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Abstract. This is the first of two papers in which multiple criteria location problems {MCLFs}
are discussed. In this paper the main aim is fo formalize a discrete MCLP angd to develop a
generalized newwork model. A critical overview of various techniques for generating efficient
solutions to multiple criteria decision problems is offered. The three most commonly used
methods for tackling MCLPs, namely the weighted method, the noninferior set estimation
method, and the constraint method, are discussed. The main purpose of the genecrating
techniques is to determine an exact representation of or an approximation to the set of
efficient soletions among which one can choose the best or most preferred solution (location
plan). To identify the best solution some information about the decisionmaker’s preferences or
a decision rule is needed. Consequently, in paper 2 we focus on preference-based approaches
to multiple criteria decisionmaking and relate them to the concept of interactive decision
support. Specifically, optimizing decision rules (utility-function-based approaches) and satisficing
decision rules {goal programming methods) are discussed. Advantages and disadvaniages of
these two approaches to solving the MCLP are highlighted. It is suggesied that the utility-
maximizing and satisficing decision rules are not mutually exclusive. Accordingly, a quasi-
satisficing approach that merges these two decision rules is proposed. Also, a framework for
an inieractive decision support system (DSS) for tackling MCLPs is presented. The system
incorporates the generalized network model inte a quasi-satisficing approach. 1t is argued that
the DSS data and analytical components can be effectively integrated by means of the inter-
active decision support concept which allows for exploring the problem and the alternative
solutions both in decision space and in criterion outcome space.

1 Introduction
Locational decisionmaking can be considered as a process of searching for the best
location or pattern of locations. This process can be divided into three stages:
intelligence, design, and choice (Simon, 1960). The aim in the first phase is to
identify the problem environment. It requires searching the environment for condi-
tions which call for locational decisions. For example, an analysis of the geographi-
cal distribution of public service facilities in relation to the projected distribution of
population may suggest the need for a spatial shift in the supply of public services
and, consequently, for locational decisions. This type of activity requires an analysis
of comprehensive spatially referenced data {Armstrong et al, 1992). Te this end, the
most valuable support for locational decisionmaking is offered by a geographic
information system (GIS): a system that performs the functions of storage, manipu-
lation, and display of geographically referenced data, and enables the analyst
{decisionmaker} to analyze large data sets {see Densham and Goodchild, 1989;
Laurini and Thompson, 1992},

The design phase involves inventing, developing, and analyzing possible locational
strategies, and results in the identification of a set of locational alternatives (plans).
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Typically, a formal model is used to support a decisionmaker in determining the set
of alternative locational patterns. Design activities can be performed more easily,
efficiently, and effectively when a substantive model of the decisionmaking situation
{for example, a location -allocation model) is used to identify locational alternatives.
This locaiional modeling involves an integration of four major elements, First, the
evaluation criteria are established on the basis of problem analysis. Second, there
are the various constraints—physical, economic, social, and political—associated
with the specific decision situation. Third, there are the techniques for solving
multiple criteria decision problems and generating alternative decisions. Fourth,
there are the techniques for graphic presentation of the problem and the alternative
solutions (Allard and Hodgson, 1987; Armstrong et al, 1992}, These four elements
should be integrated in such a way that the decisionmaking process is more effective
and efficient than when an unplanned approach is used.

The third stage, choice, involves selecting an alternative. The choice depends on
the decisionmaker’s preferences. Given the substantive medel and a decision-
maker's preferences, a choice can be made with the aid of a decision support
system: a system that enables interaction between a decisionmaker {(analyst) and a
computer-based system, which consists of a GIS and a model-base management
system. This interactive process is typically performed in a sequence of steps with
inputs from and feedback to the decisionmaker at each step. The decisionmaker
provides the computer-based system with information about his or her preferences,
and the system generates solutions and provides feedback by means of visual
displays in the form of maps, graphs, and tables {Maclaren, 1988),

In these papers, we are primarily concerned with the stage of design and choice
in decisionmaking. In paper 1 a generalized network model is presented, which can
be used to design a substantive model of a locational decisionmaking problem and
to generate a set of nondominated locational alternatives {efficient solutions). In
paper 2 the choice phase is considered. Specifically, preference-based interactive
approaches to locational decisionmaking are discussed {details on the structure of
these papers are given in section 1.3},

1.1 The need for multicriteria analysis

The nature of a locational decisionmaking process depends very much upon the
type of economic or social activities to be located and the character and type of
organization within which the decision is made. To this end, a common distinction
is made between private sector and public sector organizations (ReVelle et al, 1981},

1.1.1 Private sector

According to the precepts of neoclassical location theory, the best locational pattern
of economic activities is one that minimizes production costs or maximizes revenues,
or maximizes the excess of revenue over costs (Beckmann, 1968). Put simply, the
best pattern of locations maximizes profits or producer’s surplus. The premise
underlying profit-maximization theory is that all relevant factors involved in loca-
tional decisionmaking, as well as the process itself, can be incorporated into and
adequaiely represented by a single-criterion function and a set of constraints
imposed on the decision variables. Thus, the profit-maximizing approach to loca-
tional decisionmaking reduces the multiple criteria nature of locational problems to
a single-criterion function which measures the profit associated with alternative
Iocation-distribution patterns. In essence, all classical location models such as the
Weber problem, the transportation problem, the transshipment problem, and the
plant location problem are based on this concept (for example, see Isard, 1969).
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In general, it can be argued that the profit-maximizing criterion provides the
basic rationale for the existence of private enterprise. It is not, however, a universal
principle for locational decisionmaking in the private sector. There are quite distinc-
tive factors involved in locational decisionmaking of different types of manufacturing
and private services. Some analysts suggest that the profit-maximizing philosophy is
almost entirely limited to traditional firms operated by owners-entrepreneurs
(Czamanski, 1981), whereas managerial firms, in which direction is largely divorced
from ownership (corporate organizations), are usually characterized by a complex
hierarchical and multidimensional process of locational decisionmaking. Corporations
are motivated in their locational decisions more by consideration of growth of the
tirm, control of the market, diversification of interest, entrepreneurial satisfaction,
and self-preservation, rather than by profit maximization {Hamilton, 1974},

Locational decisions made by large corporations are similar, in many respects,
to those hypothesized in behavioral theories of the firm {Simon, 196U0; Pred, 1967).
To this end, it should be emphasized that the search for a new location (a transfer
or branch moves) is not a continuing corporate activity. The process of locational
search is activated by the corporate recognition of an unavoidable pressure on
existing plant facilities {for example, as a result of a changing pattern of demand for
goods or services supplied by the firm). This process involves a search among a
limited, usually small, number of alternative sites and directed towards the identifi-
cation of a satisfactory location that meets a range of physical, socioeconomic,
environmental, and personal requirements. Strictly financial evaluation often takes
place after the satisficing site has been identified and is only infrequently used in
making a selection between alternative sites (Hamilton, 1974). A number of empirical
studies and surveys of industrial firms’ locational decisions supyort the view that
behavioral factors {such as the desire to avoid uncertainty) and structural factors
(for example, governmental policy) are of major importance in the search for a
location {Keeble, 1976; Schmenner, 1382},

1.1.2 Public sector
Public goods and services are typically provided and managed by governments in
response to perceived and expressed need. The spatial distribution of public goods
and services is strictly related 1o facility location decisions, Typically, these deci-
sions involve two fundamental considerations: geographical equity and efficiency in
service provision {Morrill and Symons, 1977; Mayhew and Leonardi, 1982). Most
classical location -allocation studies focus on some aspects of these two factors.
For example, p-median problems are primarily concerned with spatial efficiency,
whereas p-center problems primarily address the equity issues. In general, location -
allocation analysis has been mainly concerned with developing single-criterion
models that optimize spatial demand-supply relationships and model the spatial
behavior of consumers in the context of facility location. A variety of spatial-
interaction-based models has been developed to incorporate the conflicting prefer-
ences of users {customers) and providers of public services {see Hodgson, 1978;
Wilson et al, 1981). In the most general case, the concept of consumers’ surplus (or
total net benefits) is used to measure the benefits associated with alternative
location -allocation patterns. Variations in benefits associated with different arrange-
ments of public facilities are measured as the difference between customer costs
{accessibility) and facility establishment costs.

Insistence that rigorous, optimizing techniques will yield the best solutions to
locational choice problems is predicated on the assumption that location decisions
are well structured and that solutions will be acceptable to the decisionmakers and
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ta the public (Massam and Malczewski, 1990; Massam, 1993). If the analyst works
closely with the decisionmakers and the representatives of interest groups, and they
are persuaded of the credibility of the analyst’s tools, then the results penerated by a
formal location -allocation technique may, in fact, be the ones accepted for imple-
mentation (for example, see Rushton, 1984). However, many locational problems in
the public sector, especially of the noxious variety, are ill structured because of the
variety of interest groups and the difficulty of measuring, assessing, and evaluating
the quality and quantity of impacis associated with alternative locational patierns,
A further complication is that interest groups and decisionmakers usually evaluate
locational options with the use of multiple and often conflicting criteria.

The conflicting and multiple criteria nature of locational decisions in the public
sector is related to the ‘impurity’ of public goods (Lea, 1981). There are three
major ‘locational sources’ of impurity in public goods: the tapering effect, juris-
dictional partitioning, and externalities (for example, see Pinch, 1985). Tapering
results from the ‘point-specific’ locations of public goods and services. Such facilities
as schools, libraries, health centers, post offices, and police, ambulance, and fire
stations must be located at particular points and, consequently, the benefits from
consumption of services provided by these facilities will diminish with the distance
that users have to travel to the place of supply or the distance from the facility
supply to the point of consumption, even if all other conditions of service provision
are equal for all users. Therefore, criteria including minimization of aggregate or
average distance, minimization of maximum distance, maximization of population
covered within a given distance, etc, are of crucial importance in locating public
facilities {Rushton, 1984; 1987; ReVelle, 1987).

The geographical space of a couniry {region} is usually subdivided into local
jurisdictions. These jurisdictional units vary in terms of their economic, technological,
and social development, as well as geophysical characteristics. These differences
across geographic space result in variability of the quantity and quality of goods and
services provided by different jurisdictional units. Because the costs and benefits
associated with the provision of public goods and services should, in principle,
be equally distributed, there is a political conflict over public facility location,
Therefore, a variety of criteria addressing the distributional equity issues should be
constdered.

Locational decisions can generate positive or negative externalities. The former
occur when locational decisions result in uncompensated benefits, the latter are
associated with decisions that generate uncompensated costs. For example, salubrious
facilities (such as parks, libraries, schools, hospitals) produce positive externalities
or benefits for people who live near them. On the other hand, there are noxious
facilities (for example, airports, power stations, waste dumps, hazardous waste
management facilities} that produce negative externalities. These facilities may be
indispensable for the regional or national economy but, at the same time, they are
considered objectionable by residents who are located near them. This leads to
locational conflict because different interest groups may have different perceptions
of the costs and benefits associated with locational alternatives.

From the discussion above, we conclude that the search for the best locations
for public facilities is a problem of collective choice (Massam, 1993). Consequently,
locational decisionmaking should be seen as a process of search for consensus and a
compromise solution. To this end, responsible decisionmaking requires that those in
authority, who make locational decisions, should be accountable and that the selec-
tion of any formal methods {models} should contribute to this accountability by
allowing the analysis to be scrutinized by the public. Although formal methods can
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provide specific solutions to well-posed problems, the complexity of locational
decisionmaking requires that an interactive framework be found which links infor-
mation and anatysis to responsible, authoritative decisionmaking. This leads us to
the concept of an interactive decision support system,

1.2 The need for interactive decision support

Krarup and Pruzan {1990) argue that a variety ot normative approaches to loca-
tional problems developed over the last thirty years or so “together with the increasing
interest in multiple criteria analysis will lead to much greater emphasis upon inier-
active search procedures” {page 47}. More specifically, the authors “refer to systems
allowing for interaction among the decisionmaker, the analyst, and the computer,
and which not cnly employ various notions of multiple criteria analysis but also,
directly or indirectly, reflect the interfaces between locational decisions and other
strategic decisions™ {page 47). We subscribe to this view and suggest that a complex
location problem can be tackled more efficiently and effectively within an infer-
active, computer-based decision support framework {see also Hultz etal, 1981;
Maleczewski and Ogryczak, 1990; Malczewski, 1992},

A decision support system {DSS) can be defined as an interactive computer-
based system designed to support a manager {decisionmaker) in achieving a higher
effectiveness of decisionmaking while solving a semistructured problem {Keen and
Scott-Morton, 1978). There are three terms—semistructured problem, effectiveness,
and support—that capture the essence of the DSS concept.

First, semistructured problems occur when managers are not able 1o specify the
planning problem and their objectives fully and coherently. Most location problems
fall into this category. In this case, the structured (programmed} part of the problem
may be amenable to automated solution by the use of a computer, whereas unstructured
{nonprogrammed} aspects are tackled by managers. They can provide judgmental
information in the form of preferences about the significance of impacts which
cannot be expressed a priori in a formal language. Thus, judgments are not repre-
sented in the structure part of the problem but rather they are usually incorporated
into the analysis as desired and acceptable levels of achievements (Massam and
Malczewski, 1990). Second, although an application of a DSS for solving a decision-
making problem may increase the efficiency of the information-processing operation,
it is not the most important objective of the system. The main aim of a DSS is to
improve the effectiveness of decisionmaking by incorporating managerial judgments
{preferences) and computer-based programs into the decisionmaking process. Conse-
quently, the third important feature of any DSS is that it does not replace managerial
judgments. The purpose of such a system is to support a manager in achieving
‘better” decisions. By better, we suggest that decisions could be reached with the
nse of extensive data sets and within a framework which allows sensitivity tests
{Massam and Malczewski, 1991). The essence is to avoid the ‘black box’ style of
plan and policy evaluation and selection. In order to improve the effectiveness of
decisionmaking, one should incorporate into the planning process both the partici-
pation of decisionmakers (representatives of inferest groups) and the substantive
model of the decisionmaking situation. It is argued that these two elements are
integral parts of any locational decisionmaking process. Although the use of formal,
analytical procedures can be relied upon for the design and evaluation of alternative
locational patterns (plans}, it is most important that those who use the results of
such work believe that the procedures offer credible outputs (Densham and Rushton,
1987; Massam and Malczewski, 1990).



1936 J Malczewski, W Ogryczak

1.3 The structure of these papers

A wide range of formal methods and procedures are available for handling multiple
criteria decisionmaking, and a number of taxonomies have been proposed for classi-
fying these techniques {see Cohon, 1978; Hwang and Masud, 1979; Rietveld, 1980;
Nijkamp and Rietveld, 1986; Steuer, 1986). In these papers we will follow Cohon
(1978) who has classified multiple criteria approaches into two broad categories:
techniques for generating efficient or neninferior solutions and preference-based
methods. The preference-based approaches can be further subdivided inio two
categories: explicit ntility-maximization methods and interactive, implicit preference
techniques. These papers are organized around this classification. Figure 1 shows
the structure of these papers in relation to multiple criteria techniques.

In paper 1 a framework is provided for the modeling of multiple criteria location
problems with emphasis on a generalized network model (sections 2 to 5). A critical
overview of the techniques for generating efficient solutions is also given (section 6}.
The main purpose of the generating techniques is to determine an exact representa-
tion of, or an approximation to, the set of efficient solutions; the decisionmaker
can choose the best locational scheme from among the set of efficient solutions.

Multiple criteria
location problem
{paper L, section 2}

Y

Generalized
neiwork model
{paper 1, sections 3-4)

y

Locational c¢riteria
and constraints
{paper 1, section 3)

Y

Multiple criteria

decisionmaking

methods
Generating Preference-
techaiques based techniques
{paper 1, section 6) {paper 2, sections 1-3]

o N

Explicit preference-
based techniques
{paper 2, section 1}

Interactive implicit
preference-based
techniques

{paper 2, sections 2- 3] :

R ———)

i

Figure 1. A framework for multiple criteria location analysis.



The multiple criteria location prablem: 1 1937

Decisionmakers do not have to articulate their preferences explicitly because the
preferences are implicitly considered during the choice of the most preferred alter-
native. The major disadvantage of the generating techniques is that the size of the
set of efficient solutions is usually very large for a real-life location problem.
Therefore, the process of identifying the best alternative from among a set of
efficient solutions requires an explicit or implicit treatment of the decisionmaker’s
preferences and, hence, it involves value judgments which can-be incorporated into
an interactive DSS.

