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Abstract

In the past decade, increasing interest in equity issues resulted in new methodologies in the area of operations re-

search. This paper deals with the concept of equitably efficient solutions to multiple criteria optimization problems.

Multiple criteria optimization usually starts with an assumption that the criteria are incomparable. However, many

applications arise from situations which present equitable criteria. Moreover, some aggregations of criteria are often

applied to select efficient solutions in multiple criteria analysis. The latter enforces comparability of criteria (possibly

rescaled). This paper presents aggregations which can be used to derive equitably efficient solutions to both linear and

nonlinear multiple optimization problems. An example with equitable solutions to a capital budgeting problem is

analyzed in detail. An equitable form of the reference point method is introduced and analyzed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of multiple criteria optimization

has been studied for many years, and the tech-

niques of multiple criteria analysis have found

success in many diverse applications [23,24]. The
standard approach starts with an assumption that

the criteria are incomparable, i.e. having no basis

of comparison. However, there are many applica-

tions in which the criteria are uniform in the sense
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of the scale used and their values are directly

comparable. Moreover, the criteria are considered

impartially which makes the distribution of out-

comes more important than the assignment of

several outcomes to the specific criteria. Such

models express ideas of allocation of resources and
try to achieve some equitable allocation of re-

sources [10]. More generally, the models are related

to the evaluation of various systems which serve

many users where quality of service for every in-

dividual user defines the criteria. An example arises

in location theory, in which the clients of a system

are entitled to equitable treatment according to

community regulations. In such problems, the de-
cisions often concern the placement of a service
ed.
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center or other facility in a position so that the
users are treated in an equitable way, relative to

certain criteria [16]. Another type of model is that

of approximation of discrete data by a functional

form. The residuals may be viewed as objectives to

be minimized, and in the classical approach, there

is no reason to treat them in any way but equitably.

Moreover, uniform individual objectives may be

associated with some events rather than physical
users, like in many dynamic optimization problems

where uniform individual criteria represent a sim-

ilar event in various periods.

Recently, one may notice an increasing interest

in equity (or fairness) issues in the area of Oper-

ations Research. Several research publications

dealing with the issue with respect to various ap-

plication areas have appeared [4,10,12,16,17].
Some of them directly related equity to the mul-

tiple criteria optimization methodology. Finally,

the novel and distinct mathematical approach de-

noted by equitable efficiency has been developed to

provide solutions to these examples of multiple

criteria optimization. The formalization of the

equitable efficiency was introduced in our earlier

paper [6], which analyzes the basic solution prop-
erties and the basic generation techniques. This

has already allowed the solution of problems

arising in location theory [7,16] as well as in

portfolio optimization [17]. Further progress made

in generation techniques [20] extends possible

areas of application of the equitable multiple cri-

teria optimization.

The concept of equitably efficient solution is a
specific refinement of the Pareto-optimality.

Hence, equitable multiple criteria techniques focus

on some selection of Pareto-optimal solutions. It

turns out, however, that the techniques are often

applied to select efficient solutions in general

multiple criteria optimization. Indeed, in ap-

proaches which seek to scalarize the multiple cri-

teria, some effort is always placed to replace the
original objective functions with some individual

achievements which are combined to form a final

scalar objective function to be optimized. This is

done in order to make the physical units of the

individual achievements uniform, so that they can

be added or otherwise composed. This phase of the

modeling discipline seldom questions the process
or the consequences of such a uniformization. One
of the results of our research is to trace the con-

sequences of this uniformization beyond the pro-

cess of aggregation of functions for scalarization.

We will show that every efficient solution of a

multiple criteria optimization problem can be

identified by the optimization of an equitable ag-

gregation applied to appropriately defined indi-

vidual achievements.
The paper is organized as follows. In the next

section we recall and explain in detail the concept

of equitable dominance and equitably efficient

solutions to multiple criteria optimization prob-

lems. Section 3 is devoted to equitable aggrega-

tions. It is shown that while various Lp norms can

be used as equitable aggregations for positive

outcomes, the ordered weighted aggregations are
applicable for general (positive or negative) out-

comes. Further, in Section 4 we examine various

applications of equitable optimization to multiple

criteria analysis. First we show that several mul-

tiple criteria problems require, in fact, equitable

preferences models and equitable aggregation may

result in an efficient solution procedure. Next, we

analyze equitable approaches to general multiple
criteria problems which by introducing individual

achievements are transformed into uniform and

equitable problems. The latter covers in particular

the reference point and goal programming meth-

odology.
2. Pareto-optimality and equitable efficiency

Consider a decision problem defined as an op-

timization problem with m objective functions

fiðxÞ. For simplification we assume, without loss
of generality, that the objective functions are to be

minimized. The problem can be formulated as

follows:

minffðxÞ : x 2 Qg; ð1Þ
where fðxÞ is a vector-function that maps the de-
cision space X ¼ Rn into the criterion space

Y ¼ Rm, Q � X denotes the feasible set, and x 2 X
denotes the vector of decision variables.

We refer to the elements of the criterion space

as outcome vectors.
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Model (1) only specifies that we are interested in
minimization of all objective functions fi for
i 2 I ¼ f1; 2; . . . ;mg. In order to make it opera-
tional, one needs to assume some solution concept

specifying what it means to minimize multiple

objective functions. The solution concepts are de-

fined by properties of the corresponding preference

model. We assume that solution concepts depend

only on evaluation of the outcome vectors while
not taking into account any other solution prop-

erties not represented within the outcome vectors.

