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Abstract

This note discusses the properties of solutions generated by the minmax models of goal programming (GP) and
compromise programming (CP). GP approaches use a certain target point in the criterion (attribute) space to model
decision maker’s preferences. When the ideal (utopia) point is used as the target, the minmax GP model coincides with
the minmax (Chebyshev) CP model. In a recent review of the current GP state-of-the-art, there have been included
suggestions that the two equivalent models ensure Pareto efficiency of solutions and they guarantee a perfectly balanced
allocation among the achievement of the individual targets. In this note, it is shown that the models, in general, do not
ensure the efficiency of solutions and they do not guarantee the perfect equity among the individual achievements.
Moreover, there are given sufficient and necessary conditions clarifying when the discussed properties of minmax so-
lutions do occur. © 2001 Elsevier Science B.V. All rights reserved.
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L. Introduction X decision vector (vector of decision

variables)

feasible set

number of attributes under consider-
ation

This note deals with multi-criteria optimization
problems. Without loss of generality, it is assumed
that all the criteria are maximized (that is, for each

attribute ‘more is !oetter’). Similar to Tamiz et al. fi(x) mathematical expression for the ith attrib-
(1998), the following notations are used for the ute (the ith criterion)
techniques under examination: ¥, value of the ith attribute, y, = f;(x)
y outcome vector, y = (v, ...,¥,)
Y, set of attainable outcome vectors,
Yo=A{1---0) « wi = filx),
i=1,2,...,q; x€ 0}
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b target (reference) point (in the outcome
space), b= (b1,...,b,)

b; ideal value corresponding to the ith at-
tribute, b7 = max{f;(x) : x € 0}

b* ideal (utopia) point (in the outcome space),
b* = (by,....b;)

An attainable outcome vector y € Y, is called
nondominated if there does not exist another at-
tainable vector y € Y, such that y >y and y # y.
The feasible decision vectors that generate non-
dominated outcome vectors are referred to as
efficient (Pareto-optimal) solutions of the multi-
criteria optimization problem. This means that
each feasible decision vector for which one cannot
improve any attribute value without worsening
another is an efficient solution.

The minmax scalarization was widely studied in
the multi-criteria optimization methodology
(Steuer, 1986). The optimal set of the minmax
scalarization always contains an efficient solution.
Thus, if unique, the optimal solution of the min-
max scalarization is efficient. In the case of mul-
tiple optimal solutions, one of them is efficient but
also some of them may not be efficient. It is a se-
rious flaw since practical large problems usually
have multiple optimal solutions and typical opti-
mization solvers generate one of them (essentially
at random). Therefore, to overcome this flaw of
the minmax scalarization, it is additionally regu-
larized with the weighted aggregation to guarantee
the efficiency of solutions, thus resulting in the so-
called augmented minmax scalarization. In par-
ticular, the augmented minmax scalarization is
used in the reference point method (RPM) which is
an interactive technique in which the DM specifies
preferences in terms of reference levels (Wierz-
bicki, 1977, 1982). Depending on the specified
reference levels, scalarizing achievement function
is built which, when minimized, generates an effi-
cient solution to the problem. One of the simplest
scalarizing achievement functions takes the fol-
lowing form (Steuer, 1986):

max {v;(b

1<i<q i }+8ZU’ i ’ (1)

where b; denote reference levels, ¢ an arbitrarily
small positive number and v; are positive weights
assigned to the corresponding attributes. In par-
ticular, similar to Tamiz et al. (1998), one may
consider weights v; = w;/k; where k; is the nor-
malization constant attached to ith attribute and
w; is the preferential weight attached to the ith
attribute.

As shown by Ogryczak (1994), RPM with the
scalarizing function (1) can be expressed in terms
of the goal programming (GP) implementation
environment of deviational variables as the fol-
lowing RGP model:

q

lex min 1r£11a<xq{v, =)} Z: (2)

subject to

fix)+nm—p=b; n,p =0, i=12....4¢,
3)

x € Q. (4)

The RGP model always generates an efficient so-
lution to the original multi-criteria problem si-
multaneously satisfying the RPM rules (Ogryczak,
1994). The RGP model (2)-(4) is similar to the
standard minmax (fuzzy) GP model for maximized
attributes (Ignizio, 1982)

min [ max {vi; }} (5)

1<i<qg

subject to (3) and (4).

However, the RGP model differs from (5) due to
the use of negative weights (—v;) attached to pos-
itive deviational variables and lexicographic mini-
mization of the additional regularization term

L vi(mi —p).