In paper 2 we focus on preference-based approaches and an interactive DSS for
locational decisionmaking. Fundamental, theoretical, and methodological differences
between the preference-based approaches lie in the assumptions about decision
rules that guide the selection of the best (most preferred) alternative from among the
set of efficient alternatives. In practice, decision rules fall into two categories: the
optimizing or utility-maximizing rules and the satisficing decision rules. In section 1
of paper 2 we provide a critical overview of these two categories of decision rules
in the context of multiple criteria locational problems. The discussion is focused on
the advantages and disadvantages of these two approaches. A comparative analysis
of the utility-maximization and satisficing decision rules is also offered. The major
disadvantage of the utility-maximizing approaches is that in many real-life situations
it is very difficult or even impossible to obtain a mathematical represemtation of the
decisionmaker’s preference {utility) function. There are also some difficulties with
the satisficing decision rules, which are usually operationalized with the aid of goal
programming. The main weakness of this approach is that goal-programming methods
may generate dominated solutions (Cohon, 1978; Chankong and Haimes, 1983}

The interactive approach presented in this paper can be considered as an
extension and generalization of goal programming methods (paper 2, section 2). It is
based on the quasi-satisficing rationality hypothesis. This hypothesis has been
formalized in terms of the reference-point method (Wierzbicki, 1982). The quasi-
satisficing decision framework is especially meaningful if it is considered in the
computer-based decision support context {paper 2, section 3). In the quasi-satisficing
decision support process the decisionmaker is explicitly involved in the problem-
solving activities. This approach enables users to specify their requirements in
terms of aspired or required criterion outcomes, and allows for the controlied
generation and selection of alternatives. The levels of aspiration and reservation are
used to explore the set of efficient solutions. The main idea behind the aspiration-
reservation-based DSS concept is to involve a decisionmaker in a sequential process
of search for a satisficing solution. In this process decisionmakers can change their
preference through the process of learning and the acquisition of more information
about the decisionmaking problem. The aim of such a system is to help the user to
achieve a higher level of effectiveness during locational decisionmaking (see Huiltz
et al, 1981; Malczewski and Ogryczak, 1990; Massam and Malczewski, 1960).

2 MCLP structure

2.1 Decision space

Most real-life location problems involve choice among a discrete set of alternatives.
Therefore, there are only two possible decisions associated with each of the alter-
native locations. These decisions are: whether to locate a facility at a site or not; no
intermediate possibility exists. Let us define L, L = L, i=12 . nl, as a finite set
of all such individual locational decisions. Any locational alternative can then be
expressed as a binary (logical) vector, ¥ = (%, - X, ), Where a decision variable, x;,
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is defined as follows:
[ 1, if the facility is located at the site /,
X, =
’ l 0, otherwise.

Theoretically there exist 2" different vectors {x) and corresponding alternatives in the
decision space, X. However, the number of alternatives is usually less because some
additional constraints define the feasible set of alternatives to be some subset of X.

For certain classes of location problems, the decision space and the feasible sets
have more complex structures attributable to the consideration of allocation deci-
sions. Such decisions are usually modeled with additional decision variables.
Specifically, there is a vector of allocation variables associated with each locational
alternative, j. Depending upon the nature of allocation of a quantity from a location
i{i = 1, 2, .., m) to site j, the allocation decision can be expressed in terms of a
binary variable given by

1, if location { is to be allocated to the site j,
X
Y 0, otherwise,
or in the case where the allocated quantity can be split among two or more sites an
inieger or continuous variable is used, that is, x;" is a portion of quantity allocated
from location i te siiej, {(x;” 2 0). Thus, the decnslon vector x {and thereby the
decision space X) is an aggregate of two types of decision variables:

x=(x,x"},

where x’ is a binary vector of locational decisions, and

xﬂ = xi , or xﬂ = xtn ,
where x" is an integer {a 0-1 or general integer) or continuous vector of allocation
decisions. Owing to some constraints the set of feasible alternatives, A, is usually
limited to some subset of the decision space, X, where A ¢ X.

2.2 Criterion ouicome space

A locational actor {decisionmaker) evaluates each alternative locationat pattern with
respect to a set of k criteria. Thus, we can define a criterion outcome space, Y, and
a mapping {or function in case of a single criterion), F: A — Y, which describes the
numerical consequences of each locational alternative. Accordingly, each alternative
yields a point, y, in a k-dimensional space, R, that consists of all k criteria outcomes.
The set of outcomes for all the feasible alternatives defines an attainable outcome
set, ¥, = F{A4). The decision problem then depends on the selection of the best

¥ [}

attainable outcome, and identification of the decision alternative yielding this outcome.

2,3 Efficiency principle

For the sake of simplicity of the formal presentation we can assume, without a
loss of generality, that all the criteria are to be minimized and that the locational
problem can then be formulated as the following multiple criteria optimization
model:

minimize F{x), (1)
subject o
x€A, (2)

where F = (F,, ..., F, ) represents a vector of k criteria.
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Central to a theory of multiple criteria decisionmaking is the efficiency principle
{known also as nondominance, noninferiority, or the Pareto-optimality principle}.
In order to formalize this concept, let us define an achievement vector:

q = Flx},

which measures outcomes of several alternatives, x, with respect to the specified set
of k criteria, F,, .., F;. In the case of a single criterion, we have a scalar achieve-
ment, g, and it is easy to define the best achievement simply as the minimal one
within the set Y,. When dealing with multiple criteria we face a much more com-
plex problem. It is clear that an achievement vector is better than another one
provided that all its individual outcomes are better or at least one individual outcome
is better and all the others are not worse. Such a relation is called domination of
achievement vectors and it is mathematically formalized (in the case for minimization
problems) as follows:

ifqg #q" and q, < q/, forall v=1..,k,
ther ¢ dominates g, and q" is dominated by ¢ .

Unfortunately, there usually does not exist any achievement vector that dominates
all of the others with respect to all of the criteria, that is,

there does not exist y € Y such that forany g € Y,
¥ <q,, forall v=1,.k.

Thus, from the point of view of strict mathematical relations, we cannot distinguish
the best achievement vector. Instead, we can classify each achievement vector, 4,
as a dominated one—such that there exists another vector, y € ¥, dominating g—or as
a nondominated one—such that there does not exist any vector y € Y, dominating g.
The dominated achievement vectors represent nonoptimal locational alternatives.
On the other hand, all the nondominated achievement vectors represent alternatives
for which we cannot improve any individual achievement without worsening another
one; thus, these alternatives can be considered as optimal by virtue of being
mathematically efficient. Accordingly, a locational alternative is said to be efficient
{(sometimes also called nondominated or noninferior) if it is feasible and no other
feasible location exists which can improve performance on one criterion outcome
without reducing the performance on another. It implies that all efficient locations
{nondominated achievement vectors) are noncomparable to each other on the basis
of the specified set of criterion functions.

2.4 The decision rules

A set of assumptions that allows us to order alternatives is referred to as a decision
rule {Chankong and Haimes, 1983). Decision rules provide an explicit way of
selecting one or more alternatives from a set of alternatives available to the decision-
maker. Note that the efficiency principle does not allow for an ordering of alternative
decision outcomes. 1t can be used enly to classify the set of feasible solutions into
two categories: the set of efficient and the set of nonefficient decisions. A further
decision rule is required, therefore, to choose the best alternative from among the
cet of efficient alternatives. In general, the decision rule can be simply stated as:
choose an efficient decision with an outcome that is most preferred by the decision-
maker. The complexity of the choice based on this rule stems from the fact
that in a real-life location problem {especially when the problem involves allocation
decisions) the set of efficient decision alternatives and, consequently, the number of
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location —allocation patterns are very large. Therefore, there arises a need for
further analysis, or rather decision support, to help the decisionmaker to choose one
efficient solution for future implementation. As the efficient solutions (alternative
efficient locations) are noncomparable on the basis of the specified set of criteria,
the analysis has to involve some additional information about the decisionmaker’s
preferences. The best alternative depends on the underlying preference structure,
which, in turn, determines the decision rule used to make a locational choice.
A number of decision rules are available for making locational decisions {see Isard,
1969). In essence, these decision rules fall into two fundamental categories—the
optimizing rules and the satisficing rules (see paper 2).

3 Neiwork structure

Te formalize a locational decisionmaking problem in terms of the model (1)-{2),
it is convenient to have some standard iterminology and notions associated with
location problems on a network.

3.1 Fixed nodes

A newwork is a collection of nodes and arcs (or links), These two elements are
defined as point entities and line entities, respectively (Laurini and Thompson,
1992). The nodes can be subdivided into two sets: a set of fixed nodes and a set of
potential nodes. Fixed nodes represent point entities, the locaticn of which is
known and fixed in a network. These nodes are characterized by some specitied
amount of attribute or quantity, ;. The value of 5, can be defined in terms of the
number of people, amount of goods, commodities, information, capital, or demand
at node i. Parameters b, can take positive values corresponding to the supply of
some goods or services, negative values to represent needs or demands for the
attribute, or they can equal zero.

3.2 Potential nodes

Potential nodes or candidate locations represent a set of potential sites for various
facilities (production, supply points, or service centers). All nodes in a network may
be candidates, that is, the potential and fixed nodes may have the same locations in
a network. For example, in figure 2, fixed (demand} node D; and potential {supply)
node P, have the same location. The potential nodes are represented, however, as
quite independent entities in our abstract network. Each potential node is charac-
terized by its capacity, 4. It is assumed that a potential node can supply an amount
of goods, service, information, etc., defined by its capacity or it can be considered
to be a transshipment point.

3.3 Selections

In certain applications the potential nodes have to be differentiated according to
their geographical location and/or type of facilities (for example, a limited number
of facilities are to be located in a given region and/or the potential nodes are
differentiated according to the size of facilities that can be established at the same
site}. For these reasons, the potential nodes can be subdivided into specific groups.
These groups are referred to as selections. Bach selection S, 8, (r = 1, 2, .., 2},
defines a group of potential nodes (members) and the lower and upper limit on the
number of members to be selected (located). In particular, if a selection represents
a few variants of the same object, lower and upper limits equal to 0 and 1, respec-
tively, will be used. Some selections can overlay each other with respect to their
members.
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3.4 Arcs

The nodes are connected by a set of arcs or links. A link is a path of feasible direct
transportation between two nodes, with no intervening nodes. Where more than
one feasible link exists between two nodes, the shortest one is used. An arc (i, f)
from node i to node j is characterized by capacity ;. The capacity is the maximum
amount of flow that an arc (i, /) can carry. In general, arcs are oriented and non-
symmetric, that is, arc ({, f) differs from arc (j, {), and they can be associated with
different parameters. However, in many location-allocation models they can be
defined as symmetric.

3.5 Example 1

Consider a central facility location problem in a given region {see figure 2). There exist
two centers, 5; and S,, which can serve 9000 and 8000 consumers, respectively.
The demand for the service is projected to be 24000. Consequently, it is planned
that two new centers will be built in the future. Six potential sites (P, P, ., P for
locating the two new facilities are considered. It is assumed that the capacity of
each new center should not be greater than 5000 for sites P; and F;, and not be
greater than 6000 for the remaining sites. Furthermore, the region is subdivided
info two administrative units {subregions) and the population has exclusive use of
the facility within its areal units. Therefore the potential sites are divided into two
subsets associated with the corresponding two subregions: North = (P, P, P;) and
South = {P,, P;, P}, and the sites located in a given subregion are considered as
exclusive alternatives.

To identify the spatial distribution of demand for the services offered by the
facilities, the region is subdivided into twelve spatial units (residential areas}, The
size of the popuiation is used as a surrogate for demand. To measure the distance
involved in traveling from residential areas to the service locations, it is assumed
that the population in a spatial unit is concentrated in its center. Thus, there are
twelve demand points, from D, and D, (see figure 2).

North subregion
* Demand nodes (B, D; .. Dy}

@ Existing service centres (8;, $.)

D, [ Potential sites for service
p
' centres {P,, P, .. Fy)
H
% \\D4
E

Figure 2. The sample problem: central
facility location.

South subregion
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The problem is to find the best pattern of locations and the size of new facilities
in each subregion, and allocate the demand to the existing and new facilities (this
problem will be solved and analyzed in sections 4 and 6 as example 2 and example 3).

The above problem can be easily described in network terminology. Because the
locations of the demand points (D, D,, .., Dy,) and existing centers {§, and S,) are
known and fixed in the network, they are referred to as fixed nodes. Similarly, all
the potential sites for new centers are potential nodes (P, Py, ., Fg). Arcs represent
all the possible assignments of individuals to the centers. A flow along the arc from
a center, ¢, to an area, g, indicates the number of consumers in the area a serviced
by the center ¢ {variable x’). The capacity of each of the existing and potential
centers is then represented as supply in the corresponding nodes. A scheme of the
network is shown in figure 3,

As we have mentioned, the locations belonging to the same subregion are
considered as exclusive alternatives; that is, no more than one location from the
subregion can be used. Therefore we introduce inio the network model selections
that represent this requirement. In our model there are two selections associated
with two subregions: North and South. Both the selections have the lower numbers
equal to 0 and the upper numbers equal to 1. This guarantees that at most cne
potential node in each selection is active.

The arcs connecting the supply nodes with the demand nodes have essentially
unlimited capacities. However, in practice, flows along these arcs are also bounded
by capacities of the corresponding supply centers and one can use them as arc
capacities (figure 3).

Demand
2500

Supply

[maximum

capacity} 2500

2000 2100

5000 Z000

6600 1900

6000 2000

5000 N T 1600

S :“x R

6000 o (et Dy ) 2200

6000 1500

8000 2100
1300
2300 Figure 3. Network representation of

the sample problem.
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4 Generalized network model for multiple criteria location problems

The network model of the location-aliocation problems discussed in the previous
section has some weaknesses. For instance, as one can notice from example 1, to
allocate entire areas without splitting them (usage of x" = x*} requires quite a
different definition of network attributes (supply, demands, and capacities) com-
pared with the model allowing for splitting. Moreover, two tvpes of nodes disturb
simplicity and soundness of the network model. In order to avoid the weaknesses of
the standard network mode}] we formulated a generalized network model {GNM).
It simplifies remarkably the network structure and allows easy implementation of
additional constraints or requirements.

What distinguishes the potential nodes and simultaneously disturbs the network
homogeneity is their potentiality. Note that, in fact, in each network model one has
a high level of potentiality associated with arcs. A flow along an arc may or may
not occur. This suggests that the network model of location-allocation problems
can be simplified by moving the entire potentiality included in the model to the arcs,
This transfer can be accomplished by replacing each potential node with a pair
of fixed nodes connected by an artificial arc. All the attributes associated with
potentiality can then be assigned to the arc. Consequently, the network can be
represented as a structure with all nodes being fixed and each arc representing a
potential flow.

All arcs are characterized by their capacities. For artificial {potential) arcs the
corresponding capacity is, however, variable instead of constant. Flows along arcs
are modeled with two variables: a 0-1 variable representing the existence of the arc
(locational decision—x) and a continuous or integer variable representing the
amount of flow (allocation decision—x"}. To be more specific, a flow along the arc
(£, 7) is bounded by the quantity k,;,x;,, where x; denotes the existence of the arc {1 it
exists, 0 it does not exist), and hy is the capacity of the arc. For the arcs associated
with locational decisions {artificial ones), x,-; is a binary decision variable. For the
others, it is a parameter fixed as equal to 1,

Given this simplified network structure, the generalized model can be written as

follows:
There is a given set of nodes, N, N = {1, 2, .., m}. The nodes are characterized by
some specific amount of attribute &,. These quantities can be positive (supply),
negative (demand}, or equal zero (intermediate points). The nodes are connected by
a set of arcs, E, E = {(i, /) i,j ¢ N}, characterized by the capacities, ;. The status
of the model is described by two types of variables associated with arcs;

x; denotes existence {1 it exists, 0 it does not exist) of the arc (i, j},
x,;:f denotes amount of the flow along the arc (i, ).
At each node the variables have to satisfy balanced equations given by

[l it -
Z x.;; = X = b;, for (e N, {3)
FEN JEN

and capacity restrictions for each arc, given by

xS hyx; for (i,j}eE,

Y

x; 20, x=0orl, for {(i,/i=E. (5)

=
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Further, as in the basic network model, there are selections, S,, defining multiple
choice requirements on some groups of x' variables,

s Y oy spM™, for r=1,2, .2, (6)
Lies,
where p™" and p™* are lower and upper limits for the rth selection, respectively.

Note that the constraints (4) do not destroy the original network structure of the
model. They are the so-called variable upper bounds (see Schrage, 1975; Todd,
1982; Ogryczak, 1992) and, similar to the standard simple upper bounds (SUB),
they can be handled outside the main structure of the model. Likewise, the con-
straints (6) can be regarded as some additional discrete mechanisms defining
feasible variables x' (special ordered sets). Thus a GNM may be effectively solved
with mixed integer programming packages armed with the network solvers, such as
CPLEX {1993).