Thus, we can limit our considerations to the

preference model in the criterion space Y .
The preference model is completely character-

ized by the relation of weak preference [9], denoted

hereafter with �. Namely, the corresponding re-
lations of strict preference 	 and indifference ffi are
defined by the following formulas:

y0 	 y00 () ðy0 � y00 and not y00 � y0Þ; ð2Þ

y0 ffi y00 () ðy0 � y00 and y00 � y0Þ: ð3Þ
The preference model related to the standard

Pareto-optimal solution concept also assumes that
the preference relation � is reflexive,

y � y; ð4Þ

transitive,

ðy0 � y00 and y00 � y000Þ ) y0 � y000; ð5Þ

and strictly monotonic,

y� eei 	 y for e > 0; i 2 I ; ð6Þ

where ei denotes the ith unit vector in the criterion
space. The last assumption expresses the fact that

for each individual objective function less is better

(minimization). The preference relations satisfying

axioms (4)–(6) are called hereafter rational pref-

erence relations. The rational preference relations

allow us to formalize the Pareto-optimal solution

concept with the following definitions. We say that
outcome vector y0 2 Y rationally dominates y00 2 Y
(y0 	r y

00), iff y0 	 y00 for all rational preference re-

lations �. We say that a feasible solution x 2 Q is
a Pareto-optimal (or efficient) solution of the

multiple criteria problem (1), iff y ¼ fðxÞ is ratio-
nally nondominated.
The relation of weak rational dominance �r

may be expressed in terms of the vector inequality:

y0 �r y
00 iff y0i 6 y 00i for all i 2 I . As a consequence,

we can state that a feasible solution x0 2 Q is a

Pareto-optimal solution of the multiple criteria

problem (1), if and only if, there does not exist

x 2 Q such that fiðxÞ6 fiðx0Þ for all i 2 I where at
least one strict inequality holds. The latter refers to

the commonly used definition of the Pareto-opti-
mal solutions as feasible solutions for which one

cannot improve any criterion without worsening

another [23]. However, the axiomatic definition of

the rational preference relation allows us to in-

troduce additional properties of the preferences

related to the uniform and equitable outcomes.

While dealing with uniform criteria, we want to

focus on the distribution of outcome values while
ignoring their ordering. That means, in the multi-

ple criteria optimization problem (1) we are in-

terested in a set of values of the criteria without

taking into account which criterion is taking a

specific value. In other words, a solution generat-

ing individual outcomes: 4, 2 and 0 for criteria f1,
f2 and f3, respectively, should be considered

equally good as a solution generating outcomes 0,
2 and 4. Hence, we assume that the preference

model is impartial (anonymous, symmetric). In

terms of the preference relation it may be written

as the following axiom:

ðysð1Þ; ysð2Þ; . . . ; ysðmÞÞ ffi ðy1; y2; . . . ; ymÞ ð7Þ
for any permutation s of I . Further, according to
the theory of equity measurement [10], the pref-

erence model should satisfy the (Pigou–Dalton)

principle of transfers. The principle of transfers

states that a transfer of any small amount from an

outcome to any other relatively worse-off outcome

results in a more preferred outcome vector. As a

property of the preference relation, the principle of
transfers takes the form of the following axiom:

yi0 > yi00 ) y� eei0 þ eei00 	 y for 0 < e < yi0 � yi00 :

ð8Þ
Thus a solution generating all three outcomes equal

to 2 is considered better than any solution gener-
ating individual outcomes: 4, 2 and 0. The prefer-

ence relations satisfying all axioms (4)–(8) we will

call hereafter equitable rational preference relations.
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Requirements of impartiality (7) and the prin-
ciple of transfers (8) do not contradict the multiple

criteria optimization axioms (4)–(6). Therefore, we

can consider equitable multiple criteria optimiza-

tion [6] based on the preference model defined by

axioms (4)–(8). The equitable rational preference

relations allow us to define the concept of equita-

bly efficient solution, similar to the standard effi-

cient (Pareto-optimal) solution defined with the
rational preference relations. We say that outcome

vector y0 equitably dominates y00 (y0 	e y
00), iff

y0 	 y00 for all equitable rational preference rela-

tions �. We say that a feasible solution x 2 Q is

equitably efficient (is an equitably efficient solution

of the multiple criteria problem (1), if and only if

there does not exist any x0 2 Q such that

fðx0Þ 	e fðxÞ. Note that each equitably efficient
solution is also a Pareto-optimal solution, but not

vice verse. For instance, having two possible so-

lutions generating outcome vectors y0 ¼ ð5; 0; 5Þ
and y00 ¼ ð0; 3; 0Þ, respectively, we recognize both
the solutions as Pareto-optimal. In fact, neither y0

dominates rationally y00 nor y00 dominates y0.

However, the first solution generates two out-

comes equal to 5 and one outcome equal to 0,
whereas the second solution generates one out-

come equal to 3 and two outcomes equal to 0.

Thus, the second outcome vector is clearly better

in terms of distribution of outcomes and y00 equi-

tably dominates y0.

The relation of equitable dominance �e can be

expressed as a vector inequality on the cumulative

ordered outcomes. This can be mathematically
formalized as follows. First, introduce the ordering

map H : Rm ! Rm such that HðyÞ ¼ ðh1ðyÞ; h2ðyÞ;
. . . ; hmðyÞÞ, where h1ðyÞP h2ðyÞP � � � P hmðyÞ
and there exists a permutation s of set I such that
hiðyÞ ¼ ysðiÞ for i ¼ 1; 2; . . . ;m. Next, apply to or-
dered outcomes HðyÞ, a linear cumulative map
thus resulting in the cumulative ordering map

HðyÞ ¼ ð�h1ðyÞ; �h2ðyÞ; . . . ; �hmðyÞÞ defined as

�hiðyÞ ¼
Xi

j¼1
hjðyÞ for i ¼ 1; . . . ;m: ð9Þ

The coefficients of vector HðyÞ express, respec-
tively: the largest outcome, the total of the two

largest outcomes, the total of the three largest

outcomes, etc.
The relation Hðy0Þ6Hðy00Þ was extensively an-
alyzed within the theory of majorization [13],

where it is called the relation of weak submajor-

ization. The theory of majorization includes the

results which allow us to derive the following

theorem [6].

Theorem 1. Outcome vector y0 2 Y equitably dom-
inates y00 2 Y , if and only if �hiðy0Þ6 �hiðy00Þ for all
i 2 I where at least one strict inequality holds.