Consider the case where reference levels are
fixed at their ideal values b; which results in the
goal constraints

fix)+n—pi=b, n,p;=0, i=12,...,4¢q,
(6)
where by definition of the ideal values, all the
positive deviational variables p; are redundant (are
equal to zero for all x € Q). The minmax GP

model



W. Ogryczak | European Journal of Operational Research 132 (2001) 17-21 19

min { max {v,-n,-}} (7)

1<i<q

subject to (6) and (4)

corresponds then to a compromise programming
(CP) formulation with the Chebyshev (L., ) metric
(Zeleny, 1974). Since p; =0 for i=1,2,...,q, in
this particular situation the RGP model can be
written as

9
lex min [lrglaé(q{v,-n,},zvini} (8)

i=1

subject to (6) and (4),

which differs from (7) due to the lexicographic
minimization of the additional regularization term
doi vy

The lexicographic minimization of the regular-
ization term in (8) guarantees the efficiency of each
optimal solution. In a recent GP state-of-the-art
paper (Tamiz et al., 1998, p. 575) it is claimed that
in the particular situation of b; = b} the regular-
ization term in (8) is redundant as the minmax GP
model (7) itself guarantees the efficiency of solu-
tions. Moreover, it is claimed the minmax GP
solution is then perfectly equilibrated in the sense
that the following chain of equalities holds (Tamiz
et al., 1998, Eq. (10), p. 576):

0(by = fi(x)) = -+ = vi(b; = fi(x))
= = vy(by = f4(x))- ©)

The allegations are quite intuitive and valid in the
case of bicriteria (¢ =2) linear programming
(Ballestero and Romero, 1991). However, in gen-
eral case (¢ > 2), they are unjustified which will be
shown with simple counterexamples in the fol-
lowing section.

2. The counterexamples

Since Tamiz et al. (1998) have considered multi-
criteria linear programming problems, we present
counterexamples within this environment. Let us
consider a problem with three attributes,

HX) =x1, LX) =x, f(X) =x3, (10)

maximized on the feasible set

O = {(x1,2x2,x3) : x1 +x <2,
1.5<x3<2, x,->(), l:17273} (11)

From this data, it is straightforward to obtain the
efficient set as

{(e1,x2,x3) :x1 +x=2, x; 20, x, =0, x3 =2}.

Further, the ideal point is b* = (2,2,2). Let us
consider the corresponding minmax GP problem
(7) with equal weights: v; = v, = v; = 1. It can be
written as the following linear programming
problem (Tamiz et al., 1998, Eq. (8), p. 575):

min z (12)
subject to

m<z, i=12,3, (13)
xi+nm—p=2i=17273, (14)
X +x<2, (15)
1.5<x; <2, (16)
Xi, nj, pp=0, i=1273. (17)

One can easily find that the decision vectors that
are optimal for (12)—(17) form the set

{(x1,x2,x3) :x; =1, =1, 1.5<x3<2 }. (18)

In this solution set only vector (1, 1,2), generated
by the regularized problem (8), is an efficient so-
lution while all the others are not efficient. In
particular, the decision vector (1,1,1.5) (together
with Z:1, p1:p2:p3:0, n :I’l2:1 and
ny; =0.5) is a vertex optimal solution of the
problem (12)—(17) and it is not efficient. Thus the
minmax GP problem itself does not guarantee
the efficiency of solutions. Therefore, the claim
that when the reference point is fixed at the ideal
point, the regularization term in RPM becomes
redundant which makes the RPM model equiva-
lent to the minmax GP (Tamiz et al., 1998, p. 575)
is not correct.

Further, one can easily check that in the set (18)
there is no solution satisfying the requirement of
perfect equilibration (9). For any solution x from
the set (18): vi(b} — f1(X)) = 02(d; — fo(x)) =1
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while 0 < v3(b5 — f3(x)) < 0.5, and for the only ef-
ficient solution (1, 1, 2) one gets v3(b} — f3(x)) = 0.
In fact, in the example there do not exist feasible
solutions satisfying the requirement of perfect
equilibration. Thus, even in the case of multi-cri-
teria linear programming, setting the targets at the
corresponding ideal values is not enough to guar-
antee the efficiency and perfect equilibration of the
minmax GP solutions.

Note that even the unique minmax solution,
and therefore the efficient one, may not be per-
fectly equilibrated. This can be demonstrated with
three attributes (10) maximized on the feasible set

Q:{(xlax27x3) :xl+x2 +X3<7,
3<x3<4, x; =20, x; >0},

The ideal point is b* = (4,4,4) and the corre-
sponding minmax GP problem (7) with equal
weights (v; = v, = v3 = 1) has the unique optimal
solution x = (2,2,3). It is easy to see that this
solution does not satisfy the perfect equilibration
condition (9).