The generalized network model is very flexible as it allows one to keep the
same network structure while adapting additional characteristics to meet modeling
requirements. For instance, if one wishes to introduce a requirement that the entire
quantity from node { has to be assigned to exactly one node from the set S, it can be
implemented simply by adding a new selection built on all the arcs from node i to
nodes of the set §,

1€ > ax;81.

fe &

4,1 Example 2
Consider again the problem from example 1 (subsection 3.5). Let us number nodes
as follows: demand points D; through D);, as nedes 1 to 12, existing centers 5, and
$, as nodes 13 and 20, potential centers F; through F, as nodes 14 to 19, respec-
tively (see figures 3 and 4). In order to transform the model into the GNM, one can
add an additional node to each potential node. However, in most cases {including
the one under consideration) we are able to create all the necessary artificial arcs
with only cne additional node. Namely we add node 0, with supply of services
equal to the total of alt the demands (b, = 24000) and arcs, to all the existing and
potential centers. These arcs represent the centers and therefore their capacities are
defined as equal to the corresponding center capacities {4, ,; = 9000, k; ;; = 5000,
hy15 = 6000, etc.). A scheme of the network is shown in figure 4.

The algebraic description of the model is as follows. The balanced equation for
node @ takes the form

Xo 13X 4t Xg 15 F T Xy 59 = 24000,
Balance equations run as

X HX Lt N X, =0, 1=13,14,.,20,
for service centers, and as

—X15,; = X1a, ;= K15, j == Xon,; = b; i=12,.,12,

for demand points (note that b, for j =1, 2, ., 12, are negative because they
represent demands).

Nodes 13 and 20 represent existing centers. Therefore the corresponding binary
variables, x, 3 and xo', 20, are fixed at level 1 and the corresponding capacity con-
straints take the form of simple upper bounds,

X1 € 6000, and xj,, = 8000.
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Nodes 14-19 represent potential facilities, so the capacities of the corresponding
arcs are characterized by variable upper bounds,

qo S hygay,  for j=14,15,.,19,

where hy; denote capacities of the corresponding facilities.

Flows along arcs from the centers {nodes 13-20) to the subareas {nodes 1-12)
are formally unbounded and there is no need to define capacity constraints for
them. In fact, they are limited by flows through the corresponding center nodes.

Furthermore, there are two selections, §; = {(0, 14), (0, 15}, (0, 16); and
s, = {{0, 17}, (0, 18), {0, 19}}, representing subregions North and South, respectively.
They generate the inequalities

0= x(;,14+x(;,15+x(;,16 <1,
(URS -"6,17+x(;.1s+x|;,19 1.

If one wants to implement a requirement that each demand point is served by only
one center (there is no split among two or more centers), additional selections are
necessary. They can be algebraically expressed by the following inequalities:

0< x{lj+x{4,j+x1'5_j+...+x£0‘j £ 1, j=1,2,.,12.

Demand

Total

supply
24000

12} 2300

Figure 4. Network model for the sample problem of central facility location.
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5 Locational criteria and constraints

Although the GNM may at first seem somewhat restrictive for a locational modeler,
it is possible to express all typical location - allocation building blocks in terms of
the GNM. The structure of the model {(1}-(2) can take a variety of forms depend-
ing on the decisionmaking situation. Locational analysts often make a distinction
between private and public sector facilities by pointing ta the special features of
each. Despite this distinction, a wide range of locational decistonmaking problems
in the public and private sectors can be structured by means of an appropriate
combination of generic criterion functions and constraints.

5.1 Criterion functions

In GNMs there are two types of variables {both associated with arcs): binary
variables (_x,;-} denoting the existence of the corresponding arcs, and continuous or
infeger variables ('x,-;-' ) denoting the amount of flow along the corresponding arcs.
Therefore any criterion function has to be defined via coefficients assigned to those
variables. Hence, there are the following threc general cases of linear functions:

Fl¥) = 3 gxj, {7}
LAEE

Flx) = Y cixj, (8)
e E

Flx) = 3, (cix+eix}. (9
i S E

Function (7) is associated with locational decisions. The corresponding criterion
function minimizes (or maximizes) the amount of an attribute at the sites chosen for
establishing facilities. The amount of an attribute {characteristic} associated with
an alternative location is expressed by coefficient ¢;. An interpolation of this
coefficient depends on the specific decisionmaking situation. Typical examples of
the coefficient c,;- include economic, environmental, and social attributes, such as the
total acquisition and development costs {investment costs), physical and social suit-
ability of the site for facility location, environmental pollution associated with siting
the facility at location j, etc. In more general terms, function (7} can be used to
structure the site selection problem—that is, a problem involving choice of one or
more sites from among a finite and exhaustive set of locational alternatives on the
basis of a set of attributes (evaluation criteria). In this case, coefficient ¢; represents
an outcome of a decision to locate a facility at site j with respect to the ith attribute,

Function (8) is explicitly associated with allocation decisions. Although because
of the constraints (4) it is, in fact, a function both of location and of allocation
decisions. The real-world interpretation of this type of criterion function depends
on a definition of the coefficients ¢. Typically, in location-allocation models,
coefficients c; are defined as some functions of d; (the shortest distance between
locations { and /). If ¢ = d;, then function (8) expresses the total transportation
effort (to be minimized). Using cg,f = d;{b, where b is the total demand, one gets
the function expressing the average distance {to be minimized). Furthermore, the
effect of distance (spatial separation) on the intensity of flow between a pair of
nodes can be defined by c; = 1/f{dy). For example, f(d;) can take the form of a
negative power function, {d;)*, or a negative exponential function, exp( —ady),
where a is a measure of the frictional effects of distance on the intensity of flows.

Hillsman {1984} has shown that function (8} can be modified by editing informa-
tion in the matrix of coefficients, ¢;. to yield a wide variety of location - allocation
criteria. According to Hillsman’s approach, many location - allocation problems are
structurally equivalent to the classical p-median problem and they can be cast within
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a unified linear model structure {see also Goodchild and Noronha, 1983; Densham
and Rushton, 1992}

Function {9) is a sum of functions (7) and {8), and therefore it explicitly depends
on both types of decisions. It is usuvally referred to as the total cost or budget
criterion. It can be used, for example, to express the total investment and/or
operating costs involved in establishing and running all facilities in an area. Invest-
ment and operating costs can be divided into fixed costs, ¢;, and variable costs, ¢
In the classical approaches the tofal cost was frequently introduced into the model
as a budget constraint. However, multiple criteria analysis allows us to deal with
soft {fuzzy) budget constraints and examine relations between the cost and other
outcomes. Note that function (9) can also be used in the context of noxious facility
location to express the total pollution emission by facilities to be built because the
corresponding coefficients can be split into fixed and variable.

Ross and Soland (1980) have demonstrated that function {9) can be considered
as a generalization of a wide variety of criterion functions, which can be formulated
by an appropriate definition of the ¢; and ¢; constants. Also, function (9)—along
with a set of constraints imposed on the decision variables, xj; and x;—can be recog-
nized as a generalized assignment problem (Ross and Soland, 1977). Furthermore,
Ross and Soland {1977; 1980) have shown that many classical location-allocation
problems, such as the p-median and plant location problem, can be structured in
terms of a generalized assignment problem.

For some applications the maximum operator can be used in criterion functions
(7). {8), or (9) instead of the sum operator. For instance, if the decision situation
requires minimization {or maximization} of maximal {or minimal) distance instead of
the total or average distance, then function {7) can be replaced with the following
expression:

F{x) = maximumc,x}, or F{x) = minimum cjx;, (10)

th,j} s E L1 E

to be minimized or maximized, respectively. Thus function (10) can be considered
a8 a minimax or maximin criterion function. The former is of particular importance
for locating emergency facilities, whereas the latter is frequently used as a criterion
in noxious facility locational decisionmaking. To this end, coefficient c;,- usually
captures the various notions of maximum distance from facility to consumer locations.
One can consider minimization (maximization} of the maximum (minimum) distance
or the maximum {minimum) weighted distance, that is, ¢; = d or ¢ = b4,
respectively.

It is well known that a minimax linear programming problem can be transformed
into a standard one by introducing additional inequalities,

cgxy sz, for (i,j)€E,

where z is an additional state variable to be minimized. Such a transformation not
only increases the size of the problem but also introduces coefficients ¢; into the
problem matrix, which can destroy the special network structure of the original
matrix.

Ogryczak et al (1992) proposed a primal simplex algorithm which handles impli-
citly the additional inequalities. The algorithm is based on the lincar programming
basis partitions within the main steps of the cycle of the simplex method—that is,
the inequalities are treated as a special kind of constraint and handled outside the
linear programming basis like variable upper bounds in the respective algorithm
{Schrage, 1975; Todd, 1982; Ogryczak, 1992}, It leads to more complex formulas
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for the simplex steps but, on the other hand, limits the explicit basis representation
to the size of the original problem and thus allows us to take advantage of the
special basis structure. Thus the minimax criterion function (18} does not destroy
the network structure of the problem, as the standard network simplex algorithm
{Grigoriadis, 1986) can be adapted for this criterion.

5.2 Constraints

A set of feasible location and allocation decisions can be restricted by some addi-
tional requirements. Very often restrictions are imposed on the aumber of facilities,
p, to be established. let p™ and p™* be the minimum and maximum number of
facilities to be built. In general, 0 < p™" < p™* but it is quite permissible to have
p™* = p™* io ensure that exactly p facilities are to be located {as in the case of the
p-median problem). Furthermore, a decision situation may require a limit to the
number of facilities in some regions {areas, jurisdictions) or prohibit an allocation of
a demand in one areal unit to a supply facility in a different area. All these require-
ments are easily implementable by means of the GNM with selections. One simply
needs to define a selection, S, as a set of potential nodes {represented in a GNM by
arcs) and then the constraint (6} can be used to define the corresponding require-
ment. This means that the number of facilities in region r {r = 1, 2, .., z} lies within
a given minimum (p,”") and maximum {p"*} value.

In many approaches to location -allocation problems there is a requirement that
the entire quantity from a node be assigned to exactly one facility {for example, if an
area is serviced by only one center). Thus, an all-or-nothing rule is applied to the
allocation of a quantity. This requirement can be implemented in a GNM with the
selection mechanism. Let node / be allocated according to the all-or-nothing rule.
One can set a selection S5, defined as S, = {{,/)} /€ N}, or §; ={{(j, i} je N},
depending on the orientation of the allocation and pM = pM™* =1, The require-
ment is then guaranteed by the standard selection consiraint (6).

The flow of quantities along an arc (i, j} can be required to stay within specified
minimum and maximum limits (that is, h,?’i“ and Ag*, respectively). It can be imple-
mented in a GNM by minor modification of the capacity constraints. Namely,
inequalities {4) need to be replaced with the following:

BPCx, S xy € A, for {i.jlc E. (11}

In order to ensure operating efficiency for an individual facility, a lower bound can
be imposed. Similarly, an upper bound can be placed on the size of the facility to
ensure effective utilization. If the potential facility is considered to be a transshipment
node, then one may want to ensure thai the quantity shipped to and from the facility
lies within a specified minimum and maximum value, This means that storage capacity
can be incorporated as an upper bound on the allocation variable. On the other
hand, a minimum flow is required to ensure economic efficiency. As the facilities
are represented in a GNM by arcs, this requirement imposes some lower and upper
bounds on flows along the arcs, and these are implemented with constraints {11).

In our network model it was assumed that nodes are characterized by some
specified amount of attribute or quantity, b, {(supply or demand). In a real-life
preblem, instead of exact amounts some minimum {»™") and maximum (&™)
amount of an attribute at node i may be specified. To implement this extension in a
GNM, one needs a minor modification of the balance constraints, which is that
inequalities {3) need to be replaced with the following:

bt Y a2 xS B™,  for ieN. (12)

JeN FeN
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Some requirements may be introduced to define the desirable structure of the
location-allocation system. For example, ¢f™ can be used as the minimum distance
between an obnoxious facility and a population center and ¢ can be considered
as a travel-time standard or any other limit that the decisionmaker may wish fo
impose on locating an emergency facility. However, just as with the budget con-
straints, having allowed an interactive multiple criteria analysis (Hultz et al, 1981},
one can easily deal with these characteristics as criterion functions [that is, similar to
function (10)]. Such an approach allows the decisicnmaker to learn all the relations
between these and other characteristics of the solution.

The set of criterion functions (7)-{10} and the constraints can be considered as
the basic building blocks of a substantive model of locational decisionmaking.
Indeed, with the use of an appropriate set of criterion functions and constraints, it is
possible to formulate almost any type of single-criterion location problem. The well-
known elementary location problems (such as p-median, p-cenfer, plant location,
and transshipment problems) can be structured by means of GNMs. It should be
emphasized that these basic models can be easily extended and modified to describe
fairly complex locational decisionmaking situations {(see Ross and Soland, 1977,
Handler and Mirchandani, 1979; Hillsman, 1984; Colorni, 1987). Most importantly,
however, an equivalent formutation of the criterion functions and constraints can be
expressed in the form of a GNM for the multiple criteria location problem.

6 Generating the set of efficient solutions
6.1 Techniques for generating efficient solutiens
The first step in searching for the best or most preferred decision ouicome is to
generate a set of efficient solutions (locational patterns with nondominated out-
comes). Several techniques for generating efficient solutions are available {for an
overview see, for example, Chankong and Haimes, 1983; Steuer, 1986). Here we
are concerned with the three most commonly used methods for tackling MCLPs.
These techniques include: - the weighting method, the noninferior set estimation
(NISE} method, and the constraint method (see Cohon 1978). A common feature of
these techniques is that they transform the multiple criteria model {1}-(2} into a
single-criterion form to generate one efficient soloution and then, by parametric
variation of the single-criterion problem, the complete set or a subset of efficient
solutions can be generated. The basic difference among the three methods lies in
how they make the transformation from a multiple to a single-criterion problem.
The weighting method involves assigning a weight, w, (v = 1, 2, .., k), to each of
the criterion functions, F,. The multiple criteria function {1} can then be converted
into a single-criterion form through the linear combination of the criteria together
with the corresponding weights. Thus, the problem (1}-(2) can be transformed into
the following form:

minimize w,F;{x)+w,F{xi+. . +wF.(x),
subject to
xeA, and w, 20, for v=12,.,k;

and consequently, the problem can be solved by means of standard linear pro-
gramming methods. The set of efficient solutions to the original problem (1)-(2) is
generated by parametric variation of the weights.

The NISE method is an extension of the weighting technique. The essential
difference between these two approaches is thai the NISE method allows for a
control of the accuracy of the efficient set approximation. The method operates by



1930 ] Malczewski, W Ogryczak

finding a number of efficient solutions, via the weighting technique, and evaluating
the properties of the line segment between them (for a detailed discussion of the
NISE method for bicriterion problems see Cohon, 1978; and for three-criterion
problems see Balachandran and Gero, 1985).

Another approach that can be used to generate the set of efficient solutions is
the constraint method. Like the weighting and NISE methods, it is based on the
idea of converting the multiple criteria optimization probiem to a single-criterion
one. This can be done by maximizing only one of the criterion functions whereas all
the others are converted into inequality constraints. Thus, the multiple criteria
problem (1}-(2) can be transformed to the following single-criterion problem:

minimize F,(x)
subject to
xcA, and F,(x) 2 ¢, for p=1,2,.,{-1,1+1, . k,

where ¢, is the minimum allowable level for the pth criterion function. The set of
efficient solutions can be generated by solving the single-criterion problem with
parametric variation of the &,.

A comparative analysis of the weighting method, NISE, and the consiraint method
can be found in Balachandran and Gero {1984}, Current et al (1990) provide a com-
prehensive review of papers concerned with the application of generating techniques
to multiple criteria analysis of facility location decisions. This review includes forty-
five articles dealing with public and private facility location decisions. The following
discussion provides a selective and critical overview of studies on generating the set
of efficient solutions for MCLPs to compiement the survey by Current et al (1990).

6.2 Advantages and disadvantages

The main advantage of the generating techniques is that they require a very limited
amount of information to be provided by the decisionmaker in order to solve a
MCLP. In essence, an assumption that ‘more is better’ or ‘less is better’ is all that is
needed to solve a MCLP by means of generating techniques. It is argued that
decisionmakers involved in searching for the best decision outcome are not able or
are reluctant to articulate explicitly their preferences. For this reason, some location
analysts strongly advocate this approach t¢ MCLPs {for example, ReVelle et al,
1681). It is suggested that decisionmakers are more comfortable with articulating
their preferences once the possible decision outcomes and the trade-offs involved
are presented to them and clearly understood.