Vector HðyÞ can be viewed graphically with a
piecewise linear curve connecting point ð0; 0Þ and
points ði=m; �hiðyÞ=mÞ for i ¼ 1; . . . ;m. Such a curve
represents the (upper) absolute Lorenz curve

which can be mathematically formalized as fol-

lows. First, we introduce the left-continuous right
tail cumulative distribution function

FyðdÞ ¼
Xm
i¼1

1

m
diðdÞ where

diðdÞ ¼
1 if yi P d;

0 otherwise;

�
ð10Þ

which for any real value d provides the measure of
outcomes greater or equal to d. Next, we introduce
the quantile function F ð�1Þ

y as the right-continuous

inverse of the cumulative distribution function Fy:

F ð�1Þ
y ðgÞ ¼ supfd : FyðdÞP gg for 0 < g6 1:

By integrating F ð�1Þ
y one gets

F ð�2Þ
y ð0Þ ¼ 0 and F ð�2Þ

y ðgÞ

¼
Z g

0

F ð�1Þ
y ðaÞda for 0 < g6 1: ð11Þ

Graphs of functions F ð�2Þ
y ðgÞ (with respect to g)

take the form of concave curves (Fig. 1), the

(upper) absolute Lorenz curves. In our case of m
outcomes, the absolute Lorenz curve is completely
defined by the values F ð�2Þ

y ði=mÞ ¼ 1
m
�hiðyÞ for i ¼

1; . . . ;m where F ð�2Þ
y ð1=mÞ ¼ �h1ðyÞ ¼ h1ðyÞ repre-

sent the worst outcome and F ð�2Þ
y ð1Þ ¼

1
m
�hmðyÞ ¼ 1

m

Pm
i¼1 hiðyÞ.

In income economics the Lorenz curve is a cu-

mulative population versus income curve [13]. A

perfectly equal distribution of income has the di-

agonal line as the Lorenz curve and no outcome
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vector can be better. The absolute Lorenz curves,

used in the equitable optimization, are unnormal-

ized taking into account also values of outcomes.

Vectors of equal outcomes are distinguished ac-

cording to the value of outcomes. They are

graphically represented with various ascent lines in
Fig. 1. Hence, with the relation of equitable

dominance an outcome vector of small unequal

outcomes may be preferred to an outcome vector

with large equal outcomes. This allows to over-

come the common flaws of the approaches based

on a strict inequality minimization.

Note that Theorem 1 permits one to express

equitable efficiency for problem (1) in terms of the
Pareto-optimality for the multiple criteria problem

with objectives HðfðxÞÞ:
minfð�h1ðfðxÞÞ; �h2ðfðxÞÞ; . . . ; �hmðfðxÞÞÞ : x 2 Qg:

ð12Þ
Corollary 1. A feasible solution x 2 Q is an equi-
tably efficient solution of the multiple criteria
problem (1), iff it is a Pareto-optimal solution of the
multiple criteria problem (12).

Corollary 1 provides the relationship between
equitable efficiency and Pareto-optimality. More-

over, the multiple criteria problem (12) may serve
as a source of techniques generating equitable ef-
ficient solutions to the original problem (1). Some

equitable location models have taken advantages

of this opportunity [5,7,15,16]. Although the defi-

nition of quantities �hkðyÞ, used as criteria in (12),
are very complicated they can be modeled with

simple auxiliary variables and constraints. It is

commonly known that the worst (largest) outcome

may be defined by the following optimization:
�h1ðyÞ ¼ minft : tP yi for i ¼ 1; . . . ;mg, where t is
an unrestricted variable. It turns out that this ap-

proach can be generalized to provide an effective

modeling technique for quantities �hkðyÞ with ar-
bitrary k [21]. Namely, for a given outcome vector
y the quantity �hkðyÞ may be found by solving the
following linear program:

�hkðyÞ ¼ min kt

(
þ
Xm
i¼1

dþ
i : t þ dþ

i P yi; dþ
i P 0 for

¼ 1; . . . ;m
)
; ð13Þ

where t is an unrestricted variable while nonneg-
ative variables dþ

i represent, for several outcome

values yi, their upside deviations from the value of
t. Independently from the formal proof [21], this

formula can be justified as follows. It is obvious

that minðkt þ
Pm

i¼1 d
þ
i Þ ¼ �hkðyÞ whenever no more

than k � 1 deviations dþ
i are strictly positive. On

the other hand, for any t and dþ
i feasible to (13)

one can define an alternative feasible values:
~t ¼ t þ D and ~dþ

i ¼ dþ
i � D for dþ

i > 0, where D is
an arbitrary small positive number. For at least k
positive values one gets k~t þ

Pm
i¼1

~dþ
i 6 ktþPm

i¼1 d
þ
i , which justifies (13).

Formula (13) allows us to formulate problem

(12) as the following multiple criteria optimization

problem:

min ðz1; z2; . . . ; zmÞ ð14Þ
subject to x 2 Q;

zk ¼ ktk þ
Xm
i¼1

dþ
ik for k ¼ 1; . . . ;m; ð15Þ

tk þ dþ
ik P fiðxÞ; dþ

ik P 0 for i; k ¼ 1; . . . ;m:
ð16Þ

Note that problem (14)–(16) belongs to the class of

convex programs provided that the feasible set Q is
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convex and all the original criteria fi are convex
functions. In the case of a linear multiple criteria

problem (1) the resulting formulation (14)–(16)

remains in the class of linear programs.
3. Equitable aggregations

Typical solution concepts for multiple criteria

problems are defined by aggregation functions

g : Y ! R to be minimized. Thus the multiple cri-
teria problem (1) is replaced with the minimization

problem

minfgðfðxÞÞ : x 2 Qg: ð17Þ
In order to guarantee the consistency of the ag-

gregated problem (17) with minimization of all

individual objective functions in the original mul-

tiple criteria problem, the aggregation function

must be strictly increasing with respect to every

coordinate, i.e.

y0i < yi ) gðy1; . . . ; yi�1; y0i ; yiþ1; . . . ; ymÞ
< gðy1; y2; . . . ; ymÞ for i 2 I : ð18Þ

Every optimal solution to the aggregated problem

(17) is then a Pareto-optimal solution of the orig-

inal multiple criteria problem.

The aggregated problem (17) and its corre-

sponding preference model are defined by the re-
lation: y0 � y00 iff gðy0Þ6 gðy00Þ. In order to

guarantee equitable rationality of this preference

relation, the aggregation function must be strictly

increasing and symmetric (impartial),

gðysð1Þ; ysð2Þ; . . . ; ysðmÞÞ ¼ gðy1; y2; . . . ; ymÞ
for any permutation s of I ; ð19Þ

as well as equitable (to satisfy the principle of

transfers),

gðy1; . . . ; yi0 � e; . . . ; yi00 þ e; . . . ; ymÞ
< gðy1; y2; . . . ; ymÞ for 0 < e < yi0 � yi00 : ð20Þ

In the case of an aggregation function satisfying all
the requirements (18)–(20), we call the corre-

sponding problem (17) an equitable aggregation of
problem (1). Every optimal solution to the equi-

table aggregation (17) is an equitably efficient so-

lution of the original multiple criteria problem.
Note that symmetric functions satisfying the re-

quirement

gðy1; . . . ; yi0 � e; . . . ; yi00 þ e; . . . ; ymÞ
6 gðy1; y2; . . . ; ymÞ for 0 < e < yi0 � yi00 ð21Þ

are called (weakly) Schur-convex [13] while the
stronger requirement of equitability (20), we con-

sider, is related to strictly Schur-convex functions.