To make the above examples as simple as
possible we have considered them with unit
weights (v; = v, = v3 = 1). However, one can eas-
ily notice that for both examples there exist many
other weight settings leading to the same results.
Further, let us recall that v; denote the final
weights while Tamiz et al. (1998) consider the
weighting scheme of the form w;/k; where £; is the
normalization constant attached to ith attribute
and w; is the (arbitrary) preferential weight at-
tached to the ith attribute. Nevertheless, the above
examples (without explicit use of the normaliza-
tion constants k;) comprise with the latter models
when the preferential weights w; are defined by the
formula w; = v;k; thus resulting in w;/k; = v;.

3. Sufficient and necessary conditions

The examples presented in the previous section
show that, in general, the minmax scalarization
does not guarantee the efficiency and perfect
equilibration of the solutions. There arises a
question as to when the minmax solutions have
these two properties. Obviously, if the minmax

scalarization generates solutions which are efficient
and perfectly equilibrated, then such a solution
must exist. Therefore, the necessary condition is
the existence of a nondominated outcome vector
y € Y, such that

vi(br —=3) = =v(bi —3) = = vy(by 7.)711)'
(19)

We will show that this is also a sufficient condition.

Theorem 1. For any target vector b and any posi-
tive weight coefficients v; >0, i=1,2,...,q, if
there exists a nondominated outcome vector y € Y,
satisfying the equilibration requirement (19), then y
is the unique optimal solution of the minmax prob-
lem

min { max {v;(b; — )} 1y € ¥, } (20)

1<i<q

Proof. Let y € ¥, be a nondominated vector sat-
isfying the equilibration requirement (19) with
some target vector b and positive weight coeffi-

cients v; >0, i=1,2,...,q. This means, there ex-
ists a number o such that v;(b;—3)=oa for
i=12...,q.

Suppose that y is not the unique optimal solu-
tion of the minmax problem (20). Then, there ex-
ists an attainable outcome vector y € Y, such that

y #y and

max {v;(b; — )} < max {vi(b; — y,)} = o
1<i<gq

1<i<q
Hence

v,—(b,-—y,—)goc:l),-(bi—fi) fori=1,2,...,q.
Thus, y >y and y # y which contradict the as-
sumption that y is nondominated. [

Corollary 1. For any target vector b and any pos-
itive weight coefficients v; >0, i=1,2,...,q, if
there exists a nondominated outcome vector y € Y,
satisfying the equilibration requirement (19), then
each optimal solution of the minmax problem
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min { max o6~ )+ xe 0 }

<i<
is efficient and perfectly equilibrated.

In the case when all the target values satisfy the

inequalities b; > b, the positive deviational vari-
ables in the goal constraint (3) become redundant
and n; = (b; — fi(x)) for i = 1,2,...,q. Therefore,
the following assertion is valid.
Corollary 2. For any target values b; = b}, i =
1,2,...,q9 and any positive weight coefficients
v; >0,i=1,2,...,q, if there exists a nondominated
outcome vector 'y € Y, satisfying the equilibration
requirement (19), then each optimal solution of the
minmax GP problem

min { Jmax {vin;} : fi(X) + n; — pi = by,

<i<q
i=1,...,q, XEQ}
is efficient and perfectly equilibrated.

It follows from Corollary 2 that the minmax
GP model with targets fixed at the corresponding
ideal values indeed generates efficient and perfectly
equilibrated solutions, provided that such efficient
solutions exist. However, as shown in the previous
section, linear programming structure of the deci-
sion problem is not enough to guarantee that a
perfectly equilibrated efficient solution exists. Even
when there exists a feasible perfectly equilibrated
decision vector, one cannot be sure that a perfectly
equilibrated efficient solution exists. For instance,
when decreasing the lower bound on variable x3 in
(11) to get 1<x;3<2, the perfectly equilibrated
solution (1,1,1) becomes feasible but it is not ef-
ficient. Therefore, while applying the minmax GP

approach (5) to a practical multi-criteria decision
problem one cannot expect the guaranteed effi-
ciency of generated solutions.

Note that Theorem 1 and Corollary 1 are valid
for any multi-criteria optimization problems, in-
cluding discrete and nonconvex ones. It follows
from Corollary 1 that the RGP model (2)-(4)
generate an efficient and perfectly equilibrated
solution whenever such a solution exists. More-
over, the RGP model, due to the regularization,
always generates an efficient solution to the origi-
nal multi-criteria problem. Thus, by applying the
RGP model (2)-(4) to a practical multi-criteria
decision problem, one guarantees the efficiency of
generated solutions and one may expect that the
solution will be perfectly equilibrated if such a
possibility exists.
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