One of the most significant shortcomings of the generating techniques is that
they are of limited applicability for large-sized problems. The generating techniques
are very intensive, computationally. They can be tedious and expensive. For
example, the computational requirements for the weighting and constraint methods
depend on the number of criterion functions and the number of weights or con-
straints imposed for each criterion outcome {Cohon, 1978; Balachandran and Gero,
1984). To be more specific, there is an exponential relationship between the number
of criterion functions and the computational burden. One should point cut that the
weighting and constraint methods do not guarantee an exploration of all ‘important’
segments of the efficient set. It happens especially for discrete decision problems,
that is also for MCLPs. As the resulting subset of efficient solutions depends on the
particular weights or constraints applied, the technigues will not necessarily generate
a good representation of the entire efficient set. One possible way of handling
this problem is to reduce the scale of weights or the inilervals of the constraints.
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However, this will increase computational burden, Also, the practical question
remains of how to vary the weights or constraint intervals so that a representative
subset of efficient space can be generated (Chankong and Haimes, 1983

To some extent the NISE method avoids this drawback. It allows a quick and
good approximation of the set of efficient solutions {Cohon, 1$78). Although the
NISE technique guarantees a representative coverage of the efficient set for multiple
criteria linear problems, it is not possible to explore nonconvex portions of the
efficient set with this method. Also, the weighting method cannot provide informa-
tion about nonconvex segments of the efficient space. It is particularly true when
the weighting or NISE methods are used to solve integer or mixed-integer linear
programs (this is also typical of MCLPs). Although the NISE method can be used
to solve problems involving more than two criteria (Balachandran and Gero, 1985},
it is, essentialiy, applicable to bicriterion linear problems. Note that the efficient set
for a bicriterion problem can be easily identified with the standard parametric
procedures (compare Prasad and Karwan, 1992). Solanki {1991) has developed an
algorithm to approximate the bicriterion integer noninferior set (ABIN}, which
avoids this weakness of the weighting and NISE methods. ABIN can generate a
Tepresentative subset of the efficient set even if the set is nonconvex. This is
achieved by applying an augmented weighted Chebyshev metric for measuring the
distance between an ideal outcome and efficient criterion outcomes {see also Steuer,
1986). 1t should be emphasized that both the NISE and the ABIN methods are
designed primarily for handling bicriterion decision problems (for applications of
these methods to bicriterion location - allocation problems see Schilling, 1980:
Storbeck and Vohra, 1988: Church etal, 1991; 1992},

The major practical disadvantage of the generating techniques is that the size of
the approximate efficient set is usually large for a real-life MCLP. The following
hypothetical problem illustrates this point.

6.3 Example 3
Consider the central facility location problem we have discussed in previous sec-
tions (examples 1 and 2 in sections 3 and 4). Further, let us assume that the
decisionmaking problem involves an optimization of three criterion functions, The
first criterion is to maximize the level of user satisfaction for a location pattern of
central facilities. In order to measure the level of user satisfaction, let us assume
that the space discount parameter, a«, has been determined empirically by the
calibration of a spatial interaction model, Given a value of @ equal io 0.05, an
exponential distance decay function can be used to measure the level of user
satisfaction for alternative locational patierns, and the criterion function is to be
maximized and can be written in terms of the GNM as follows:

Fi(x) = ¥ exp(—ad)x] . (13)

thile £

The second criterion involves minimization of fixed (¢;) and variable {e;) costs.
It is assumed that the fixed costs do not change with the amount of services offered
(for example, the size of facility), but they vary geographically. The variable costs
vary locally and increase proportionally along with the size of facility. Thus, the
criterion can be formalized in terms of a GNM as follows:

Bl = Y lgx+eix). (14}

hile £

The third criterion is to minimize maximum distance between facility and demand
locations. In this case the criterion function (10} of a GNM can be employed. Thus,
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the criterion is to minimize the following function:

F;(x) = maximum d,x;. {15}
iLite E

An optimization of these three criterion functions is subject to the following constraints:

Sxi— > x =b, for i€N, {16}

jEN  jenN

xj < hf™x;,  for (i,j)€E, (17)
Y x<p, for r=12, (18)

(i, 4] & 8y

x; 20, % =00r1, for {i,fieE. (19)

The set of constraints {16) guarantees that the demand of every consumer is
satisfied. The constraints (17) ensure that the capacity of any facility will not be
exceeded and consumers will be supplied only from an open facility. Constraints {18)
require that no more than p facilities will be located in a subregion r {(p, = p, = 2)
and prevent demand nodes in §; being allocated to facilities located in §,, and
nodes situated in §, being assigned to facilities in 5,. The data for the problem
{13)-{19) are given in table 1.

Before we proceed to the solution of this problem by means of a generating
technique, it is useful first to discuss briefly the concept of the payoff matrix in
multiple criteria analysis. The matrix can be obtained by optimizing each criterion
function separately. Specifically, the following single-criterion programs are solved:

optimize {F,(x}: (x) € A}, v=12 ..k

As a result, a square-matrix R =(q,} (v=1,2,.,k¢=1,2, .., k) is obtained.
This matrix allows for identification of the individual maximum and individual
minimum of each criterion function under a given set of constraints—that is, ideal
{utopia) and nadir vectors can be defined.

The vector with elements g,,, that is, the diagonal of R, defines the ideal point.
This point, denoted further by ¢°, is usually not attainable but it can be presented
to the decisionmaker as a limit to the best numerical values of the criteria. To be
more precise, it provides the decisionmaker with lower limits for minimized criterion
functions and upper limits for the functions to be maximized,

Table 1. Data for the sample central facility problem.

Facility Distance (km) from demand node D, Maximum Costs

site capacity

SorP, Dy D, Dy D, Dy Dy D; Dy Dy DyyD;; Dy pman fixed ¢; variable ¢
4 ! ! {1000 g) (S per unitg
5, 24 30 62 0 30 36 © w o w ® © 9000 350 30

P, 045 77 14 44 50 @ © © © w o« 5000 1000 35

£ 45 0 32 30 60 31 ® ® © w © 6000 1250 25

B 50 31 45 36 63 0 o w w o « w© 6000 1200 36

5, w e o o w o 16 0 30 33 30 31 5000 300 32

P, 2 oy w o0 o o {16 30 52 40 48 5000 300 29

£ ® 0 w o o o 49 33 63 0 25 37 6000 1350 37

B 0 o w o o oo 48 32 52 38 57 0 6000 1250 36
Demand® 25 25 21 20 19 20 16 22 15 21 13 23

Note: §; existing sites; F; potential sites.
* Figures expressed in hundreds of tons.
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The vth column of the matrix R represents values of the criterion function F,
opbtained during several optimizations. Let g, be the worst value; that is,

g' = max g, or g = mn d¢,,

l€pak lspsk
if the criterion function F, is to be minimized or maximized, respectively. Vector q”
is called the nadir vector.

It should be emphasized that the nadir vector rcpresents an estimate of the
worst eriterion values over the efficient set, that is, the payoff matrix may provide
overestimation or underestimation of the actual worst criterion outcomes. Gener-
ally, the use of these estimates does not lead to computational problems if the nadir
vectors are provided purely for information. It is also possible that a payoff matrix
contains a dominated solution. For this reason the matrix should be used with
caution during the computational process (Steuer, 1986).

Table 2. The payoff matrix.

Optimized Criterion value

criterion -

function Flx) F(x}{$) Fa(x) {km}
Fy(x) 12775 33229000 38

Fafx) 10979 26247000 77

Fa{x) 11759 28702700 36

Ideal vector (g%} 12775 26247000 36

Nadir vector {g*} 10979 33229000 717

The payoff matrix for the problem (13)-{19) is given in table 2. The informa-
tion about the range of possibie outcomes {the ideal and nadir vectors) can be used
to generate the set of efficient solutions to the problem (13}-(19). Specifically, we
have applied the constraint method {for real-life application of this method to
location problems see Cohon et al, 1980; Sewell, 1990). In order to use this
method, the muitiple criteria model (13)-(19) is adjusted to the following single-
criterion form:

maximize function {13), subject to: constrainis {16}-{19),

and
> (gxtox) € C, (20}
lif) € E
dx) < d, (21)

where C is the maximum allowable amount of money for establishing and operating
the central facility system and 4 is the maximum allowable distance that may
separate node § from its nearest facility, /.

An approximation of the set of efficient solutions to the MCLP {13}-{19} can
be generated by solving the single-criterion model for a range of values C and d.
Specifically, the problem has been solved for various combinations of these two
parameters with the use of the LINDO package {Schrage, 1991). It was decided to
set thirty combinations of constraints C and d resulting in nine efficient solutions.
The results are shown in table 3.
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The efficient solutions are well distributed over the entire efficient set. The
results provide important information about the shape of the set of efficient solu-
tions, the range of possible decision outcomes, and the trade-offs involved. In spite
of the fact that this information is very useful in searching for the best decision
outcomes and corresponding location —allocation pattern, a decisionmaker is likely
to find it difficult to choose the best solution even for this very small location-
allocation problem, To this end, it is suggested that graphic presentation techniques
can be used o support the decisionmaker in analyzing alternative solutions and in
arriving at a preferred decision.

Table 3, The set of efficient solutions for the sample central facility location problem.

Solution Criterion outcome
F,(x} F(x} {8} E;{x) (km)

1 12775 33229 38
2 12691 32224 3g
3 12165 30809 77
4 12156 31779 45
5 12081 29769 77
6 11759 28703 36
7 11224 28258 45
& 11149 26253 77
9 10979 26247 77

Figures expressed in thousands.

6.4 Graphic presentation technigues

An important distinction must be made between graphic techniques for presenting
information about alternative solutions in decision space and criterion space (Schilling
etal, 1982; Church et al, 1992). Decision space consists of two types of decision
variables: a set of 0 -1 locational variables and a set of 0-1, or integer or continuous
allocation variables (see section 2). A combination of these two types of variables
defines a location-allocation pattern or spatial pattern, Criterion outcome space
{criterion space) represents the performance of a particular spatial pattern in terms
of several criteria. Given this distinction, different graphic presentation techniques
are used to display information about alternative solutions to MCLPs in decision
and criterion space.

Cartographic techniques are typically used to represent alternative solutions in
decision space (Allard and Hodgson, 1987). Armstrong et al (1992} provide a
- review of a wide variety of cartographic displays for locational decisionmaking. In
particutar, monoplan displays and delta displays can be used to visualize solutions
to MCLPs in decision space. The monoplan display techniques are designed io
show a single location-allocation pattern. They include center-border displays,
center-region displays, nodalchromatic maps, and spider diagrams. Center-delta and
allocation-delta displays are two techniques that can be used to compare two
solutions in decision space. In general, the spider displays are more effective in
conveying the information about solutions when a small number of fixed nodes
{demand points) are allocated to each potential node {supply point), whereas other
displays may be more effective in visualizing spatial patterns that involve a large
number of location and allocation variables {Armstrong et al, 1992},

There are a number of graphic techniques for visualizing alternative solutions
to multiple criteria decision problems in criterion space (Schilling et al, 1983;
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Maclaren, 1988; Klimberg, 1992} Most of these techniques were originally
developed for the statistical analysis of multivariate data {du Toit et al, 1986). Such
multivariate data displays as the bar charts, scatterplots, profiles, spider-web charts,
glyphs, Chernoff faces, and Andrews’s curves can be applied fo visualize alternative
solutions to MCLPs. Value path displays are probably the most effective methods
for visualizing in criterion space (Schilling et al, 1983). The most serious short-
coming of these techniques is their limited applicability to problems involving either
a large number of criteria {for example, glyphs) or a large number of alternative
solutions {such as Andrews’s curves, value paths).

The purpose of visual representation is to provide the decisionmaker with
insights into solutions to multiple criteria decision problems not readily obtained by
nonvisual methods (for example, tabular display). However, one should point to the
possibility of bias in the perception of alternative solutions in decision and criterion
space. Aspects of the information about alternative solutions that might be missed
when visualizing in decision space might become apparent when viewing in criterion
space (Steuer, 1986). This issue is of particular importance in multiple criteria
location - allocation analysis. It can be argued that the spatial patterns that seem 10
be ‘insignificantly’ different when viewing in decision space, might vary ‘significantly’
in criterion space and vice versa. Example 4 illustrates this point.

6.4.1 Example 4

Consider the solutions 8 and 9 (table 3) to the central facility location problem {exam-
ples 1, 2, and 3). We have also generated another solution {solution 10) that is charac-
terized by the following criterion outcomes: F(x) = 11032, K(x} = §26 273000,
and F;(x} = 77 km.

These three alternative solutions are visualized in criterion space by value paihs
(figure 5). Each criterion outcome is represented as a percentage deviation from the
ideal (or nadir) value. At first sight it can be argued that the three solutions are
insignificantly different. Their performance is the same with respect 0 the maximum
distance criterion Fy{x). The differences are negligible for the total cost eriterion
F,{x). The deviations from the nadir value with respect to the accessibility crite-
rion Fy{x) are 0%, 3%, and 9% for solutions 9, 10, and 8, respectively. A closer
inspection of the value paths indicates that solution 10 is dominated by solution 8.
The latter performs slightly better than the former with respect to accessibility and
cost criteria, and the alternatives are the same on the maximum distance criterion.

Most importantly, however, these three alternatives might be considered signifi-
cantly different when viewed in decision space. Figure 5 shows the alternative
solutions by means of spider displays. Although the spatial patterns are the same in
the North subregion, the allocation patterns in the South subregion vary consider-
ably from one solution to the other. Given the analysis of the alternative solutions
in decision and criterion space, one can argue that the choice of the most preferred
solution will depend on the decisionmaker’s perception of the location -allocation
patterns and on his or her preferences with respect to the evaluation criteria.

Clearly, it is important to represent and analyze alternative spatial patterns and
associated criterion outcomes within the context both of decision and of criterion
space. The quality of the graphic presentation and the way of conveying the
information io the decisionmaker might significantly affect the decisionmaking
process (Schilling et al, 1983; Klimberg, 1992). To this end, the visual display
techniques should be considered a part of interactive decision support approaches
that allow decisionmakers to analyze alternative spatial patterns and associated
criterion outcomes with respect to their preferences and priorities,
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Figure 5. Alternative solutions to the sample problem of central facility location: {a) value paths,
{b} location -allocation pattern for soluticn 8, {c)location-allocation pattern for selution 9,
{d) location - allocation pattern for solution 10. Note: Fy{x] is the users’ satisfaction criterion,
F.(x) is the total costs criterion, Fy{x) is the maximum distance criterion, The criterion
outcomes are represenied as percentage deviations from the nadir value (g = 0} and ideal
value {g? = 100},
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6.5 Generating techniques and interactive decision support

As location-allocation problems typically involve hundreds of decision variables
and constraints, and several criterion functions, it can be argued that the generating
techniques provide limited support for the decisionmaker in the choice phase of the
decisionmaking process. For this reason some analysts suggest that the generating
techniques are best suited to integration with the subsequent interactive approach to
multiple criteria decisionmaking {Chankong and Haimes, 1983},

This point has been supported by empirical research on information processing
in decisionmaking, Payne {1976) pointed to an important relationship beiween the
amount of information provided to decisionmakers and the proportion of this
information used by them {see also Kok, 1986). The general principle suggests that
the percentage of information used by an individual decreases with an increase
in the amouni of information available. For example, it is possible to define the
percentage of information used by a decisionmaker if he or she were provided with
the information on the set of efficient solutions for the locaticn -allocation problem
discussed earlier {example 4, table 3). According to Payne’s {1976) experiment,
the decisionmaker would use approximately 60% of the information on the set of
efficient solutions.

Perhaps the most important feature of the generating techniques is that they can
be used to classify the set of feasible solutions into two categories: efficient and
nonefficient solutions, and consequently all nonefficient decisions can be discarded
from further consideration. Even so, there still remains the need for a DSS to help
the decisionmaker in choosing the best solution from among the set of efficient
decisions. In order to choose the best solution some information about the decision-
maker’s preference structure must be obtained. The decisionmaker, working inter-
actively with the DS8, has to specify his or her current preferences in terms of some
control parameters and the DSS provides the decisionmaker with an efficient
solution that is the best according to the specified control parameters. For such an
analysis, however, there is no need ic identify the entire set of efficient solutions
prior to the analysis. Contemporary optimization software is powerful enough to be
used on-line for direct computation of the best (in terms of the specified control
parameters) efficient solution at each interactive step. Thus the DSS can generate at
each interactive step only one efficient solution that meets the current preferences,
Such a DSS can be applied for analysis of decision problems with small, large, and
even with infinite {which may occur in the case of continuous decision variables)
sets of efficient solutions, This leads us to the preference-based methods and
techniques. In paper 2 we will focus on the preference-based approaches to MCLPs.
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Abstract, This is the second of two papers in which muitiple criteria location problems
(MCLPs) are discussed. In this paper two major approaches to locational decisionmaking are
overviewed: optimizing decision rules {utility-function-based methods) and satisficing decision
rules {goal-programming methods). Their advantages and disadvantages urc discussed. From
these two concepts a quasi-satisficing decision rule is developed and operationalized through
a reference point method. A framework for an interactive decision support system {DSS) for
tackling MCLPs is proposed. The system integrates a network model with the quasi-satisficing
approach. Il is argued that thc DSS data and analytical components can be effectively
intcgrated by means of the interaclive decision support concept that involves a fcedback
exchange of informaiion between a decisionmaker and a computer-based support system.
This concept allows tor the exploration of the locational decision problem and the alternative
selutions both in decision space and in criterion outcome space.