In other words, an aggregation (17) is equitable if

it is defined by a strictly increasing and strictly

Schur-convex function g.
The simplest aggregation functions commonly

used for the multiple criteria problem (1) are de-

fined as the sum of outcomes,

gðyÞ ¼
Xm
i¼1

yi; ð22Þ

or the worst outcome,

gðyÞ ¼ max
i¼1;...;m

yi: ð23Þ

The sum (22) is a strictly increasing function

while the maximum (23) is only nondecreasing.

Therefore, the aggregation (17) using the sum of

outcomes always generates a Pareto-optimal so-

lution while the minimization of the worst out-

come may need some additional refinement [18].

Both the functions are symmetric and satisfy

the requirement (21), although they do not sat-
isfy the equitability requirement (20). Hence, they

are Schur-convex but not strictly Schur-convex.

Therefore, the corresponding aggregation (17), in

the general case, may generate solutions which are

not equitably efficient. To generate equitably effi-

cient solutions, some convexification is required.

For any strictly convex, increasing function

s : R ! R, the function

gðyÞ ¼
Xm
i¼1

sðyiÞ ð24Þ

is a strictly monotonic and strictly Schur-convex

function [13]. This defines a family of the equitable

aggregations according to the following corollary

[6].

Corollary 2. For any strictly convex, increasing
function s : R ! R, the optimal solution of the
problem
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min
Xm
i¼1

sðfiðxÞÞ : x 2 Q

( )
ð25Þ

is an equitably efficient solution of the multiple
criteria problem (1).

Various convex functions s can be used to de-
fine the aggregation (25). In the case of the out-

comes restricted to positive values, any p-power ap

is a strictly positive and convex function for p > 1.
This justifies the well known H€older Lp norms

kykp ¼
Xm
i¼1

jyijp
 !1=p

ð26Þ

as a source of equitable aggregations. Specifically,

the minimization of kykp is equivalent to the

minimization of kykpp ¼
Pm

i¼1 jyij
p
which is a

strictly increasing and strictly Schur-convex func-

tion for 1 < p < 1 and positive arguments yi.
Note that the sum of outcomes (22) and the

worst outcome (23) also represent the Lp norms for

p ¼ 1 and p ¼ 1, respectively. Hence, they are
limiting cases of the strictly Schur-convex aggre-

gations related to 1 < p < 1. As the limiting cases
they satisfy the corresponding weak requirements.

Actually, L1 is strictly monotonic but only weakly
Schur-convex while L1 is weakly monotonic and

weakly Schur-convex. On the other hand, these
two norms can be directly extended to piecewise

linear aggregation functions (22) and (23) which

are well defined for any outcome values (including

negative ones) preserving their properties of

(weak) monotonicity and Schur-convexity. The

strictly Schur-convex Lp norms are nonlinear and

there is no direct way to extend them for negative

outcomes preserving their strict monotonicity
properties. For general (positive and negative)

outcomes, one may consider aggregations

SpðyÞ ¼
Xm
i¼1

ðmaxf0; yigÞp
 !1=p

ð27Þ

which are monotonic and Schur-convex but not

strictly. Hence, we have two limiting piecewise

linear limiting aggregations and a family of non-
linear functions to build intermediate preferences.

We will argue further that the space between the
piecewise linear aggregation functions (22) and

(23) can be filled out with a family of piecewise

linear functions which are well defined for any

outcome values (including negative ones) main-

taining their properties of strict monotonicity and

Schur-convexity.

Another way to build equitable aggregations is

based on the use of the cumulative ordered out-
comes �hiðyÞ. Note that Corollary 1 allows one to
generate equitably efficient solutions of (1) as effi-

cient solutions of problem (12). The aggregation

minimizing the sum of outcomes, corresponds to

minimization of the last (mth) objective in problem
(12). Similar, the minimax scalarization corre-

sponds to minimization of the first objective in

(12). In general, one may consider increasing
functions of cumulative ordered outcomes �hiðyÞ. In
particular, for the weighted sum one getsXm
i¼1

wi
�hiðyÞ: ð28Þ

Note that, due to the definition of map �h with (9),
the above function can be expressed in the form

with weights vi ¼
Pm

j¼i wj (i ¼ 1; . . . ;m) allocated
to coordinates of the ordered outcome vector.

Such an approach to aggregation of outcomes was

introduced by Yager [27] as the so-called ordered

weighted averaging (OWA). When applying OWA
to problem (1) we get

min
Xm
i¼1

vihiðfðxÞÞ : x 2 Q

( )
: ð29Þ

The OWA aggregation is obviously a piecewise

linear function since it remains linear within every

area of the fixed order of arguments.

Theorem 2. If weights vi are strictly decreasing and
positive, i.e. v1 > v2 > � � � > vm�1 > vm > 0, then
each optimal solution of the OWA problem (29) is
an equitably efficient solution of (1).

While equal weights define the linear aggrega-

tion, several decreasing sequences of weights lead

to various strictly Schur-convex and strictly

monotonic aggregation functions. Thus, the

monotonic OWA aggregations provide a family of

piecewise linear aggregations filling out the space
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between the piecewise linear aggregation functions
(22) and (23) as shown in Fig. 2. Actually, for-

mulas (28) and (13) allow us to formulate any

monotonic (not necessarily strictly) OWA problem

(29) as the following extension of the original

multiple criteria problem by linear constraints:

min
Xm
k¼1

wkzk ð30Þ

subject to x 2 Q;

zk ¼ ktk þ
Xm
i¼1

dþ
ik for k ¼ 1; . . . ;m; ð31Þ

tk þ dþ
ik P fiðxÞ; dþ

ik P 0 for i; k ¼ 1; . . . ;m;
ð32Þ

where wm ¼ vm and wk ¼ vk � vkþ1 for k ¼
1; . . . ;m� 1 (compare [20] for further details).
When differences among weights tend to infin-

