must be at least two-connected in
all failure states.

In our numerical experiments we considered the three following computational sce-
narios: state-dependant restoration (FD) with single link failures, state-dependant restora-
tion (FD) with double link failures, and state-independent restoration (FI) for single link
failures. Initial problems (master problems) were formulated using L-P notation, and
solved within our own path generation (PG) framework. Optimal values of dual multi-
pliers were obtained using the LP solver of CPLEX 9.1. In order to resolve the pricing
problems, we used all the three presented algorithms: exact MIP pricing, exact pricing
based on the shortest path computations using label-setting algorithm, and the heuristic
for precomputing the sets of allowable primary paths. (In the primary path precompu-
tation we decided to pre-generate 5 primary shortest paths for each demand computed,
with respect to link weights ξe, e ∈ E .

In the case of problem FD with single link failures, the pricing problem was solved
using a more general version of label-setting algorithm designed for the multiple fail-
ures case. Moreover, in both failure scenarios for FD, at each iteration of the PG

832 M. Pióro et al.

Table 3. FD – single link failures

Network Path Iterations Columns Time [s]
generation master pricing total
MIP 162 1212 1 4 5

Pdh Label-setting 115 1032 1 0 1
Precomputed 149 1246 1 0 1
MIP 87 7706 34 17 51

Newyork Label-setting 74 6144 33 2 35
Precomputed 75 7612 42 0 42
MIP 112 10166 21 30 51

Ta1 Label-setting 128 9017 23 6 29
Precomputed 133 9810 24 1 25
MIP 38 8483 23 17 40

France Label-setting 41 7687 20 3 23
Precomputed 36 8469 22 0 22
MIP 71 19766 190 33 223

Norway Label-setting 84 19079 244 17 261
Precomputed 53 19193 174 2 176
MIP 36 31122 278 48 326

Cost266 Label-setting 35 28398 334 30 364
Precomputed 34 31597 266 3 269

Table 4. FI – single link failures

Network Path Iterations Columns Time [s]
generation master pricing total
MIP 121 682 8 112 120

Pdh Label-setting 124 822 1 0 1
Precomputed 157 814 1 1 2
MIP 62 2887 152 660 812

Newyork Label-setting 57 2867 25 1 26
Precomputed 66 3079 126 1 127
MIP 74 3385 122 1455 1577

Ta1 Label-setting 101 3913 22 2 24
Precomputed 122 4484 95 10 105
MIP 14 1957 11 297 308

France Label-setting 16 2294 5 2 7
Precomputed 18 2696 22 1 23
MIP 27 4453 420 2044 2464

Norway Label-setting 29 4419 105 7 112
Precomputed 30 4665 323 5 328
MIP 9 4012 67 900 967

Cost266 Label-setting 12 5465 52 5 57
Precomputed 13 5569 146 2 148

Path Generation Issues for Survivable Network Design 833

algorithm at most one primary path and at most one backup path for each state and
for each demand were generated. In problem FI, at each iteration at most one primary-
backup path pair for each demand was generated. All the experiments were performed
on a PC computer with a Pentium 4 (2.8GHz) processor.

Tables 2, 3 and 4 present results for the considered network instances, while Ta-
ble 5 contains objective function values for the three pricing algorithms. First of all,
we notice that the pricing problem (path generation) does not seem to affect consider-
ably the overall performance, as the overall time spent on solving the master problems
has much bigger impact on the total computation time. When comparing directly the
pricing problem solution times, a very good performance of the primary path precom-
putation method in all the tested cases is observed. What is more important, it gives
either optimal solutions or excellent approximations. The label-setting algorithm shows
its strength for the FI problem, where it performs similarly to the heuristic algorithm,
at the same time assuring optimal solutions. The approach utilizing MIPs for pricing is
quite efficient for the FD problem but fails for the FI problems.

Table 5. Objective values

FD – double link failures
Path gen. Pdh Newyork Ta1 France Norway Cost266

MIP 62805.2 16508.6 8.78397e7 4.15572e6 120837 1.78992e7
Label-setting 62805.2 16508.6 8.78397e7 4.15572e6 120837 1.78992e7
Precomputed 62805.2 16508.6 8.78534e7 4.15584e6 120837 1.79049e7

FD – single link failures
Path gen. Pdh Newyork Ta1 France Norway Cost266

MIP 57564.3 15692.4 8.15358e7 3.67687e6 108303 1.56683e7
Label-setting 57564.3 15692.4 8.15358e7 3.67687e6 108303 1.56683e7
Precomputed 57564.3 15692.4 8.15388e7 3.67687e6 108305 1.56683e7

FI – single link failures
Path gen. Pdh Newyork Ta1 France Norway Cost266

MIP 57564.3 15692.4 8.15494e7 3.67687e6 108313 1.56686e7
Label-setting 57564.3 15692.4 8.15494e7 3.67687e6 108313 1.56686e7
Precomputed 57564.3 15692.4 8.15545e7 3.67687e6 108317 1.56686e7

5 Conclusions

The paper discusses the problem of link dimensioning and flow optimization in resilient
networks with two different flow restoration schemes to be used in case of network
failures, namely state-dependant restoration and state-independent restoration. The two
resulting problems are specified in the L-P formulation.