1 Optimizing and satisficing decision rules

In paper 1 an overview of various techniques for generating efficient selutions to
multiple criteria location problems {MCLPs) was presented (see Malczewski and
Ogryczak, 1995). The main purpose of the generating techniques is to determine
an exact representation of or an approximation to the set of efficient solutions.
The techniques can only be used to classify the set of feasible solutions into two
categories: the sets of efficient and nonefficient decisions. A further decision rule is
required, therefore, to identify the best alternative from among the set of efficient
alternatives according to the decisionmaker’s preferences. As defined in paper 1, a
set of assnmptions that allows for a complete ordering of alternatives is referred to
as the decision rule. A number of decision rules are available for making locational
decisions (see Isard, 1969). They can be classified into two fundamental categories:
the optimizing and satisficing decision rules. In this paper we suggest that these two
approaches are not mutually exclusive and it is possible to merge them into a quasi-
satisficing framework for an interactive decision support (Wierzbicki, 1982; 1983).

1.1 Optimizing decision rule

Classical location theories are organized around the optimizing decision rule. The
fundamental assumption underlying optimal decisions is that the locational player is
an economic human (home economicus) who has perfeci knowledge of the relevant
aspects of the decisionmaking environment, behaves rationally, and is able to
analyze the alternative courses of locational strategy fully and comprehensively
in order to choose an optimum location, This implies that the decisionmaker has

T Introductory section of paper 1 summarizes the structure of the two papers.
T On leave from the Faculty of Mathematics and Computer Scicnce, Warsaw University,
02-097 Warsaw, Poland.
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unlimited information-processing capacity. [tis also assumed that the preferences of
homo economicus are well-ordered, stable, and given exogenously {see 1sard, 1969}

The economic human is an optimizer who 15 searching for a location that will
yield the maxtmum utility. In the most clementary sensc, this process can be
described as follows: first, the decisionmaker wdentifies all feasible jocational alter-
natives; second, he or she orders the alternatives according to his or her preference
and, finally, the individual chooses the most prcfcrred (the best) alternative. The
crucial question involved in this process is about how the decisionmaker’s prefer-
ence structure translates inta complete ordering of the feasible alternatives {see
Myers and Papageorgiou, 1 091).

1.1 Utility - value function approach

As stated earlier, in a complex location problem the evaluation criteria are conflicting
and noncommensurable {se¢ paper 1). Consequently, there does pot exist a point in
the set of feasible alternatives A, which simultaneously maximizes all k criterion
functions. Hence, in addition to the specification of 2 decisionmaking problem in the
form of an optimization programnt. such as the multiple criteria location - allacation
model, some procedure for identifying the best compromise solution 18 required. To
this end, the classic interactive approaches 10 multiple criteria deciston analysis are
based on the assumption that the decisionmaker behaves according to the optimizing
or utility-maximizing decision rule (Keeney and Sicherman, 1976). Usually the
existence of some individual or group utility - value function {also called a prefer-
ence function) is assumed (Fishburn, 1970). The utility function approach deals
with the case when some probability measure {uncertainty} is incorporated into the
decisionmaker’s preferences, whereas the value function techniques are used in
deterministic problems. In cither case, the problem is solved by defining a utlity-
value function, w[Fix)}, with the property that if ¥ and & are feasible solutions,
then ' is preferred to " if and only if pIF(x"}] > w(E(x")].

The interactive decision support process depends on identification of the utility
function (for example, Zionts and Wallenius, 1976}. To be more specific, the utility-
function-based interactive procedure involves four steps (Keeney and Sicherman,
1976} (a) structuring the multiple criteria decisionmaking problem; (b} guantifying
the uncertainties about possible decision outcomes (if the problem involves uncer-
tainties) or determining the decision outcomes associated with alternative locational
patierns {under deterministic conditions}; (c) translating the decisionmaker’s prefer-
ence structure into a utiliey - value function; and (d) evaluating the alternative locational
patterns. The crucial task of an analyst is then to solve the MCLP (1) by defining
the decisionmaker’s utility function over the raultiple criteria of the problem under
consideration [see paper 1, equation {1}}. Given the decisionmaker’s utility function,
p, the multiple criteria decision problem {1} can be unambiguously stated as the
following utility function progran, maximize {plF(x):x € A4}, and solved by means
of standard single-criterion mathematical programming technigues (Steuer, 1986}

The utility function can be specified in any mathematical form, providing that it
meets a set of underlymng axioms. An additive form of the utility function is the
simplest and the one most frequently applied 1o locational choice problems. This
approach uses a weighting schema to combine criteria into a single measurc of
utility. The standard assumptions underlying this method involve preferential inde-
pendence {that is, the trade-off of pairs of criteria must be independent of the fixed
value of any other criterion at hand) and utility independence {that is, the utility of
an alternative on a criterion is independent of the outcomes on the other criteria}.
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The literature on the application of the utility-function-based approach to locational
choice is voluminous (see Keeney, 1980, for an overview). This method, partic-
ularly of the additive form, has been applied 10 many real-life and hypothetical
locational decisionmaking problems. [t has been used mostly for locating major
facilities such as power plants, airports, dams, refineries, and waste disposal facilities.
Hobbs {1980} provides a critical overview of the application of additive models
1o power plant siting decisions. DiMento etal {1985) have discussed the utility-
based approach to the location of hazardous waste disposal facilities. The utility
function approach has been used extensively for locational analysis by Keeney and
associates. They applied it to a variety of real-world decisionmaking problems, such
as the location of an airport {(Keeney, 1973} and the siting of a nuclear plant
(Keeney and Nair, 1975; Keeney and Robilliard, 1977).

The common feature of these studies is that the utility-based approaches are
used for locational choice from among a small number of alternatives in an environ-
ment of uncertainty to resolve difficult public policy problems. To this end, an
intcresting approach to the utility-function-based decisions has been proposed by
Mirchandani and Reilly (1987). These authors incorporated a utility function into a
classical p-median model and by doing so they were able to analyze a large set of
alternative location -atlocation patterns for spatial distribution of fire fighting units.

11,2 Advanrages and disadvaniages

An jmportant advantage of the utility function approach is that the muitiple criteria
function F{x) is reduced to a scalar-valued function. Consequently, the multiple
criteria decision problem can be solved by means of single-criterion optimization
techniques. This means that the vast body of algorithms, software, and experience
that currently exist for single-criterion optimization can be directly applied to tackling
multiple criteria problems. This is of major importance considering the extent to
which single-criterion optimization has influenced the development of location
theories, location -allocation modeling, and the use of computers to solve locational
decisionmaking problems (see Rushton et al, 1973; Goodchild and Noronha, 1983;
Densham and Rushton, 1992). For instance, the vertex-substitution algorithm,
which is one of the most widely used procedures for solving location -allocatien prob-
lems can be employed for tackling utility-function-based MCLPs. Indeed, Mirchandani
and Reilly {1987) have employed this algorithm to solve a location~allocation
decision problem. Omne should point out, however, that the utility function for
location decisionmaking is usually nonlinear with respect to decision variables. This
in turn may cause difficulties in solving MCLPs by means of standard mathematical
programmiing methods.

A further advantage of the utility function approach is that, if the w|F(x)]
function is correctly constructed and optimized, the resulting solution is preferred at
least as much as any other feasibie solution. This means that a best compromise
solution will also be an efficient one. This capability of the utility function approach
10 generate an efficient solution is of particular importance in the context of some
other multiple criteria decision methods that can produce inferior solutions {for
example, the goal-programming method).

The difficulties in assessing the utility function for the locational choice problem
should be emphasized. Usnually it is quite difficult, impractical, or even impossible
to obtain a mathematical representation of the decisionmaker’s preferences. There
are two major reasons for this: {1) the procedure for assessing utility functions with
even a moderate number of criteria can be very time consuming and tedious, and
(2) it places considerable information-processing demands on the decisionmaker.
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This is particularly true in the case of an MCLP. For example, Sarin et al {1979)
have investigated the difficulties in assessing various preference functions in the
context of a real-life study on power plant siting. Similarty, Mirchandani and Reilly
(1987) have discussed the difficulties they encountered in estimating the decision-
maker’s utility function for the location of a fire fighting unit, In particular, the
decisionmakers found it difficult 1o relate an increase in expected utility to the cost
of resources required to achieve that increase, It can be argued that decisionmakers
are not able to or are reluctant to articulate their preferences without knowing the
possible consequences associated with alternative decisions {ReVelle et al, 1981}

This issue has been discussed by Hobbs [1980) with reference to requirements
underlying an additive model for locational choice. He has shown that the weights
must be proporticnal to the relative value of unit changes in their criterion value
functions. Further, he argued that many empirical location choice studies did not
meet this requirement and consequently the locational cheice models inadequately
represented the decisionmaker’s preferences. It is also likely that the preferential
and utility independence axioms will not be met in most real-life location choice
problems (ReVelle et al, 1981; Solecmon and Haynes, 1984). ReVelle et al {1981)
pointed out the fact that the utility function approach neglects the existence of
spatial relationships among alternative locations. For example, in the case of the
coal-based power station siting problem, the level of emission allowed for a given
power plant depends on the emissions from other facilities located in a given regiomn.
Furthermore, it can be argued that location choice is a Gestalt process in which
alternatives are considered holistically. This means that the value of a criterion
function i¢ greater than the sum of its elements, This point is missed in the utility-
function-based approach because its components are determined separately and
then combined (see French, 1984). Furthermore the utility function approach is
focused on the decisionmaker’s -preferences in criterion space, and fails to analyze
the decisionmaker’s perception of alternative locational patterns in decision space.
It can be argued that the decisionmaker may have significantly different preferences
with respect to evaluation criteria if he or she is allowed to analyze alternative
solutions in decision space {Steuer, 1986; Church et al, 1992},

Last, one should emphasize that the utility function approach is based essentially
on the assumption that once the decisionmaker’s preferences have been specified,
he or she plays a passive role during the choice process. This implies that the
decisiomaker’s preferences are assumed to be stable with reference to locational
alternatives and time. A number of studies that have attempted to measure utility
functions have revealed numerous difficulties concerning the spatial and temporal
ordering of decision outcomes as perceived by decisionmakers. Isard {1969} pointed
to the fact that “learning, changes in aspiration, and other processes that take place
during the actual perception of ocutcomes over time and [geographical] space may
significantly alter the individual's preference pattern” (page 181). Many analysts and
practitioners have also stressed the importance of learning during the interactive
session with the decision support system, and there are numerous examples in which
people systematically violate consistency and coherence of their preferences (see
MacLean, 19835).

1.2 Satisficing decision rutes

The hypothesis that people seldom maximize some utility function while preparing
individual decisions led to approaches based on the bounded rationality or satisficing
behavior concept (Simon, 1957). In these approaches, which depend on recurrent
observation, it is assumed that people tend to summarize their learning of the state
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of the world by forming aspirations on desirable outcomes of their decisions. When
the outcomes fail to satisfy their aspirations, people tend to seek ways of improv-
ing the outcomes. When their aspirations are satisfied, however, they turn their
attention to other outcomes, Thus when dealing with locational decisions individuals
adjust their aspiration levels to reality on the basis of information about locational
alternatives and the decisionmaking environment. An aspiration level can be inter-
preted as a threshold reference point which is used by an individual as a criterion
for evaluating the utility of alternative locations (Wolpert, 1964), It plays an instru-
mental role in determining whether a satisficing alternative exists among a limited
number of locational alternatives at hand. In the locational decisionmaking process
the threshold reference point serves as a guideline in the search for a satisficing
Yocation. The process of searching is continued until an alternative that meets the
aspired levels is found, and finally this alternative is chosen as the satisficing one
{Pred, 1967).

Thus, the satisficing behavior assumes that the decisionmaker’s preferences are
represented by a binary-valued ordinal utility function, referred to as a satisficing
utility function, s[F{x}]. Given the attainable outcomes, Y., the decisionmaker differ-
entiates the set of feasible outcomes by setting his or her aspiration levels, a,, for
each v = 1, ., k and by then assigning to each possible decision outcome one of two
categories—satisfactory or unsatisfactory; that is to say, the satisficing utility function
s[F(x)] = 1 when F,{x) 2 a,, for all v =1, .., k, and s{F{x)] = 0 if F (¥} < g, for
at least one v.

The satisficing decision rules involve a dynamic search for the best (satisficing}
locational alternative {Rees, 1974). Simon (1979} argues that a decisionmaker
“copes with the complexity that confronts him by highly selective serial scarch of
the environment, guided and interrupted by the demands of his motivational system,
and regulated, in particular, by dynamically adjusting multidimensional levels of
aspiration” (page 4). An individual is consistenily concerned with his or her environ-
ment and in the decisionmaking process he or she always relates possible decision
outcomes and their consequences to the environment with its unique conditions.
The complexity and uncertainty of the environment makes global rationality impossible.
Consequently, decisionmakers do not optimize, they instead try to satisfice. It is
argued that the decisionmaker is rational only within the limits imposed by a complex,
evolving, and partially unknown environment. Therefore, the decisionmaker’s prefer-
ences are unstable over time. The preferences may also change during the process
of searching for a satisficing decision as a result of learning and acquisition of more
information about the decisionmaking environment {for example, see Britton, 1974;
Rees, 1974},

One may describe a wide range of possible decision situations and associated
decision rules that fit into the satisficing behavior (Isard, 1969). Of particular interest
in the locational decisionmaking context is a situation in which the levels of aspiration
are not aitainable. In such a case, the decisionmaker may be concerned with the
discrepancy between possible outcomes and bis or her aspired goals, Accordingly,
the best alternative {decision outcome) is that which most nearly approximates his
or her stated goals. This idea underlies the goal-programming approach,

1.2.1 Goal-programming methods

The satisficing behavior concept can be operationalized in terms of goal program-
ming, so that the decisionmaker’s preferences, specified n the form of a series of
goals or aspiration levels, are incorporated in an operational model of search for
satisficing decision outcomes.
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The goal-programming method, originally proposed by Charnes and Cooper
{1961}, is now probably the most widely used approach o handling multiple criteria
decisionmaking problems in general {White, 1990}, and MCLPs in particular (for
examples, see Charnes and Storbeck, 1980; Schniederjans et al, 1982; Kwak and
Schniederjans, 1985; Min, 1987).

The goal-programming approach requires the decisionmaker to specily the most
wanted valie for each eriterion as the aspiration level. The criteria (1) [see equation (1),
paper 1] are then transformed into goals:

Fixj+d —d' =a,, for v=1, ..k, {1}
d ,d" 20, d dm =10,

where g, is the aspiration level for the vth criterion and d,”, d,” are the negative and
positive goal deviations, respectively; that is, nonnegative staie variables which
measure deviations of the current value of the vth criterion function from the
corresponding aspiration level,

An optimal solution is then understood as the one that minimizes the deviations
from the aspiration levels. Various measures of muitidimensional deviations were
introduced. They are expressed as the so-called achievement functions. Accordingly,
a range of goal-programming forms has been proposed. Specifically, three basic
approaches to goal programming can be distinguished: (aj weighted goal program-
ming; (b) Chebyshev goal programming; and (c) lexicographic goal programming,
These three formulations are also known as minisum, mipimax, and preemptive
priority goal programming.
Weighted goal programming The simplest form of achievement function was intro-
duced by Charnes and Cooper {1961} as a sum of weighted deviations, that is

3
gld,d'y = 3 (wodl +wd), (2)
=1
where w,” and w," are weights corresponding to several goal deviations. The weights
represent, in fact, additional information reflecting the decisionmaker’s preferences
with respect to the deviation variables. Therefore they must be considered as
additional parameters (data) of the goal-programming model specified by the decision-
maker. It is never explicitly pointed out but, because of the goal-programming
philosophy, it is understood that all the weights are nonnegative. Moreover, it is
assumed that the positive and negative deviations of the criterion outcomes from
aspired goals are equally undesirable; that is, the decisionmaker perceives both
overachievement and underachievement of specified goals as equally undesirable
outcomes. In this sense, the decisionmaker behaves according to a sirictly satisficing
principle. (For applications of the weighted goal-programming method to locational
decisionmaking see Warczberger, 1976; Kwak and Schniederjans, 1985.}
Chebyshev goal programming This method can be considered as a specific form of
the weighted goal-programming approach. In particular, the achievement func-
tion {2) can be recognized mathematically as the weighted /, norm. Using other /,
norms to measure multidimensional distances, one gets other reasonable achieve-
ment functions defined as follows:
& 1ip
gd,dy =1 Y wd +widlV| . (3)
w=1

In particular, for p = 2 one can obtain the classic least squares problem. The I,
norm is rarely used in goal programming because in the case of linear programming
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problems it destroys their linear structure. In fact Charnes and Cooper {1961)
proposed the weighted linear goal-programming model as an approximation fo the
least squares problem.