ity, the OWA aggregation approximates the lexi-

min ranking of the ordered outcome vectors

[1–3,15,28]. That means, as the limiting case of the

OWA problem (29), we get the lexicographic
problem

lexminfHðfðxÞÞ : x 2 Qg ð33Þ
which represents the lexicographic minimax ap-

proach (called also the nucleolar approach [11]) to

the original multiple criteria problem (1). Problem
(33) is a regularization of the standard minimax

scalarization (23), but in the former, in addition to

the largest outcome, we minimize also the second

largest outcome (provided that the largest one re-

mains as small as possible), minimize the third
Fig. 2. Isoline contours for equitable aggregations
largest (provided that the two largest remain as

small as possible), and so on. Due to (9), problem

(33) is equivalent to the problem

lexminfHðfðxÞÞ : x 2 Qg: ð34Þ
As the lexicographic optimization generates effi-

cient solutions, due to Corollary 1, the optimal

solution of the lexicographic minimax problem

(33) is an equitably efficient solution of the multi-

ple criteria problem (1). In other words, the
minimax aggregation (23) can be lexicographically

regularized to guarantee that the corresponding

preference relation meets both the strict monoto-

nicity and the principle of transfer (strict Schur-

convexity) requirements.

The lexicographic minimax solution can be

considered in some sense the ‘‘most equitable so-

lution’’. One may wish to look for a strictly
monotonic and Schur-convex regularization of the

minisum aggregation (22) thereby generating the

‘‘least equitable solution’’. This can be achieved by

applying reverse lexicographic minimization to the

problem (12), i.e. solving the lexicographic prob-

lem

lexminfð�hmðfðxÞÞ; �hm�1ðfðxÞÞ; . . . ; �h1ðfðxÞÞÞ : x 2 Qg;
ð35Þ

where first �hmðfðxÞÞ is minimized, next �hm�1ðfðxÞÞ
and so on. Note, that in the lexicographic opti-
mization problem dividing objectives by constants

does not affect the solution and �hiðyÞ=i represents
the mean of i largest coefficients in the outcome
vector y. Therefore, we refer to problem (35) as the
: (a) Lp norms, and (b) OWA aggregations.
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lexicographic mean problem. It follows from

Corollary 1 that the optimal solution of the lexi-

cographic mean problem (35) is an equitably

efficient solution of the multiple criteria prob-

lem (1).
4. Applications

Recently, there have appeared a number of

papers dealing with issues of equity and even some

papers which consider multiple criteria equity

models ([4,9,10,16,17] and references therein). In

some of these papers, the solutions presented are

equitably efficient, but the authors do not ac-

knowledge this fact (cf. references in [10]), while in
other papers, computed Pareto-optimal solutions

are criticized for their lack of equity [4,9] and the

authors replace the search for an equitably efficient

solution by minimization of some inequality

measures or even formally abandon the entire

multiple criteria model. Since the Pareto-optimal

set is very large in some models, it is quite possible

to compute efficient solutions which are very far
from the equitable efficient solutions. Thus, even

though some quite appealing equitably efficient

solutions may exist, they may be ignored in favor

of solutions which are less appealing, and less

justified by mathematical principles. In Section 4.1

we show the real-life case of the budget redistri-

bution [4] may be effectively solved with the use of

equitable aggregations.
On the other hand, several multiple criteria

optimization methods build the individual achieve-

ment functions which measure actual achievement

of each outcome with respect to the corresponding

preference parameters. Thus all the original out-

comes are transformed into a uniform scale of

individual achievements allowing one to use some

impartial aggregation techniques. This applies, in
particular, to the wide family of the reference point

method and goal programming approaches. For

these approaches, equity among the individual

achievements has been raised as an important

issue (cf. [18] and references therein). In Section

4.2 we will show that every efficient solution to

any multiple criteria problem can be found by

equitable optimization of appropriate individual
achievement functions. We especially focus on
the reference point methods taking advantages of

this relation.

4.1. Equitable preferences

Budgets, in the administration of organizations,

have become increasingly dynamic. Cuts in bud-

gets get increased publicity, and equity is sought in
how to apply these cuts. However, budgets may

also reflect increases, which should also be applied

in a fair (equitable) manner. In this section we

examine the case treated by Fandel and Gal [4],

and we show that it may be solved in quite a

satisfying way by means of equitably efficient solu-

tions. Fifteen state universities in North Rhine-

Westphalia together with the German Ministry of
Science and Research participated in the redistri-

bution of a part of the budget for teaching and

research. The authors reported on how the redis-

tribution problem has been treated by methods of

Operations Research and how the final solution

was reached in a process of negotiations between

the Ministry and participating universities. The

decision makers agreed on a set of 5 measures of
university performance. The measures were cal-

culated for each of the 15 universities, resulting in

constants that were combined using attribute

shares g1; g2; . . . ; g5. These shares were treated as
decision variables in the subsequent models of the

decision problem.

The universities participating in the redistribu-

tion requested that the resulting distribution
should be as close as possible to the original dis-

tribution. Thus, the problem was modeled using 15

criteria jzij, which represent the absolute deviation
of the new budget from the original budget of each

university. These criteria are obviously impartial

and equitable. Actually, several Lp norms have

been applied while looking for a solution [4]. We

present these solutions in the first three rows of
Table 1. None of the solutions have been accepted

by the Ministry. Finally, the optimization was

abandoned and after the negotiation process a

solution (reported in the table as �chosen�) has been
selected, that satisfied additional requirements

of the decision makers, which will be discussed

below.