Three appropriate path generation methods, necessary to make the L-P formulation
really useful, are discussed: exact approach based on Mixed Integer Programming, an
adaptation of the label-setting algorithm, and a heuristic algorithm making use of large
precomputed lists of primary paths. As shown by the numerical experiments (Section 4),
together the presented algorithms provide an efficient means for paths generation for the

834 M. Pióro et al.

considered types of problems. In fact, only application of the MIP pricing for problem
FI appears inefficient. (This is probably caused by the complexity of problem (13) in-
corporating large number of variables and constraints.)

We emphasize that in practice the simplified pricing based on the precomputation
of K-shortest primary paths is very efficient and sufficient. In most cases, the values
of the optimal objective function are correct. Still, this approach, as compared to the
exact label-setting algorithm, does not provide a significant performance gain. This is
due to the impact of the solution time of the master problem which is much longer
when compared to the time needed to generate new paths. Our analysis shows that the
presented path generation algorithms enable efficient resolution of the two considered
resilient network design problems for networks of realistic size.

Acknowledgment

The authors are indebted to Dritan Nace, Sebastian Orlowski, and Thomas Stidsen for
valuable and enlightening discussions on the paper.

References

1. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer
Networks. Morgan Kaufman, San Francisco (2004)

2. Minoux, M., Serrault, J.Y.: Subgradient optimization and large scale programming: an appli-
cation to optimum multicommodity network synthesis with security constraints. R.A.I.R.O.
Operations Research 15(2) (1981)

3. Dahl, G., Stoer, M.: A cutting plane algorithm for multicommodity survivable network design
problems. INFORMS Journal on Computing 10, 1–11 (1998)

4. Wessäly, R.: Dimensioning Survivable Capacitated NETworks. PhD thesis, Technische Uni-
versität Berlin (2000)

5. Hu, J.: Diverse routing in optical mesh networks. IEEE Trans. Com. 51(3), 489–494 (2003)
6. Maurras, J.F., Vanier, S.: Network synthesis under survivability constraints. 4OR (2), 52–67

(2004)
7. Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M.E.: Complexity and approximability

issues of shared risk resource group. Technical report, Technical report 5859, INRIA (2006)
8. Stidsen, T., Petersen, B., Rasmussen, K., Spoorendonk, S., Zachariasen, M., Rambach, F.,

Kiese, M.: Optimal routing with single backup path protection. In: International Network
Optimization Conference INOC 2007, Spa, Belgium (2007)

9. Bashllari, A., Nace, D., Rourdin, E., Klopfenstein, O.: The MMF rerouting computation
problem. In: International Network Optimization Conference INOC 2007, Spa, Belgium
(2007)

10. Orlowski, S., Pióro, M.: On the complexity of column geneartion in survivable network de-
sign. Technical report, Zuse Institut Berlin and Warsaw University of Technology (2007)

11. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-
tions. Prentice-Hall, Englewood Cliffs (1993)

12. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In: Desaulniers,
G., Desrosier, J., Solomon, M. (eds.) Column Generation, pp. 33–65. Springer, Heidelberg
(2005)

Path Generation Issues for Survivable Network Design 835

13. Koster, A., Zymolka, A., Jäger, M., Hülsermann, R.: Demand-wise shared protection for
meshed optical networks. Journal of Network and Systems Management 13(1), 35–55 (2005)

14. Wessäly, R., Orlowski, S., Zymolka, A., Koster, A., Gruber, C.: Demand-wise shared protec-
tion revisited: A new model for survivable network design. In: Proc. INOC 2005, Lisbon, pp.
100–105 (2005)

15. Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programming. Operations
Research 8, 101–111 (1960)

16. Desrosiers, J., Luebbecke, M.: A primer in column generation. In: Desaulniers, G., Desrosier,
J., Solomon, M. (eds.) column generation, pp. 1–32. Springer, Heidelberg (2005)

17. Orlowski, S.: Local and global restoration of node and link failures in telecommunication
networks. M.sc. thesis, Technische Universität Berlin (2003),
http://www.zib.de/orlowski/

18. Strand, J., Chiu, A.L., Tkach, R.: Issues for routing in the optical layer. IEEE Communica-
tions Magazine, 81–87 (2001)

19. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science 17, 712–
716 (1971)

20. McCallum, C.J.: An algorithm for finding the k shortest paths in a network. Bell Laboratories
Technical Memorandum TM73-1713-9 (1973)

21. Eppstein, D.: Finding the k shortest paths. In: 35th IEEE Symposium on Foundations of
Computer Science, pp. 154–165 (1994)

22. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Operations Research 17, 395–
412 (1999)

23. Jiménez, V.M., Marzal, A.: Computing the k shortest paths: A new algorithm and an exper-
imental comparison. In: Proceedings of 3rd Annual Workshop on Algorithmic Engineering,
London (1999)

24. Pascoal, M.M.B., Eugénia, M., Captivo, V., Climaco, J.C.N.: An algorithm for ranking quick-
est simple paths. Computers and Operations Research 32, 509–520 (2005)

25. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0–Survivable Network
Design Library. In: Proceedings of the 3rd International Network Optimization Conference
(INOC 2007), Spa, Belgium (2007), http://sndlib.zib.de

http://www.zib.de/orlowski/
http://sndlib.zib.de

	Path Generation Issues for Survivable Network Design
	Introduction
	The Survivability Models
	Network Model
	State-Dependent Restoration -- FD
	State-Independent Restoration -- FI

	Solution Approach
	Pricing Models
	Pricing Algorithms

	Computational Experiments
	Conclusions