For p = « the achievement tunetion {3) takes the form of the weighted Chebyshev
norm,

gld™,d") = maxilmukm (wyd, +wSd"}. {4
The corresponding goal-programining model is referred to as fuzzy goal program-
ming because it reflects a fuzzy approach to mathematical programming (Ignizio, 1982;
for application of this method 1o public and private facility location problems, see
also Mip, 1987; 1988; 1989). Fuzzy goal programming can be implemented via
linear programming techniques, thereby allowing it to protect the linear structure of
the original multiple criteria problem.
Lexicographic goal programming Lee {1972) has advanced the goal-programmimg
method by considering a preemptive goal-preference structure. In this method some
hierarchy of goals is assumed. A vector of a few achievement functions is constructed,

gld-, d*) = g(d ,d" ) gld ", d") gald . d7], (5)

where gld ", d*) are achievement functions similar to functions (2}, {3}, or (4}, and
minimized according to the lexicographic order. This means that the first achieve-
ment function is minimized, then, on the set of optimal solutions with respect 1o the
first function, the second function is minimized and so on, until a unique solution is
obtained or all the specified functions are minimized. This implies that goals of
higher priority must be met sefore those of lower priority are considered: that is, a
preference weight of positive infinity is assigned to a goal of higher priority com-
pared with that of the goal of next lower priority. This approach has been widely
ased for tackling MCLPs both in the public sector and in the privaie sector {Lec
et al, 1981; Min, 1987; Sinha and Sastry, 1987, Zografos et al, 1989).

1.2.2 Advantages and disadvantages
The major advantage of goal programming is its computational efficiency. When we are
dealing with multiple criteria linear programs, goal-programming approaches allow us
1o siay within an efficient linear programming computational environment. The inter-
active goal-programming analysis can be supported by dual quantities, and sensitivity
analysis as the duality theory was developed even for lexicographic goal programming
(Ignizio, 1982; Ogryczak, 1988). For instance, Zanakis {1981} has demonstrated
some of these properties of goal programming in a real-life decisionmaking situation.
He efficiently solved quite a large goal-programming model (175 variables and 81
individual goals grouped inic six priorities) for a public facility location problem.
There are several conceptual and technical problems with the use of goal-
programming methods for tackling MCLPs. First, the standard goal-programming
methods require the decisionmaker to specify fairly detailed a priori information
about his or her aspiration levels, preemptive priorities, and the importance of goals
in the form of weights {Nijkamp, 1979). One can expect that, in a complex location
decision situation, the decisionmaker will find it difficult {oT even impossible) to
provide the precise information required by these methods. This is particularly true
when locational choice involves multiple decisionmakers. Empirical studies showed
that decisionmakers found it relatively easy 10 specify ordinal rankings for goals,
but they were unable to derive meaningful preference weights on a cardinal scale
{Hotvedt et al, 1982; Solomon and Haynes, 1984). These difficulties are further
aggravated when the goals are unrelated to each other {Dykstra, 1984).
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Ancther problem with weighted goal programming is related to the assumption
of equal valuation of overachievement and underachievement of specific goals.
Because locational criteria are usually either monotonically increasing or decreasing
with respect to site suitability, the above assumption is unlikely to be true in most
real-world location choice problems. For this reason some analysts argue that the
weighted goal-programming method is inapplicable to most complex locational
decisionmaking {Solomon and Haynes, 1984). On balance, Ghosh and McLafferty
{1987) suggest that in the context of retail service location, this method provides a
flexible tool for locational decisionmaking by facilitating a sensitivity analysis,

A serious weakness of weighted goal programming is its poor controilability of
the interactive process {compare with Wierzbicki, 1986) in the case of discrete
problems {Hallefjord and Jornsten, 1988). In MCLPs this may mean that some
efficient locational decisions (vertices of the convex hull} are very likely to be selected
for various aspiration levels and weights, whereas other decisions (in fact, compromise
decisions), despite being efficient, are rarely selected except for aspiration levels
defined very close te their outcomes.

The lexicographic model can simplify the problem of weight definition because
the decisionmaker is only required to specify weights within the groups of goals
considered with the same priority level. Albeit, just in this case, usage of weights as
control parameters raises the most serious theoretical doubts. Namely, the lexico-
graphic optimization is essentially unstable (Klepikova, 1985). Fortunately, under some
reasonable assumptions lexicographic goal programming is stable with respect to
the changes of aspiration levels (Ogryczak, 1988) but this is not true with respect
to the changes of weights.

Thus, it can be argued that the lexicographic approach at least partially solves
the problem of preference weighting. It seems, however, that this method is not in
general superior to the cardinal-weight model. In the lexicographic method it is
assumed that the higher priority goal is of overriding importance with respect to a
goal of the next lower priority, and hence there is no substitution trade-off possible
between goals {Warczberger, 1976). Consequently, an alternative locational plan,
which performs best on the criterion of highest priority, will always be identified as
the best irrespective of its performances on other criteria and no matter how well
other alternative plans performed on the other criteria. This property of the
preemptive approach seriously limits its applicability to locational decisionmaking
problems, which inherently involve conflicting criteria. Therefore, some analysts
suggest that the preemptive goal method should always be used along with a
sensitivity analysis that can be performed by changing the ordering of the priorities
{Kwak and Schniederjans, 1985; Min, 1987).

The problems associated with a priori information required by standard goal-
programming methods can be overcome, at least partially, by an interactive approach,
To this end, it should be noted that the aspiration levels, preemptive priorities, and
weights are considered as a part of data for the goal-programming models. They
have to be specified by the decisionmaker. However, they can be changed during
the analysis depending on the decisionmaker’s learning of the decision problem if a
goal-programming mode! is used as a basis of some interactive decision support
approach. This is particularly true in the locational decisionmaking context. There
is much evidence to suggest that the decisionmakers tend 1o develop their prefer-
ences and goals during the decisionmaking process (Nijkamp, 1979; Malczewski
and Ogryczak, 1990}

For example, Nijkamp (1979) has developed, and applied to MCLPs, an inter-
active multiple goal-programming method which does not require the decisionmaker
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to specify explicitly trade-offs or weights. An interactive approach fo locational
decisionmaking has also been advocated by Min (1988; 1989} In the context of the
fuzzy goal-programming application to MCLPs, Min (1989} has pointed to several
advaniages of this method, such as computational efficiency and flexibility to incor-
porate imprecise or linguistic goals without a priori information on the lexicographic
importance of the goals,

Finally, we should point to the fact that both the cardinal-weight and the
preemptive model have a strong tendency to generaie inefficient solutions. This is
the most important weakness of the goal-programming approach to multiple criteria
decisionmaking. For many analysts, this ‘inefficiency’ problem seriously limits the
utility of goal-programming methods as tools for tackling multiple criteria decision
problems {Cohon, 1978). The goal-programming approach does not attempt 10 use
additional information to find an efficient solution. Having specified an attainable
set of aspiration levels, analysts {decisionmakers} receive exactly what they want
even if betier decision cutcomes are possible. Goal-programming models using
achievement functions (2}, (3), {4, or {5} often generate inefficient solutions even
when nonattainable aspiration levels are specified. They yield only decisions that
have the closest outcomes to the specified aspiration levels. This raises a question
about whether or not the satisficing model should replace the optimizing one.

1.3 Optimizing versus satisficing decision rules

The fundamental distinction between the two rationality frameworks is the way in
which optimal and satisficing alternatives are identified. Recall that, according to
the optimizing decision rules, the decisionmaker is assumed to examine all the
outcomes and alternative locations in order to choose the best {optimal) one,
whereas the satisficing decision rules postulate a search for the best {satisficing}
alternative from among a limited number of locatiopal alternatives. Therefore,
the utility-maximization behavier and associated optimizing decision rules can be
considered as a closed decision model because they in principle disregard the
contextual aspects of decisionmaking. By contrast, the satisficing behavior assumes
an openness of the decisionmaking environment and stresses the importance of
contextual aspects of decisionmaking, Hence, it corresponds to an open decision
model {Wilson and Alexis, 1962},

In contrasting these two rationality frameworks, one needs to draw a distinction
between their logical and empirical validity. Although proponents of the satisficing
behavior concept essentially accept the logical underpinning of the uiility-maximiza-
tion hypothesis, they deny its empirical validity. It is argued that neoclassical theory
lacks an explanatory power. The theory offers no explanation of the actual behavior
of the decisionmaker because it concentraies on the ontcome of the choice process,
without indicating how an individual arrives at a decision. Assuming the con-
sistency of the preference-choice structure, this theory stresses an instrumental view
of rationality.

The satisficing model postulates procedural rationality. It concentraies on the
decisionmaking process rather than on the decision outcome. Satisfying rationality
does not guarantee the consistency of the preference-choice structure. As a matter
of fact, the decisionmaker’s preferences, specified in terms of aspired goals, can be
defined intuitively or even in some sense irrationally. Furthermore the satisficing
model is formally simpler than the atility-maximization one because it does not call
for evaluating the utility on criterion ouicomes and does not require comparability
of incommensurable criteria. It does not even call for a complete exploration of the
decision space. Also, one should point out that the validity of the satisficing
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behavior hypothesis in explaining locational behavior has been supported by empirical
studies {for example, Wolpert, 1964; Walker, 1975), Moreover, there is some
evidence to show that an individual does form an aspiration level as a guideline in
making decisions {Tietz, 1983}

It seems, however, that the empirical superiority of the satisficing model over the
optimizing one has been overemphasized (Boland, 1981}, Many authors argue that
it is impossible or at least extremely difficult to prove empirically whether an
individual is primarily either adoptive {satisficing) or analytic {optimizing) {see
Shelly and Bryan, 1964). Most importantly, the satisficing decision rule can be
considered as a form of the atility-maximization model or these two concepts can
even be interpreied as equivalent logical structures {see Isard, 1969, for a consider-
ation of the satisficing behavior within an optimizing rationality framework).

Farthermore it can be argued that the satisficing model is plausible only in those
situations where the process of searching for alternatives is infeasible or too costly.
Otherwise, there is no reasonable justification for stopping the search when a
satisficing alternative is found, instead of looking for a better alternative or even for
an optimal one, This is closely related to Simon’s assumptions about the limitations
of memory and information-processing capabilities under which a human dectsion-
maker operates. In this respect, it is important to note that the satisficing rationality
concept was proposed in the 19505 (Simon, 1957), and recent advances in computer
technology at least partially undermine this assumption. This is especially true in
the context of recent development in human being ~machine interaction concepts,
such as the decision suppert system {DSS) and expert systems (for a discussion on
relevant issues in the locational planning context, see Densham and Rushton, 1987;
Waters, 1989},

The above arguments lead us to the conclusion that the optimizing and satisficing
behavior models of rationality are not mutvally exclusive. The optimizing and
satisficing decision rules are equivalent rather than opposite principles.

1.4 The quasi-satisficing deciston rule

Taking into account the arguments presented in the previous section, one may
develop a framework that merges the optimizing and satisficing decision rules
{Wierzbicki, 1982; 1983). It can be argued that an individual has some tendency
towards maximization of his or her utility even if he or she behaves according to
satisficing rationality principles—that is, forms aspiration levels as a guide for
locational decisionmaking. The aspired goals may or may not be attainable. If the
specified aspiration levels are attainable, then a better location {alternative decision)
may exisi; otherwise one does not exist. 1n the first case, an individual may lose the
tendency towards maximization of his or her utility after attaining specified goals or
he or she may increase the aspiration levels in order to search for a better alternative.
If the levels of agpiration are unattainable, then the decisionmakers have to adjust
their behavior to constraints imposed by the decisionmaking environment, but they
may still strive to optimize the decision cutcomes. Such a behavior is referred to as
quasi-satisficing raticnality.

Accordingly, an alternative is said 1o be quasi-satisficing if: {1) there exist a set
of criteria and corresponding aspiration levels that describe a satisficing alternative;
{2) the alternative in question is efficient (it has nondominated outcomes); and
{3} an ouicome associated with this alternative is worse than the corresponding
aspiration level then it s as close to the aspiration level as possible.

The key element in the quasi-satisficing decision framework is the relationship
between the efficient set of solutions and aspired goals. If the decisionmaker
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behaves according to the guasi-satisficing decision rule then, irrespective of the
attainability of his or her aspiration levels, he or she should identify the best {most
preferred) alternative as the one which belongs 10 the set of efficient solutions.

1 Interactive decision support

2.1 Introduction

The distinguishing feature of inieractive approaches to multiple criteria decision-
making is thai these methods do not require a priori infoermation about the
decisionmaker’s preference structure. The existence of a utility - value function is
implicitly assumed and the function is maximized by means of a formal mechanism
which involves an interactive exchange of information between a computer-based
system {model} and the decisionmaker.

All interactive procedures consist of two phases: a judgmental phase and a
computational phase. In the judgmental stage of these procedures the decision-
maker analyses and evaluates information provided by a computer-based system
and articulates his or her preferences with respect io the values of the criteria.
In the computational phase, a sclution, or a growp of solutions, that meets the
decisionmaker’s requirements specified in the judgmental phase is generated. This
imeractive exchange of information is continued until a criterion outcome is deemed
acceptable to the decisienmaker. The main idea behind the interactive method is to
determine the best (compromise or satisficing) decision outcome from among the set
of efficient solutions by means of a progressive communication process between
the decisionmaker and a computer-based system (for example, see Nijkamp, 1979;
Steuer, 1986).

This general framework provides a basis for various approaches to inferactive
decistonmaking. An overview of these procedures can be found in Rietveld {1980},
and Shin and Ravindran (1991}. Applications of interactive appreaches to locational
decisionmaking have been reported by Nijkamp {1979}, Ross and Soland (1980),
Hultz et al {1981}, Nijkamp and Spronk {1981}, Soland {1983}, Reeves et al (1988),
Ogryczak et al {1989a}, and Malczewski and Ogryezak {1990},

Nijkamp and associates appear to be the first to have considered an interactive
approach to MCLPs. Nijkamp (1979} discusses a goal-programming-based method to
interactive locational decisions. Nijkamp and Spronk (1981} presented an interactive
procedure for solving a multiple criteria Weber location problem. This approach
requires the decisionmaker to adjust selectively his or her aspiration levels. Ross
and Soland (1980) have developed an interactive algorithm that involves the decision-
makers in the solution procedure by asking them te compare two efficient solutions
and to indicate the one they prefer. This procedure also requires the decision-
makers to articulate their aspiration (satisfaction) levels in each judgmental phase.
Hultz et al {1981} have subsequently incorporated this algorithm into an interactive
computer-based system for locational decisionmaking. Ogryczak et al (198%a} and
Malczewski and Ogryczak {1990] have presented an interactive approach to MCLPs
that is based on the quasi-satisficing decision rule.

2.2 Aspiration - reservation based decision suppert

In order to operationalize quasi-satisficing behavior, let us assume that in making loca-
tional decisions an individual is supported by a computer-based sysiem. The locational
decisionmaking problems are usually ill defined or semistructured. The structured
part of the problem can be expressed in the form of a substantive model, for
example, a multiple criteria location model which can be structured by means of a
generalized network model—GNM {see part 1}, whereas the decisionmaker can
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concentrate on the intangible, unstructured aspects of the locational decision
{Massam and Malczewski, 1990).

The best formalization of the quasi-satisficing approach to multiple criteria
decisionmaking was proposed and developed mainly by Wierzbicki {1982} as the
reference-point method. This is an interactive technique. The basic concept of the
interactive scheme is as follows. The decisionmaker forms his or her requirements
in terms of aspiration levels. Depending on the specified aspiration levels, a special
scalarizing achievemeni function is built which, while being minimized, generates an
efficient solution to the problem. The computed efficient solution is presented to
the decisionmaker as the current solution in the form that allows him or her to
analyze achievements of this cutcome in comparison with the previous solutions and
to modify the aspiration levels if necessary. The scalarizing achievement function is
slightly similar to a utility function and, in fact, can be used as an approximation to
a class of utility functions. It is, however, explicitly dependent on aspiration levels
stated and modified by the decisionmaker and therefore it makes operational the
concept of adaptive dependence of utility on learning and context. Here, complate-
ness, computational robustness, and controllability of the interactive scheme are
more important than consistency and coherence {Wierzbicki, 1986).