Table 1

Solutions found by simple OWA models

Model g1 g2 g3 g4 g5 maxi jzij
P

i jzij
P

i jzij
2

L1 0.0000 0.2614 0.5120 0.1746 0.0520 1.30 6.39 4.74

L2 0.5030 0.2647 0.4648 0.1720 0.0482 1.19 6.86 4.52

L1 0.1546 0.1348 0.5051 0.2045 0.0000 0.92 7.90 5.19

Chosen 0.20 0.20 0.35 0.20 0.05 1.37 7.90 6.25

Minimax 0.15 0.15 0.50 0.20 0.00 0.95 7.83 5.44

Minisum 0.00 0.30 0.45 0.20 0.05 1.22 6.61 4.71

OWA-1 0.05 0.30 0.45 0.15 0.05 1.26 6.97 4.67

OWA-2 0.00 0.30 0.50 0.15 0.05 1.39 6.82 4.80

OWA-3 0.10 0.25 0.45 0.15 0.05 1.12 7.18 4.62

Optimal 0.10 0.30 0.35 0.15 0.10 1.04 7.26 5.01
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Fig. 3. Absolute Lorenz curves: solution �chosen� dominated by
�optimal�.
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We wish to use the case to demonstrate that a

consequent application of equitable optimization,

particularly the OWA aggregation, could directly
lead to acceptable results. For this purpose we

have computed several OWA aggregations of the

criteria. For comparability with the �chosen� solu-
tion, we have limited the decision variables gk to
the discrete grid of values: gk 2 f0:0; 0:05; . . . ;
0:95; 1:0g. Since the equitable OWA aggregation

as implementable by LP (30)–(32) is capable to

accommodate additional integer (discrete) con-
straints, this is easily accomplished. Table 1 re-

ports results for some simple OWA models. We

have started with the minimax and minisum ap-

proaches as the limiting OWA models defined with

weights wi given by the sequences 1; 0; . . . ; 0 and
0; . . . ; 0; 1, respectively. Next we consider models
defined by wi ¼ 1 for all i (OWA-1), wi ¼ i (OWA-
2), and wi ¼ 16� i (OWA-3). Note that we define
the OWA models by positive weights wi as in (28)

and LP formulation (30)–(32). Hence, in terms of

(29), OWA-1 represents strictly monotonic weights

vi decreasing with constant step 1. In OWA-2
weights vi decrease faster for large i which makes
the corresponding solution closer to the minisum

result while opposite weights vi decreasing faster
for small numbers i in OWA-3 makes the solution
closer to the minimax model.

While looking for the distribution scheme the

decision maker wanted to avoid too large attribute

shares gk allocated to a single decision factor

(evaluation criterion) as well as zero shares ex-

cluding some factors from the decision process [4].
We have enforced these additional requirements

by restricting the attribute shares gk to the interval:
0:0 < gk < 0:4. It turns out that all our OWA
models result then in the same equitably efficient

solution presented as �optimal� in Table 1. One can
easily notice that the solution is much better than

�chosen� in terms of all the Lp measures. Actually,

the �optimal� solution equitably dominates the

�chosen� one, as clearly shown with the corre-

sponding absolute Lorenz curves in Fig. 3 (note

that normalizing factor 1/15 is ignored for both the
axes as we start the curves from the first ordered

criterion thus depicting the minimax values).

Moreover, the solution �optimal� meets also

other additional requirements and restrictions

mentioned in [4]. We do not want to question a
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solution accepted for that application. We rather
wish to show that there exist methodological tools

to model various equitable preferences.

To demonstrate a wider gamut of the equitable

preferences supported by OWA modeling we have

built and solved several more complex models.

Table 2 presents results for four such models. All

of them were analyzed on the basic decision

problem without any upper bound on gk. Model
OWA-4 is defined by weights wi ¼ i2 which makes
it closer to the minisum model than OWA-2. It

turns out that the model generates exactly the

same solution as the standard minisum approach.

This justifies the minisum solution from Table 1 as

the equitably efficient one. Similarly, one may

consider weights wi ¼ ð16� iÞ2 or wi ¼ ð16� iÞ3 to
strengthen the OWA-3 model. The latter, denoted
as OWA-5, turns out to be closer to the minimax

model than OWA-3 but not very much closer. In

order to enforce solutions closer to the minimax

model one may directly increase the weight cor-

responding to this criterion. The OWA-6 model

defined by weights w1 ¼ 2000 and wi ¼ i2 for
i ¼ 2; . . . ; 15 has additional stress on the minimax
criterion as it represents a linear combination of
the minimax criterion · 1999 plus the OWA-5 cri-
terion. Similar, the OWA-7 model defined by

weights w1 ¼ 500 and wi ¼ 1 for i ¼ 2; . . . ; 15 can
be interpreted as a linear combination of the

minimax criterion· 499 plus the OWA-1 criterion.
The latter turns out to be almost optimal with

respect to the minimax criterion (L1 norm) and

generating better values of the L1 and L2 norms
than the original minimax solution, while the for-

mer generates even better values of the L1 and L2
norms but worsening the minimax criterion. Note

that in terms of the three Lp norms, we consider,

the OWA-2 and OWA-5 solutions are worse than

the results of OWA-6. Nevertheless, both OWA-2
Table 2

Solutions found by complex OWA models

Model g1 g2 g3 g4

OWA-4 0.00 0.30 0.45 0.20

OWA-5 0.10 0.20 0.50 0.20

OWA-6 0.05 0.25 0.45 0.20

OWA-7 0.10 0.20 0.45 0.20
and OWA-5 are equitably efficient. The entire

absolute Lorenz curves are important to define the

equitable dominance and Fig. 4 depicts various

plots of the curves showing that the OWA-2 curve

is the best for intermediate numbers of criteria.

4.2. Nonequitable preferences

Standard multiple criteria optimization prob-

lems with a general preference structure essentially

assume the criteria to be incomparable, i.e. having

no basis of comparison. Therefore, they cannot be

directly considered as equitable. Nevertheless,
typical multiple criteria optimization methods ag-

gregate the outcomes with various scalarizing

functions [14,25]. We argue that most scalarizing

functions can be viewed as two-stage transforma-

tions of the original outcomes. At the first stage,

the individual achievement functions are built

which measure actual achievement of each out-

come with respect to the corresponding prefer-
ence parameters. Thus, all the outcomes are

transformed into a uniform scale of individual
g5 maxi jzij
P

i jzij
P

i jzij
2

0.05 1.22 6.61 4.71

0.00 1.09 7.49 4.91

0.05 1.08 6.81 4.67

0.05 0.96 7.06 5.02
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achievements. At the second stage the individual
achievements are impartially aggregated in order

to select a better distribution of achievements. This

allows one to apply the equitable techniques to

aggregate the individual achievements. Such an

approach is justified by the following assertions.

Theorem 3. If �x 2 Q is a Pareto-optimal solution to
multiple criteria problem (1) and si : R ! R are
strictly increasing scaling functions satisfying the
requirement

s1ðf1ð�xÞÞ ¼ s2ðf2ð�xÞÞ ¼ � � � ¼ smðfmð�xÞÞ ¼ s ð36Þ
with some arbitrary real value s, then �x is an equi-
tably efficient solution to scaled problem

minfðs1ðf1ðxÞÞ; . . . ; smðfmðxÞÞÞ : x 2 Qg: ð37Þ

Proof. Suppose that �x 2 Q, Pareto-optimal to
multiple criteria problem (1) is not equitably effi-

cient to (37). Then, there exists a feasible x 2 Q
such that ys ¼ ðs1ðf1ðxÞÞ; . . . ; smðfmðxÞÞÞ equitably
dominates �ys ¼ ðs1ðf1ð�xÞÞ; . . . ; smðfmð�xÞÞÞ. This

means that �hiðysÞ6 �hið�ysÞ for i ¼ 1; 2; . . . ;m with at
least one inequality strict. However, due to (36),
�hið�ysÞ ¼ s for all i ¼ 1; 2; . . . ;m. Hence,
Xk
i¼1

siðfiðxÞÞ6 ks ¼
Xk
i¼1

siðfið�xÞÞ for k ¼ 1;2; . . . ;m

and, due to strictly increasing functions si, one gets
fiðxÞ6 fið�xÞ for i ¼ 1; 2; . . . ;m with at least one

inequality strict, which contradicts the Pareto-

optimality of �x. h

Corollary 3. For any �x 2 Q Pareto-optimal solution
to multiple criteria problem (1) there exist strictly
increasing scaling functions such that �x is an equi-
tably efficient solution to scaled problem (37).

Note that as a sample scaling functions satis-

fying the requirement (36) one may consider

siðyiÞ ¼ yi � fið�xÞ or siðyiÞ ¼ ðyi � biÞ=ðfið�xÞ � biÞ
where bi < fið�xÞ is an arbitrary parameter. Thus
there exist linear scaling functions meeting the re-

quirements of Theorem 3. Actually, this type of

scaling function is used in the reference point
method (RPM) to form the so-called individual (or

partial) achievement functions.
Recall that the idea of RPM is to produce
several efficient solutions according to the DM

preferences specified interactively in terms of ref-

erence (aspiration) levels. Depending on the spec-

ified reference levels a scalarizing achievement

function is built which, when optimized, generates

an efficient solution to the problem. The scalariz-

ing achievement function may be directly inter-

preted as expressing utility to be maximized.
However, to keep the discussion consistent with

the minimization models we will assume that the

scalarizing achievement function is minimized

(thus representing dis-utility). The generic scalar-

izing achievement function takes then the follow-

ing form:

max
16 i6m

fsiðfiðxÞÞg þ e
Xm
i¼1

siðfiðxÞÞ; ð38Þ

where e is an arbitrary small positive number and
siðyiÞ ¼ siðyi; biÞ, for i ¼ 1; 2; . . . ;m, are the indi-
vidual achievement functions measuring actual

achievement of the ith outcome with respect to the
corresponding reference levels bi.
The standard RPM methodology [26] assumes

the parameter e in formula (38) to be arbitrarily
small. Thus, when accepting the loss of a direct

utility interpretation, one may consider a limiting

case with e ! 0þ which results in lexicographic

order applied to two separate terms of function

(38). Therefore, RPM may be also considered as

the following lexicographic problem ([18] and ref-

erences therein):

lexmin max
16 i6m

fsiðfiðxÞÞg;
Xm
i¼1

siðfiðxÞÞ
" #

: x 2 Q

( )
:

ð39Þ

The advantage of the above lexicographic model is

that it allows us to generate all efficient solutions

whereas only properly efficient solutions can be

obtained with the minimization of (38).

Various functions si provide a wide modeling
environment for measuring individual achieve-

ments. For the sake of computational robustness,

the piecewise linear functions si are usually em-
ployed. In the simplest models, they take a form of

two segment piecewise linear functions
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siðyiÞ ¼
kþ
i ðyi � biÞ for yi P bi;

k�
i ðyi � biÞ for yi < bi;

�
ð40Þ

where kþ
i and k�

i are positive scaling factors cor-

responding to underachievements and over-

achievements, respectively, for the ith outcome. It
is usually assumed that kþ

i is much larger than k�
i .

However, even linear functions

siðyiÞ ¼ kiðyi � biÞ ð41Þ

with positive scaling factors ki represent simplified

(but still valid) individual achievement functions.

Real-life applications of the RPM methodology

usually deal with more complex individual

achievement functions defined with more than one

reference point [26] which enriches the preference

models and simplifies the interactive analysis. In
particular, the so-called aspiration/reservation

models [8] are used which take advantages of two

reference levels. In addition to the main (aspira-

tion) levels bi they employs also reservation levels
ri (ri > bi), so that the DM can specify desired as

well as required values for given outcomes. The

piecewise linear individual achievement function

may be defined than as follows [19]:

siðyiÞ ¼
c yi�ri
ri�bi

þ 1 for yi > ri;
yi�bi
ri�bi

for bi < yi 6 ri;

b yi�bi
ri�bi

for yi 6 bi;

8><
>: ð42Þ

where b and c are arbitrarily defined parameters
satisfying 0 < b < 1 < c. Independently from the

specific form of the individual achievement func-

tions, their main properties remain. Namely, for

any reference value bi, function siðyiÞ must be
strictly increasing with respect to yi (the ith out-
come) and it has to take a common value (usually
0) for yi ¼ bi. Hence, the following assertion may
be derived from Theorem 3.

Corollary 4. For any RPM individual achievement
functions siðyiÞ, if �x 2 Q is a Pareto-optimal solution
to multiple criteria problem (1), then �x is also an
equitably efficient solution to the multiple achieve-
ment optimization problem

minfða1; a2; . . . ; amÞ : ai ¼ siðfiðxÞÞ;
i ¼ 1; . . . ;m; x 2 Qg ð43Þ
with bi ¼ fið�xÞ for i ¼ 1; 2; . . . ;m.

In other words, the RPM (individual) achieve-

ment functions form a new uniform multiple cri-

teria problem where the analysis can be focused on

equitably efficient solutions. Actually, the standard

RPM model with the analytic scalarizing achieve-

ment function (38) can be expressed as the fol-
lowing OWA model:

min ð1
"(

þ eÞh1ðaÞ þ e
Xm
i¼2

hiðaÞ
#
: ai ¼ siðfiðxÞÞ;

i ¼ 1; . . . ;m; x 2 Q

)
:

Hence, the standard RPM model exactly repre-

sents the analytic (utility) form of the equitable

OWA aggregation (29) with strictly decreasing

weights in the case of m ¼ 2 (v1 ¼ 1þ e > v2 ¼ e).
For m > 2 it abandons the differences in weighting
of the second largest achievement, the third largest

one etc. ðv2 ¼ v3 ¼ � � � ¼ vm ¼ eÞ. This results in an
approximation to the equitable optimization de-

fined by the OWA aggregation satisfying only

weak Schur-convexity property (21).