The reference-point method has been extended to gain additional information
from decisionmakers not only about their aspiration levels, but also about reserva-
tion levels that refer to the minimum requirements and correspond to some lower
limits of tolerance. Thus, the decisionmaker can specify acceptable as well as
required values for given criteria. This concept has been implemented as the
so-called aspiration-reservation based decision support {ARBDS) (Lewandowski
and Wierzbicki, 1989}

Central to the ARBDS concept is the scalarizing achievement function, which
not only guarantees efficiency of the solution, but also reflects the decisionmaker’s
expectation specified via aspiration and reservation levels. Namely, while building
the function, we can make the following assumptions regarding the decisionmaker’s
expectations:

{Al) the decisionmaker prefers outcomes that satisfy all the reservation levels to any
outcome that does not satisfy at least one of the reservation levels,

{A2) provided that all the reservation levels are satisfied, the decisionmaker prefers
outcomes that satisfy all the aspiration levels to any outcome that does not satisfy at
least one of the aspiration levels.

One of the simplest scalarizing functions can be written as follows:

k
slg,a,r) = max (g, a,7)+E T udana,n), (6)
1 vE k =1

where g is the outcome vector, ¢ = F (x); @ and r denote vectors of aspiration and
reservation level, respectively; o is an arbitrarily small positive number; and n, is a
function which measures the deviation of results from the decisionmaker’s expecta-
tions with respect to the vth criterion, depending on the given agpiration level, a,,
and reservation level, #,.

The function, u,{g,. a,, ) is a strictly monotonic function of g, with value
w, =0if g, =a,andu, = 1if g = r,. This function can be interpreted as some
measure of the decisiomaker’s dissatisfaction with the current value of the vth
criterion function. In the case of minimization it can be defined, for instance, as a
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piecewise linear function as follows (Lewandowski and Wierzbicki, 1988):

-Ble.—a)
T_a__‘_ » if G € LV
—al
uv{.vi iy, rv} = ((qv __{_I_V)'_" 3 if a, < q. <t (7)

h—d,

g, —n) .
T w4 f 1 2 ¥

(qr-ry+1 D77

where ¢f and ¢” denote the best and the worst possible value of the vth criterion,
respectively, which are assumed to be known from the predecision analysis, and 8
and y are arbitrarily defined positive parameters. § 2 O represents additional
satisfaction of the decisionmaker caused by achievement better than the corresponding
aspiration level, whereas y > 1 represents dissatisfaction conmected with achieve-
ment worse than the reservation level.

In an implementation of the ARBDS system for the multiple criteria transship-
ment problem with facility location (Ogryczak et al, 19892} an even simpler type of
the function u, has been used. It is given by

_nB{Qv_av}, if g, < a,,
ro—d,)
g, —a) |
ulg,.a,rn) =4 -——, fa<gqg<r, (8)
"rv-_.av.J
7.}}(%_%) , if g, = 1.
(r,—a,}+1

It is also a piecewise linear function but it does not require any estimation of the
best and worst values. Under the reasonable assumption that the parameters 8 and y
satisfy inequalities § < 1 and v > 1, the achievement functions (8) are convex and
thereby they can be modeled via linear programming methodology. Accordingly, the
entire scalarizing achievement function (6} can be modeled with linear programming
methodology. So the ARBDS approach not only uses the best control parameters of
the goal-programming method {aspiration levels}, but also keeps its compuiational
efficiency.

2.3 Goal programming and the ARBDS approach

The ARBDS approach to MCLPs, despite being similar to goal programming,
seems to have many advantages in comparison with the latter. ARBDS uses only
well-defined control parameters {aspiration and reservation levels) whereas goal
programming requires that one must also specify some weights. Although ARBDS
makes use of fewer conirol parameters it always generates an efficient solution to
the MCLP, whereas goal programming does not. Therefore, it is of interest to find a
reason for these advantages and to determine if they really do not apply to goal-
programming models. In this section we will show how the ARBDS approach can
be modeled via the goal-programming methodology.

The main difference between these two approaches is in the usage of the second
reference vector (reservation levels) in the ARBDS approach. The reservation
levels can, however, be iniroduced into the goal-programming model. The simplest
way is to build two goals for each criterion function: one associated with deviations
from the aspiration level and the second associated with deviations from the reser-
vation level. However, one can aveid this increase of the problem size by using a
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modeling technique similar to interval goal programming {compare Ignizio, 1982,
Ogryczak, 1988)—that is, by transformation of the criterion functions into the
foliowing goals {in the case of minimization}:

F(x)+d, —di-d] = a,, for v=1,.k, (9)
d- 20, 04 <r—a, dy =0, d dy =0, (r,—a,—did =0,

where g, and r, denote aspiration and reservation levels, respectively, for the vth
criterion; d,”, 4%, 4, are nonnegative state variables which measure deviations of the
current value of the vth criterion function from the corresponding aspiration and
reservation levels:

d,” is the negative deviation from the aspiration level,

d® is the positive deviation from the aspiration level within the interval between the
aspiration and reservation levet, and

d’ is the positive deviation from the reservation level.

The goals {9) differ from the typical ones {1) only through the splitting of the
positive deviation d,” into a sum of two deviations 4 and d;, where the first one is
limited to the interval between the aspiration and reservation levels, and the second
one can be positive only if d) = r, —a,.

The most important advantage of the ARBDS approach is in its generation of
efficient solutions. The basis for this advantage is concealed in the formulas for the
scalarizing achievement functions (6) and {7} or {8). Using the three iypes of
deviations defined in equation (9}, one can write formulas (7} and (8) as follows:

—-pw, d, , if g, < a,,
uv(@w ﬂ-.,, rv} = wjd‘? T if av< QV < rv’ (10}
ywidi+1, if g, 2 r,,

where w,”, w?, and w; are positive weights defined depending on the corresponding
aspiration and reservation levels, and B and y are arbitrarily defined positive
parameters. Thus like the standard goal-programming techniques the ARBDS
approach deals with deviations accompanied by weights, but these weights are now
automatically caleulated. Provided that w] = 1/{z, —a,), as in formulas (7) and (8),
the function {10} can be written as

u,(dy, &), d)} = —Pw, d] +widiywid,, (11}

which is a weighted sum of the deviations. However, there is one specificity in the
function {11). Namely, there is a negative weight coefficient, — 8w, , associated with
the negative deviation, 4. This is the reason why the ARBDS approach attempis
to reach an efficient solution even if the aspiration levels are attainable. This
small change of the coefficient represents, however, a crucial change in the goal-
programming philosophy, where all weights are assumed to be nonnegative. Provided
that we accept negative weight coefficients, we can consider the function {11} as a
specific case of goal programming achievement functions.

Now let us analyze formula (6) defining the final scalarizing achievement function.
The scalarizing function is built there as a sum of the Chebyshev norm of the indi-
vidual achievements u, and a small regularization term (the sum of the achievements).
Using lexicographic optimization, one can avoid the problem of choosing an arbitrarily
small positive parameter p [compare equation (6}] and introduce the regularization
term as an additiopal priority level. One can then form the scalarizing achievement
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function as the following lexicographic goal-programming achievement function:

g(d_; dH, dr‘] = [gl(d_a dﬂ, dr:]s ng\dm, da! dl’)] E} {12)
gld . d',d) = max {—Bw, d +wd +ywd]},
15 vE k

%
gld  dd'y = 3 (—pw d +widivywd,),

where w., w® and w) are positive weights depending on the corresponding
aspiration and reservation levels [for example, to satisfy formula (8) one can put
w, = w' = w = 1/{r,—a,, and § and y are arbitrarily defined positive param-
eters satisfying inequalities § < fw,” < w < yw,.

Ogryczak and Lahoda (1992} showed that lexicographic minimization of the
above achievement function over the goals (9} always generates an efficient solution
to the original multiple criteria problem and satisfies simultaneously the rules of the
ARBDS approach, that is the assumptions Al and AZ2. Moreover, just as in the
standard goal-programming method, the nonlinear constraints on the deviations,
d d* = 0, and (r, —a, —dj}d; = (O, can simply be omitted as they are automatically
satisfied by optimization.

231 Example

In order to demonstrate and compare the ARBDS appreach with the goal-programming
method, consider the following hypothetical plant location problem. A firm special-
izing in the production of a chemical product is evaluating five sites (5; to S5 ) for
locating two new plants that would supply ten markets (D; to D) {see figure 1).
Thus, there are ten alternative locational patterns and each of them generates many
allocations {flows of products) schemes. It is expected that the total annual demand
for the product will be 90000 tons. The top management of the firm decided that
the maximum annual production capacity of each new plant should not exceed
50000 ions. The firm has collected the data on costs involved in transporting the
products from the new plants to markets (the costs are assumed to be proporticnal
to distance), unit cost of establishing and running a plant in the five potential
locations, and suitability of the potential sites for locating the plants. The data are
summarized in table 1. The top management of the firm felt that the potential sites
should be evaluated on the basis of transportation costs, the unit cost of establishing

¢ Demand nodes (D2, D,, .. Dy}

M Potential sites for plant location
(Sla SZa -y Ss]

n

W

=
”“-"3?«:«4»\.”
k]

ot

Figure 1. The sample plant location problem,
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and operating new plants, and suitability of the sites. Accordingly, three criterion
functions should be considered: minimization of total transportation costs or aggre-
gated transport distance [F;{x)], minimization of the fixed capital costs [F,(x}], and
optimization of the sites suitability [E,{x}], which is to be minimized as a result of
the evaluation scale (see table 1}. Also, the managers set aspiration and rescrvation
levels (a, and r,, respectively, wherc v = 1,2, 3},

Table 1. Data for the plant locaiion problem.

Plant Distance (km} from market I Fixed costs  Site
site 5, {8 per unit}  suitability®
' D, b Dy Dy Dy Dy D; Dy Dy Dy

AN 18 38 72 52 122 81 131 o4 119 60 17 4

8, 95 50 28 61 35 96 62 104 84 103 16 5

S, 26 63 56 23 106 37 102 20 75 19 19 3

S, 105 68 40 53 35 40 27 62 16 85 24 1

S 55 20 25 20 75 55 82 63 89 62 26 2

Demand® 10 8 ¢ 13 g 11 6 4 8 12

41 represents the most suitable site, 5 represents the least suitable site.
b Figurcs expressed in thousands of tons.

Given the aspiration and reservation levels for each criterion, the problem is w0
find the satisficing or compromise location-distribution pattern subject to a set of
constraints imposed on the number of plants to be located, their maximum production
capacities, and the expected demand at markets. This location-allocation problem
can be structured by means of a GNM as shown in figure 2. Note that there is an
additional node 0 and that all the nodes are fixed. To avoid renumbering of nodes
we use their original names {D,, .., Dy, and S, .., 85} as node indices. In algebraic
form we denote the set of all nodes by N and its subsets as § = {81, S5, wa S5t and
D =1{D,, D,, ., Dy}, respectively. The GNM model can be formulated in terms of
the standard goal-programming methad and the ARBDS approach as follows.

The decision variables are:
Y = [ 1, if facility is located at the site i {for i € §),
0 = | 0, otherwise;
xy; is the annual production at plant /, for i € 5
x) is a portion of the product allocated from plant { to marketj, for i €8 and
jeED.
The state variables are:
d® is the positive deviation from the aspiration level for goals 1, 2, and 3, respectively;
d’ is the positive deviation from the reservation level for goals 1, 2, and 3, respectively;
d_ is the negative deviation from the aspiration level for goals 1, 2, and 3, respectively.
The parameters are defined as:
b, rtepresents minus demand at market j, for j& D
b, is the total demand;
b, =0,fories;
h&* is the maximum production capacity at location i, for i € 5;
¢, is the cost of establishing and operating a plant at location i, for 7 € .5}
¢,; is the suitability of the site i for locating a plant, foris .5,
1; 1s the unit cost of transporting the product from i to j, for € 5 and je D

p is the number of plants to be built (p =2}
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The goal-programming model can then be written as:
3
minimise ¢, d.+di+d, ,

y=1
subject 1o
P _
E Z ti_fxrjf—'_di "_d‘?_dll =,

eS8 je?

Z cﬂix(r):'+d2_ _d;_dé = dap.,

ie X

Y eyxgtds —di—di = ds,

FEF

r,—a, zd: 20, ftorv= 1,2.3,
a7, dr >0, for v=123,

x5, & hf=xy,, for P65,
" L] .
2 x— > x, =b, for jeN,
je N JEN
Y o =
Lo Xy T8,
JESX

x1 20, xp=0o0rl, for i,jeN.

i

Demand

Total

supply
50000

Figure 2. Network model for the plant location problem,
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Table 2. Summary of the results obtained by the goal-programming method (GP) and the
aspiration - reservation based decision suppors {(ARBDS) method for given aspiration {«,} and
reservation {r, ] levels,

Run Reservation -aspiration  [Location decisions]
number ievel and criterion Allocation decisions
outcome
Fi{x}® Fix) Fifx
1 a, 2761 33 3
7, 4710 50 9
GF 2761 43 4 [55: 8]
55-{Dy; Dy Dy Dy Dy, Dyl 8,110y D Dg; Dy)
ARBDS 3527 41 5 18,; 8]
3= {05 Dy Dy Digly S4- (8 Dy Do D Dy Dy}
2 3000 33 5
4710 40 9
3500 45 5 [S4; 5!
Sy =(8: Dy Py D Dy; Dig), 85105 Dy Dy Dy Dy
3285 35 3 (83 541
8,-(Dy; Dy Dg; D3 Dy), S3-(Dy; Dy Dy Dy Dy
3 3800 33 W)
4710 40 g
3800 41 5 15,; 5,)
8, =Dy Dy Dy Dyl 341055 Dy Dy D5 Dy Dos Dy D)
3285 35 ] {52 54l
8, =Dy Dy Dg; Dy; Do), 81Dy Dgs Dy Dy: Dyg)
4 4000 40 3
4710 50 5
4000 50 3 [S4; 55l
S4={Dy; D3y Dy D), S5-(Dy; Dy, Dy Dy Dy Dy D)
2761 43 4 1845 5.
8;=(D; Dy Dy Dg; Dy Dyg), 8,-103; L3 Dy Doy D)
5 4003 40 3
471¢C S0 4
4000 50 3 (5, S
8, '(Di;_ Dy Dy Ds; D Do Do), 85-(Dy; Dy Dy Dy Dy
Dy, Dyl
31256 S50 3 (S Ss)
S.={Dy; Ds; Dy D53 Dyy Do), 85-(D 5 Doy Dy; Dys Dy
6 4000 33 3
47140 33 5
4000 41 3 [8,: S4)
8, ={Dy; Dy Dy Dy; Dol 841D D5y Dy Dy Dg; Dy, Doyl
4710 33 9 (S35 8]
8, =D Dy By Dg; Dy Do), 351053 Dy Ds; Day Dy}
7 4000 35 8
4000 35 8
4000 35 8 [85 85
Sy ={Dy; Dy Dy Dy Dy Dyl 53-(Dy; Dy D Dy Dy
3285 35 8 155 85
8, ={Dy Dy, Dy Dy D), S5—(Dy; Dy Dy g Dyg)
8 3500 40 3
4000 50 5
3500 45 ) 1852 85
S5—(Dy; Dy Dy Doy Dyi Dyg), 85 -{ D5 Dy Dy Dy Dy
2761 43 4 (53 Sal

8s={Dy; Dy Dy Dy; Dy D1g), S4-1D3 Ds; D Doy D)
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Table 2 {continued)

Run Reservation-aspiration  [Eocation decisions)
number level and criterion Allocation decisions
outcome

Fixf Fjfx) Fix)

9 u, 3500 33 5
r, 4000 50 6
GP 3500 45 5 (83 5%
83-{Dy; Dy; Dy D Dy Dyl S5 -{Dy; Dg; Dy Dy Dyl
ARBDS 3527 41 5 TR
S =(Dy; Oy; Dy Dyl S,-{(Dy; D D Dy Dy Dy}
10 3500 43 5
4000 43 7
3500 43 5 [.Sa 85
Sy={Dy; Dy Dy Dy; Dy; D), 85 —(Dy; Dy; D3 Dy; D)
2741 43 4 |55 Sy

83-(Dy; Dy; Dy Dy Dy D), So~{035 Ds; Dg; Dy D)

® Figures expressed in thousands.

The ARBDS model is written as:
lexmin g{d ™, d*, d*) = [g,(d", d*, d"), g,(d ", d*, d")], (23)

{—0.1d, +d.+104d))}

gld ,d', d) = max , (24)
lsvs3 (rv_av.]
o =014 +d2+1047}
gld , dd) = ¥ ° e (25)
v=1 (?",_ﬂv)

subject to equations (14}-{22},

The standard goal-programming model was solved by means of the LINDO
package (Schrage, 1991). In order to solve the ARBDS model, the DINAS package
was used (Ogryczak et al, 1991; see also section 3),

First, the three criteria were considered independently to identify the utopia
{ideal) and nadir vectors (see paper 1, section §}—that is, the best and worst possible
outcome for each criterion; g° = [2761000; 33; 3], and ¢* = [4 710 000; 50; 9].

Having defined the utopia and nadir values, we examined ten experiments (runs)
for the standard goal-programming method and the ARBDS approach by changing
the aspiration and reservation levels for the three criterion outcomes. The results
are given in table 2 and displayed in a form of value paths for ten alternative
solutions generated by the goal programming method and the ARBDS method ({see
figures 3 and 4).

An analysis of the results shows the conflicting nature of the problem. Specifically
there is an intensive conflict beiween the production cost minimization and the other
two criteria—transportation cost and site suitability. Maost importantly, however, the
results clearly show the susceptibility of the goal-programming method to generate
solutions that are dominated by other feasible solutions. It can be seen that alterna-
tive solutions 2, 8, 9, and 10 generated by means of the goal-programming method
are dominated by criterion outcomes obtained in the first run f{see table 2 and
figure 3). Note also that solution 6 is dominated by criterion outcome 3,
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As stated earlier in this paper, the ARBDS approach avoids this shortcoming of
the goal-programming method. Figure 4 shows that all solutions generated by
ARBDS are nondominated. Tt is worth noting that both methods may produce the
same location patterns for given aspiration and reservation levels (for example, the
solution obtained in runs 5 and 7, see table 2!. However, these two methods may
generate different allocation patterns for the same pattern of locations and for the
same reservation and aspiration levels. This is because, in the case when aspired
goals are attainable, the goal-programming method gencrates an allocation pattern
which is characterized by total transportation costs equal to a specified aspiration
level. Hence, the allocation patterns obtained by means of the ARBDS approach
are more spatially efficient than thosc generated by the goal-programming method
{compare the solution generated by these two methods in runs 5, 6, 7, 8, and 10}
Graphic displays of alternative solutions in decision space and criterion space
provide an effective way of illustrating this point (see paper 1, section 6). We will
compare the two solutions generated in run 5 {1able 2).

The criterion veciors are displayed in value path format {figure 5). The criterion
function values are presented on the scale from 0 {radir value for a given criterion func-
tion} to 100 (ideal value). As the decisionmaker’s preferences (specified in the form
of aspiration and reservation levels) are crucial components of the interactive
approaches, the value paths are displayed in relation to these two levels. Both the
aspiration and the reservation levels range from 0 (if they correspond fo the nadir
value) 1o 100 (if they correspond to the ideal value). The value paths indicate that
the performance of the two solutions is the same with respect to the fixed unit costs
[F,{x)] and the site suitability criterion |[F,(x}). The criterion outcomes are equal to
the reservation level and the aspiration level for F,{x) and Fi(x), respectively.
However, these solutions are considerably different with respect to F,(x} outcomes,
that is, the total transportation costs. This difference becomes more apparent when
viewing in the decision space. The supply-demand flow pattern generated by the
ARBDS method is more efficient in terms of transportation costs. Comparing these
two spatial patterns, one can easily indicate the inefficient allocations determined by
the goal-programming approach.

3 Integrating the GNM and the ARBDS approaches

Ogryczak et al (1991; 1992a) have developed a computer-based system that integrates
the GNM (see paper 1, section 4) and the ARBDS approaches. This system, called
DINAS, has been specifically designed for tackling multiple criteria location choice
and location - allocation problems. The system runs on IBM-PC XT/AT {or com-
patible] computers. It has been used for handling real-life location problems
(Malczewski and Ogryczak, 1990; Malezewski, 1992). Ralsion (1992) has presented
a spatial DSS that includes the DINAS method for multiple criteria location modeling.

DINAS deals with location-allocation problems formulated according 1o the
network methodology (see paper 1, section 3} and automatically transforms the
problems into GNMs. Thus the following groups of input data define the problem:
criteria; fixed nodes with their balances; potential nodes with their capacities and
(fixed} cost coefficients; selections with their lower and upper limits on number of
active potential nodes; and arcs with their capacities and cost coefficients.

The problem is to determine the number and location of active potential nodes
and to find the flows (along arcs) so as to satisfy the balance and capacity restrictions
and, simultaneously, optimize the given criterion functions. A mathematical model
of the problem and its transformation into a GNM is described in detail by Ogryczak
et al (1989a).



The muitiple criteria location problem: 2 91

DINAS was developed as an experimental tool to test assumed methodology
{GNM and ARBDS) on IBM-PC XT/AT (or compatible} computers. Therefore the
hasic version of the DINAS system can process only limited-size problems consisting
of: up to seven criterion functions; a transportation network with up to 100 fixed
nodes and 300 arcs; and up to fifteen potential Jocations.

For processing the network models, DINAS is equipped with a special network
editor, EDINET {Ogryczak et al, 1992b). EDINET is a full-screen editor specifi-
cally designed for input and for editing the data of network problems analyzed with
DINAS. It may be considered to be simplified interface to the geographical decision
space, and in a commercial system this would be implemented with some standard
geographic information system (GIS).

The DINAS interactive procedure works with a special file containing complete
information defining the problem, and the editor enables one to prepare this file.
The essential data of the problem can be divided into two groups:

{1) logical data defining the structure of a transportation network (for example,
nodes, arcs, selections};

{2) numerical data describing the nodes and arcs of the network {for example,
balances, capacities, coefficients of the criterion functions},

The general concept of EDINET is to edit the numerical data while defining
or examining the logical structure of the network. More precisely, the essence
of the editor concept is a dynamic movement from some current node to its
neighbouring nodes, and vice versa, according to the network structure. The nput
data are inserted by a special mechanism of windows. At any time only one of the
windows representing different kinds of the data is active and the corresponding
piece of the data can then be edited. However, apart from the windows with
local information, some special windows containing a list of nodes and a graphic
scheme of the network can be activated at any moment 10 ease mMOovement across
the network.

DINAS utilizes aspiration and reservation levels to control the interactive analysis.
The decisionmaker works with the system interactively and specifies acceptable
values for several criteria as the aspiration levels, and necessary values as the
reservation levels. The system searches for a satisficing efficient solution with the
aid of the achievement-scalarizing function defined by formulas {6) and (8) as a
criterion in single-criterion optimization. A special solver has ‘been prepared to
provide the multiple criteria analysis procedure with solutions to single-criterion
problems. The solver is hidden from the user but it is the most important computa-
tional part of the DINAS system. It is the numerical kernel of the system which
generates efficient solutions. The concept of the solver is based on the branch-and-
bound scheme with a pioneering implementation of the simplex special ordered
network {SON) algorithm proposed by Glover and Klingman {1981) with implicit
representation of the simple and variable upper bounds (SUBs and VUBs) suggested
by Schrage {1975). The mathematical background of the solver was given in detail by
Ogryczak et al {1985b).

DINAS is a menu-driven system with very simple commands. Operations available
in the DINAS interactive procedure are partitioned into three groups and corre-
sponding three branches of the main menu: PROCESS, SOLUTION, and ANALYSIS.
The PROCESS branch contains basic operations connected with processing the
multiple criteria problem and the generation of several efficient solutions. There
are included operations such as editing and converting the problem, computation of
the payoff matrix, and, finally, a sequence of efficient solutions depending on the
edited aspiration and reservation levels is generated. ,
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The SOLUTION branch contains additional operations associated with the current
solution. The decisionmaker can examine in detail the current solution using the
network editor. The current solution can be visualized and analyzed both in decision
space and in criterion space. Values of the criterion functions are presented in tabular
form and displayed by bar charts in the aspiration-reservation scale and in the
utopia—nadir scale. The bar charts show the percentage level of each criterion
value with respect 1o the corresponding scale. The associated location-allocation
patterns can be displayed in decision space in the network form. This network con-
ists of active nodes (indicating location of facilities) and active arcs {indicating flows
between a pair of nodes). The decisionmaker may also print the current solution or
save it for use in further runs of the system with the same problem.

The ANALYSIS branch collects commands related to operations on the solution
base. The main command, COMPARE, allows the decisionmaker to perform a com-
parison of all the efficient sofutions from the solution base or from some subset of
this base. Like the SOLUTION branch, ANALYSIS includes support for displaying the
alternative solutions in decision space and criterion space. Thus, the information
about alternative solutions can be simultaneously displayed in the form of bar charts
and tables, and associated location-allocation patterns can be visualized by the
network. Moreover, some commands allow the decisionmaker to select various
efficient solutions from the solution base as the current solutions are included in
this branch. There also exists an opportunity to restore seme (saved earlier}
efficient solution to the solution base.

As mentioned, DINAS was developed as an experimental tool to test assumed
methodology based on the use of the GNM and ARBDS. The same methodology
can be implemented in a commercial form for large-seale real-life problems. Note that
DINAS is, essentially, made of the following three modules: a decision {geographi-
cal} space interface, a GNM solver, and an ARBDS driver. The first two modules
can be easily replaced with the commercial software. A commercial GIS resolves all
the problems of friendly analysis in the decision {geographical} space. Similarly, as
mentioned in paper 1 (section 4}, the GNM can be effectively solved with mixed
integer programming systems armed with network solvers such as CPLEX (1993).
Thus for an advanced implementation of the DINAS methodology one needs to
prepare only a special ARBDS driver for the criterion space analysis. However,
because of the simplicity of the ARBDS approach such a tool can be implemented
quite easily. As shown by Korycki and Ogryczak (1995) the ARBDS driver can
even be implemented within a standard spreadsheet.

4 Summary and research directions

In these two papers we have attempted to bring together works from diverse areas
of multiple criteria location analysis. The approaches to MCLPs have been classi-
fied into three broad categories: the generating techniques, explicit preference-based
methods, and interactive procedures. We have focused on a critical evaluation of
these approaches in the context of their capabilities of supporting location decisions,
A generalized network model for multiple criteria location analysis has been
presented. It is suggested that this approach provides a flexible tool for modeling
complex location problems. Further, the interactive implicit preference-based tech-
niques have been advocated for use as the core of a DSS for locational planning.
It is argued that an integration of the generalized network model and the interactive
approach along with graphic presentation techniques provide a fairly comprehensive
basis for designing a user-oriented computer-based system.
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Three issues can be articulated for future research. First, an iniegration of muitiple
criteria decision approaches with GIS capabilities has recently been recognized as
one of the most important areas for further research (Fedra and Reitsma, 1990;
Carver, 1991; Eastman et al, 1993; Pereira and Duckstein, 1993). A GIS usually
focuses on the capture, storage, manipulation, analysis, and display of geographically
referenced data and only implicitly assumes a support of spatial decisionmaking
through analytical modeling operations (see Densham and Goodchild, 1989). The
display capabilities of the GIS 1ypically provide the user with a number of tech-
niques that can be used to visualize the problem and the solution in decision space.
That is, once the problem has been solved by multiple criteria techniques, the
results (decision variables) can subsequently be displayed with a mapping package.
Most available GIS systems do not have the capabilities for addressing the solution
to MCLPs in decision space and criterion space simulianeously, An application of a
GIS for tackling a MCLP requires substantial user involvement to link the analytical
components of the multiple criteria decision problem with the cartographic display
techniques available in the GIS (Armstrong et al, 1992). Few commercially available
GIS systems support multiple criteria decisionmaking techniques at present. IDRISI
1s a noticeable exception (Eastman, 1993; Eastman et al, 1993). ARC/INFO and
TransCAD GIS systems include support for location-allocation models for site
selection and analysis {see ESRI, 1987; Caliper Corporation, 1990}, One can expect
that an increasing number of popular GIS systems will incorporate multiple criteria
decisionmaking modules (Keller, 1989; Fedra and Reitsma, 1990: Carver, 1991). Iiis
argued that an integration of spatially referenced data with multiple criteria decision
methods can provide an approach for supporting all phases of the decisionmaking
process; that is, intelligence, design, and choice (see section 1, paper 1). The geograph-
tcally referenced database system and multiple criteria decision model-base system can
be considered as major elements of a multiple criteria spatial decision support
system (MC-SDSS}. Such a system has the potential of providing users with the
capability of supporting a variety of decisionmaking styles in various decision
situations. It allows for integrated data analysis and locational modeling, with
account being taken of multiple criteria and the decisionmaker’s preferences (Carver,
1991; Eastman et al, 1993},

Second, it is suggested that integration of the data analysis techniques and location
models can be organized around the concept of visual interactive modeling—VIM
{Hurrion, 1986). This is one of the most challenging developments in spatial decision
support research (Densham and Goodchild, 1989; Armstrong et al, 1992: Monmonier,
1992; Densham, 1994). VIM is focused on the use of graphic visualization tech-
niques as an integral part of the problem-solving process. It differs from traditional
modeling approaches in that it enables the user (decisionmaker or analyst) to inter-
vene in the problem-solving process and to observe the results of this intervention.
In the context of the MCLP it is important that the user be able to interact with the
data and location modei via graphic techniques for visualizing alternative solutions
in decision space and criterion space {Church et al, 1992), The decision space is
typically represented by means of cartographic displays, whereas criterion space carn
be represented by a variety of graphs such as value paths, spider-web charts, bar
charts, etc. (see section 6, paper 1). With VIM the user can conduct a what-if
dialogue with the computer-based system interacting via graphical display tech-
niques with decision space and criterion space. This approach can be used o
visualize the impact of a change in the input data, the location -allocation patterns, and
the associated criterion outcomes. This means that the user can ask questions such
as “what will happen to the location - allocation pattern if the demand for services in
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a given spatial unit changes” or “what will happen to the location —allocation pattern
if the supply of services in a given location changes”. With VIM the user should be
able to manipulate and change the input data by using a pointing device {a mouse)
to click on the supply -demand (potential -fixed) nodes and links on a map of the
network, and to see the changes in the location-allocation pattern and associated
criterion outcomes. This type of VIM is focused on the analysis of alternative
solutions to the MCLP in decision space. The approach can also be applied to
analyze alternative solutions in criterion space. To this end, the decisionmaker can
communicate to the MC-SDSS his or her preferences with respect to evaluation
criteria. The preferences can be expressed by means of aspiration -reservation
levels, Given the graphical display of criterion outcomes in a form of value paths
on the utopia—nadir scale for each criterion, the user can modify the ‘shape’ of the
value paths using a pointing device, and the system should be able to display the
location —allocation pattern associated with the specified aspiration - reservation
levels {see Kasanen et al, 1991}. Thus, the underlying what-if analysis involves the
following question: “what will happen to the Jocation-allocation patiern if the
decisionmaker’s preferences change”.

Third, more empirical Tesearch on multiple criteria decisionmaking and MC-SDS
systems is needed. There have been too few actual applications of the multiple
criteria approaches to real-life locational planning problems. Interaction with the
decisionmaker is an integral part of procedures for structuring and solving multiple
criteria decision problems, hence further research in this area is of particular
importance. For example, more research is needed on the influence of the data-
presentation mode on the decisionmaking process. This influence varies from one
stage of decisionmaking to another (Garceau et al, 1988). It is suggesied that the
graphic presentation techniques are more effective tools in the intelligence and
design stage of decisionmaking, whereas in the choice phase the decisionmaker
should be supported by a combination of tabular and graphic presentations. There
is, however, little empirical and conclusive research on this point. Furthermore, the
decisionmaker’s preferences are influenced by the mode of presenting the spatial
components of both the problem and the alternative solutions. A solution that
seems to be the most (least) preferred one in criterion space might be recognized as
an inferior (superior) one when viewed in decision space (Church etal, 1992}).
Probably the most effective way of dealing with this problem is to present the
alternative solutions in several different formats in decision space and criterion
space (Steuer, 1986). To this end, the concept of graphic script for the sequenced
visualization of alternative solutions can be applied (Monmonier, 1992}. This concept
incorporates a variety of graphic techniques useful in composing sequences of
dynamic maps, graphs, tables, and text blocks. This ‘new cartography’ of dynamic
displays should be considered as a part of VIM. Such an approach to integrating
the MC-SDSS components can significantly increase the fiexibility of the problem-
solving process by enhancing the capabilities for exploratory analysis of the spatial
components of both the problem and the alternative solutions {MacDougall, 1992}
It would also make it easier to understand why a given solution is superior to other
alternatives and therefore one would expect the decisionmaker to have more confi-
dence in a decision {Maclaren, 1988; Kasanen et al, 1991},
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