Similarly, the lexicographic RPM model (39)

can be expressed as the following problem:

lexmin h1ðaÞ;
Xm
i¼2

hiðaÞ
" #

: ai

(
¼ siðfiðxÞÞ;

i ¼ 1; . . . ;m; x 2 Q

)
;

thus, in the case of two criteria (m ¼ 2), repre-
senting exactly the lexicographic minimax (33)

approach to the multiple achievement optimization

problem (43). For larger number of criteria (m > 2)
model (39) only approximates the lexicographic
minimax (33) as all the lower priority objective

terms are aggregated at the second priority level.

Hence, the lexicographic RPM model (39) fulfills

the principle of transfers only in the case of an

improvement of the worst individual achievement.

One may consider the lexicographic minimax

problem (33) applied to the multiple criteria

achievement problem (43) as a basis for a corre-
sponding nucleolar RPM model
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lexminf½h1ðaÞ; h2ðaÞ; . . . ; hmðaÞ� : ai ¼ siðfiðxÞÞ;
i ¼ 1; . . . ;m; x 2 Qg: ð44Þ

The nucleolar RPM represents a true equitable

optimization of the individual achievements. Ac-

tually it implements the Rawls principle of justice

[22]. In order to illustrate modeling advantages of
the nucleolar RPM let us consider two possible

achievement vectors: a0 ¼ ð10; 0; 0;�5Þ thus rep-
resenting the solution leaving only one aspiration

level not reached and a00 ¼ ð10; 10; 10;�30Þ with
three aspiration levels not satisfied. One may easily

notice that the first one will be selected by the

nucleolar RPM while a00 would be chosen by the

standard RPM. Hence, the equitable optimization
implemented within the nucleolar RPM results in

much better modeling of the aspiration levels

concept.

The nucleolar RPM model (44) can be ex-

pressed in terms of the lexicographic minimization

of the quantities �hiðaÞ:

lexminf½�h1ðaÞ; �h2ðaÞ; . . . ; �hmðaÞ� : ai ¼ siðfiðxÞÞ; i
¼ 1; . . . ;m; x 2 Qg

and thereby it is quite easily implementable. Ex-

actly, following the results from Section 2, it can

be considered as a standard lexicographic optimi-

zation:

lexmin½z1; z2; . . . ; zm� ð45Þ

subject to x 2 Q;

zk ¼ ktk þ
Xm
i¼1

dþ
ik for k ¼ 1; . . . ;m; ð46Þ

tk þ dþ
ik P siðfiðxÞÞ; dþ

ik P 0 for i; k ¼ 1; . . . ;m:

ð47Þ

In the case of convex piecewise linear individual

achievement functions (as typically used in the

RPM approaches), the resulting formulation (45)–
(47) extends the original constraints with linear

inequalities. Thus, the method can be effectively

applied to various multiple criteria problems in-

cluding the discrete ones.
5. Concluding remarks

The concept of equitably efficient solutions is a

specific refinement of Pareto-optimality. Hence,

equitable multiple criteria techniques focus on

some selection of Pareto-optimal solutions. It

turns out, however, that there are many applica-

tions in which the criteria are uniform in the sense
of the scale used and their values are directly

comparable. Moreover, the criteria are considered

impartially, which makes the distribution of out-

comes more important than the assignment of

several outcomes to the specific criteria. Note that

having two possible solutions generating outcome

vectors ð5; 0; 5Þ and ð0; 3; 0Þ, respectively, we rec-
ognize both the solutions as Pareto-optimal.
However, the first solution generates two out-

comes equal to 5 and one outcome equal to 0,

whereas the second solution generates one out-

come equal to 3 and two outcomes equal to 0.

Thus, the second outcome vector is clearly better

in terms of distribution of outcomes and the con-

cept of equitable efficiency allows us distinguish

these two solutions.
Typical solution concepts for multiple criteria

problems are defined by aggregations of the orig-

inal criteria. In order to guarantee the consistency

of the aggregated problem with minimization of

all individual objective functions in the original

multiple criteria problem, the aggregation func-

tion must be strictly increasing with respect to

every coordinate. Every optimal solution of the
aggregated optimization is then a Pareto-optimal

solution to the original multiple criteria prob-

lem. In order to generate equitably efficient solu-

tions, the aggregation functions must be also

symmetric and maintain some convexity proper-

ties (be Schur-convex). In the case of the out-

comes restricted to positive values the norms

can be used as aggregation functions. We have
demonstrated in this paper that much better re-

sults can be achieved with the ordered weighted

averaging (OWA) aggregations. The OWA aggre-

gations provide a family of piecewise linear func-

tions allowing to model various equitable

preferences. They can be easily implemented as

extensions of the original problem by linear con-

straints.
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There are many applications in which the crite-
ria express ideas of allocation of resources and try

to achieve some equitable allocation of resources.

We have examined in detail the case [4] of budget

redistribution, and we have shown that it may be

solved in a quite satisfying way by means of equi-

table optimization. Particularly, the use of the

OWA aggregation could directly lead to acceptable

results, while originally applied norms resulted in
unsatisfactory solutions and required additional

negotiation process to select the final solution.

Moreover, equitable optimization techniques

can also be applied to select efficient solutions in

general multiple criteria optimization. Indeed, in

approaches which seek to scalarize the multiple

criteria, some effort is always placed to replace the

original objective functions with some individual
achievements which are combined to form a final

scalar objective function to be optimized. This is

done, for example, in the reference point method,

which we have analyzed in detail. We have shown

that every efficient solution of a multiple criteria

optimization problem can be identified by the

optimization of an equitable aggregation applied

to appropriately defined individual achievements
and we have introduced an equitable model of the

reference point method.

Although the examples considered to date have

come from linear and integer multiple criteria op-

timization, the theory included in the paper ele-

gantly covers also the area of nonlinear multiple

criteria optimization, which has great potential for

impact in financial analysis and engineering design.
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